विभंजन सुदृढता: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Stress intensity factor at which a crack's propagation increases drastically}} | {{Short description|Stress intensity factor at which a crack's propagation increases drastically}} | ||
[[File:Fracture Toughness Thickness Dependence.svg|thumb|upright=1.25|अस्थि-भंग निष्ठुरता पर प्रतिरूप मोटाई का प्रभाव]]सामग्री विज्ञान में, [[ भंग | अस्थि-भंग]] की कठोरता तीव्र अस्थि-भंग का महत्वपूर्ण [[तनाव तीव्रता कारक|घृष्टता तीव्रता कारक]] है जहां दरार का प्रसार तीव्र गति से एवं असीमित हो जाता है। घटक की मोटाई समतल घृष्टता की स्थिति वाले पतले घटकों एवं समतल घृष्टता की स्थिति वाले मोटे घटकों के साथ दरार की सीमा पर बाधा की स्थिति को प्रभावित करती है। [[विमान तनाव|विमान घृष्टता]] की स्थिति सबसे अर्घ्य अस्थि-भंग मूल्य देती है, जो भौतिक गुण है। विमान घृष्टता की स्थितियों के अनुसार मापे गए अस्थि-भंग मैकेनिक्स | [[File:Fracture Toughness Thickness Dependence.svg|thumb|upright=1.25|अस्थि-भंग निष्ठुरता पर प्रतिरूप मोटाई का प्रभाव]]सामग्री विज्ञान में, [[ भंग | अस्थि-भंग]] की कठोरता तीव्र अस्थि-भंग का महत्वपूर्ण [[तनाव तीव्रता कारक|घृष्टता तीव्रता कारक]] है जहां दरार का प्रसार तीव्र गति से एवं असीमित हो जाता है। घटक की मोटाई समतल घृष्टता की स्थिति वाले पतले घटकों एवं समतल घृष्टता की स्थिति वाले मोटे घटकों के साथ दरार की सीमा पर बाधा की स्थिति को प्रभावित करती है। [[विमान तनाव|विमान घृष्टता]] की स्थिति सबसे अर्घ्य अस्थि-भंग मूल्य देती है, जो भौतिक गुण है। विमान घृष्टता की स्थितियों के अनुसार मापे गए अस्थि-भंग मैकेनिक्स भारिंग में घृष्टता की स्थिति, फैक्टर के महत्वपूर्ण मूल्य को विमान घृष्टता की स्थिति अस्थि-भंग क्रूरता के रूप में जाना जाता है, जिसे <math>K_\text{Ic}</math> निरूपित किया जाता है I<ref name="suresh04">{{cite book |last1=Suresh |first1=S. |year=2004 |title=सामग्री की थकान|publisher=Cambridge University Press |isbn=978-0-521-57046-6}}</ref> जब परीक्षण मोटाई एवं अन्य परीक्षण आवश्यकताओं को पूर्ण करने में विफल रहता है जो विमान घृष्टता की स्थिति सुनिश्चित करने के लिए होता है, तो उत्पादित अस्थि-भंग <math>K_\text{c}</math> क्रूरता मूल्य को पदनाम दिया जाता हैI अस्थि-भंग निर्दयता प्रसार के लिए सामग्री के प्रतिरोध को व्यक्त करने का मात्रात्मक विधि है एवं किसी दिए गए सामग्री के लिए मानक मान उपलब्ध होते हैं। | ||
घृष्टता संघर्ष सुम के रूप में जाना जाने वाला मंद आत्मनिर्भर दरार प्रसार, दहलीज के ऊपर <math>K_\text{Iscc}</math> एवं संक्षारक वातावरण में नीचे <math>K_\text{Ic}</math> हो सकता हैI दरार विस्तार की छोटी वृद्धि थव्योम (सामग्री) दरार वृद्धि के समय भी हो सकती है, जो बार-बार | घृष्टता संघर्ष सुम के रूप में जाना जाने वाला मंद आत्मनिर्भर दरार प्रसार, दहलीज के ऊपर <math>K_\text{Iscc}</math> एवं संक्षारक वातावरण में नीचे <math>K_\text{Ic}</math> हो सकता हैI दरार विस्तार की छोटी वृद्धि थव्योम (सामग्री) दरार वृद्धि के समय भी हो सकती है, जो बार-बार भारिंग चक्रों के पश्चात, मंद-मंद दरार को बढ़ा सकती है, जब तक कि अंतिम विफलता अस्थि-भंग की कठोरता से अधिक न हो जाए। | ||
== सामग्री भिन्नता == | == सामग्री भिन्नता == | ||
Line 91: | Line 91: | ||
== परीक्षण की विधि == | == परीक्षण की विधि == | ||
दरारो द्वारा विफलता के लिए सामग्री के प्रतिरोध को मापने के लिए अस्थि-भंग क्रूरता परीक्षण किया जाता है। इस प्रकार के परीक्षणों के परिणाम स्वरूप या तो अस्थि-भंग की कठोरता का एकल-मूल्यवान माप होता है या [[क्रैक विकास प्रतिरोध वक्र|दरार विकास प्रतिरोध वक्र]] होता है। प्रतिरोध वक्र ऐसे क्षेत्र होते हैं जहां अस्थि-भंग क्रूरता पैरामीटर्स (K, J आदि) को दरार के प्रसार को चिह्नित करने वाले मापदंडों के विरुद्ध क्षेत्र किया जाता है। अस्थि-भंग के तंत्र एवं स्थिरता के आधार पर प्रतिरोध वक्र या एकल-मूल्यवान अस्थि-भंग क्रूरता प्राप्त की जाती है। अस्थि-भंग निष्ठुरता इंजीनियरिंग अनुप्रयोगों के लिए महत्वपूर्ण यांत्रिक संपत्ति है। सामग्री की अस्थि-भंग कठोरता को मापने के लिए कई प्रकार के परीक्षण होते हैं, जो सामान्यतः विभिन्न विन्यासों में [[पायदान (इंजीनियरिंग)|श्रेणी (इंजीनियरिंग)]] प्रतिरूप का उपयोग करते हैं। व्यापक रूप से उपयोग की जाने वाली मानकीकृत परीक्षण विधि [[चरपी प्रभाव परीक्षण]] है जिसके अनुसार वी-नॉट या यू-नॉच के साथ प्रतिरूप श्रेणी के पीछे से प्रभाव के अधीन होता है। दरार विस्थापन परीक्षण भी व्यापक रूप से उपयोग किए जाते हैं जैसे | दरारो द्वारा विफलता के लिए सामग्री के प्रतिरोध को मापने के लिए अस्थि-भंग क्रूरता परीक्षण किया जाता है। इस प्रकार के परीक्षणों के परिणाम स्वरूप या तो अस्थि-भंग की कठोरता का एकल-मूल्यवान माप होता है या [[क्रैक विकास प्रतिरोध वक्र|दरार विकास प्रतिरोध वक्र]] होता है। प्रतिरोध वक्र ऐसे क्षेत्र होते हैं जहां अस्थि-भंग क्रूरता पैरामीटर्स (K, J आदि) को दरार के प्रसार को चिह्नित करने वाले मापदंडों के विरुद्ध क्षेत्र किया जाता है। अस्थि-भंग के तंत्र एवं स्थिरता के आधार पर प्रतिरोध वक्र या एकल-मूल्यवान अस्थि-भंग क्रूरता प्राप्त की जाती है। अस्थि-भंग निष्ठुरता इंजीनियरिंग अनुप्रयोगों के लिए महत्वपूर्ण यांत्रिक संपत्ति है। सामग्री की अस्थि-भंग कठोरता को मापने के लिए कई प्रकार के परीक्षण होते हैं, जो सामान्यतः विभिन्न विन्यासों में [[पायदान (इंजीनियरिंग)|श्रेणी (इंजीनियरिंग)]] प्रतिरूप का उपयोग करते हैं। व्यापक रूप से उपयोग की जाने वाली मानकीकृत परीक्षण विधि [[चरपी प्रभाव परीक्षण]] है जिसके अनुसार वी-नॉट या यू-नॉच के साथ प्रतिरूप श्रेणी के पीछे से प्रभाव के अधीन होता है। दरार विस्थापन परीक्षण भी व्यापक रूप से उपयोग किए जाते हैं जैसे भार लगाने से पूर्व परीक्षण प्रतिरूपो में पतली दरारों के साथ तीन-बिंदु बीम झुकने वाले परीक्षण होते है। | ||
=== परीक्षण आवश्यकता === | === परीक्षण आवश्यकता === | ||
Line 102: | Line 102: | ||
==== पूर्व-दरारे ==== | ==== पूर्व-दरारे ==== | ||
स्थिर परिणामों के लिए, परीक्षण से पूर्व तीव्र दरार की आवश्यकता होती है। मशीनी खांचे एवं खांचे इस मानक पर सफल नहीं होते है। पर्याप्त रूप से तीव्र दरार को प्रस्तुत करने की सबसे प्रभावी विधि स्लॉट से दरार को विकसित करने के लिए चक्रीय | स्थिर परिणामों के लिए, परीक्षण से पूर्व तीव्र दरार की आवश्यकता होती है। मशीनी खांचे एवं खांचे इस मानक पर सफल नहीं होते है। पर्याप्त रूप से तीव्र दरार को प्रस्तुत करने की सबसे प्रभावी विधि स्लॉट से दरार को विकसित करने के लिए चक्रीय भारिंग प्रारम्भ करना है। स्लॉट की सीमा पर थव्योम दरारें प्रारम्भ की जाती हैं एवं दरार की लंबाई अपने वांछित मूल्य तक पहुंचने तक बढ़ने की अनुमति दी जाती है। | ||
चक्रीय | चक्रीय भारिंग को सावधानी पूर्वक नियंत्रित किया जाता है जिससे शक्ति-हार्डनिंग के माध्यम से सामग्री की कठोरता को प्रभावित न किया जा सके। यह मुख्य अस्थि-भंग के कृत्रिम क्षेत्र की तुलना में अधिक अल्प कृत्रिम क्षेत्र का उत्पादन करने वाले चक्रीय भार को चयनित किया जाता है। उदाहरण के लिए, ASTM E399 के अनुसार, अधिकतम घृष्टता तीव्रता K<sub>max</sub> 0.6 से बड़ा नहीं होना चाहिए I <math>K_\text{Ic}</math> प्रारंभिक चरण के समय एवं 0.8 से अर्घ्य <math>K_\text{Ic}</math> जब दरार अपने अंतिम आकार तक पहुँच जाती है।<ref>{{Cite journal|url=https://www.astm.org/cgi-bin/resolver.cgi?E399-90R97|title=धातु सामग्री के प्लेन-स्ट्रेन फ्रैक्चर टफनेस के लिए मानक परीक्षण विधि।|website=www.astm.org|doi=10.1520/e0399-90r97|access-date=2019-05-10}}</ref> कुछ स्थितियों में खांचे को अस्थि-भंग निष्ठुरता के प्रतिरूप के किनारों में मशीनीकृत किया जाता है जिससे दरार विस्तार के इच्छित पथ के साथ प्रतिरूप की मोटाई मूल मोटाई के न्यूनतम 80% तक अर्घ्य हो जाए।<ref>{{Cite journal|url=https://www.astm.org/doiLink.cgi?STP35842S|title=Thickness and Side-Groove Effects on J- and δ-Resistance Curves for A533-B Steel at 93C|website=www.astm.org|doi=10.1520/stp35842s|access-date=2019-05-10|page=426 | last1 = Andrews | first1 = WR | last2 = Shih | first2 = CF}}</ref> इसका कारण R-वक्र परीक्षण के समय सीधे दरार वाले मोर्चे को बनाए रखना है। | ||
रैखिक-कृत्रिम अस्थि-भंग यांत्रिकी (LEFM) के लिए मान्य K<sub>Ic</sub> एवं K<sub>R</sub> के साथ चार मुख्य मानकीकृत परीक्षणों का वर्णन नीचे किया गया है, जबकि J एवं J<sub>R</sub> कृत्रिम अस्थि-भंग यांत्रिकी (EPFM) के लिए परीक्षण मान्य हैI | रैखिक-कृत्रिम अस्थि-भंग यांत्रिकी (LEFM) के लिए मान्य K<sub>Ic</sub> एवं K<sub>R</sub> के साथ चार मुख्य मानकीकृत परीक्षणों का वर्णन नीचे किया गया है, जबकि J एवं J<sub>R</sub> कृत्रिम अस्थि-भंग यांत्रिकी (EPFM) के लिए परीक्षण मान्य हैI | ||
Line 119: | Line 119: | ||
जहाँ <math>B</math> न्यूनतम आवश्यक मोटाई है, <math>K_\text{Ic}</math> सामग्री की अस्थि-भंग निष्ठुरता एवं <math>\sigma_\text{YS}</math> भौतिक उपज शक्ति है। | जहाँ <math>B</math> न्यूनतम आवश्यक मोटाई है, <math>K_\text{Ic}</math> सामग्री की अस्थि-भंग निष्ठुरता एवं <math>\sigma_\text{YS}</math> भौतिक उपज शक्ति है। | ||
परीक्षण ऐसी दर पर स्थिर रूप से भार करके किया जाता है जैसे कि K<sub>I</sub> 0.55 से 2.75 (MPa तक बढ़ जाता हैI <math>\sqrt{m}</math>)/S परीक्षण के समय, भार एवं दरार कृत्रिमता प्रारंभिक | परीक्षण ऐसी दर पर स्थिर रूप से भार करके किया जाता है जैसे कि K<sub>I</sub> 0.55 से 2.75 (MPa तक बढ़ जाता हैI <math>\sqrt{m}</math>)/S परीक्षण के समय, भार एवं दरार कृत्रिमता प्रारंभिक स्थानांतरण (CMOD) अभिलेख किया जाता है एवं अधिकतम भार तक पहुंचने तक परीक्षण निरंतर रहता है। क्रिटिकल भार <P<sub>Q</sub> भार बनाम सीएमओडी क्षेत्र के माध्यम से गणना की जाती है। अनंतिम क्रूरता K<sub>Q</sub> के रूप में दिया जाता है | ||
::<math>K_Q=\frac{P_Q}{\sqrt{W}B}f(a/W,...)</math>. | ::<math>K_Q=\frac{P_Q}{\sqrt{W}B}f(a/W,...)</math>. | ||
Line 133: | Line 133: | ||
स्थिर दरार वृद्धि दिखाने वाला प्रतिरूप अस्थि-भंग की कठोरता में बढ़ती प्रवृत्ति को दर्शाता है क्योंकि दरार की लंबाई बढ़ जाती है (नमनीय दरार विस्तार)। अस्थि-भंग निष्ठुरता बनाम दरार की लंबाई के इस क्षेत्र को प्रतिरोध (आर) -वक्र कहा जाता है। ASTM E561 सामग्री में कठोरता बनाम दरार वृद्धि वक्रों के निर्धारण के लिए एक प्रक्रिया की रूपरेखा तैयार करता है।<ref>{{Cite journal|url=https://www.astm.org/cgi-bin/resolver.cgi?E561-98|title=आर-वक्र निर्धारण के लिए मानक अभ्यास|website=www.astm.org|doi=10.1520/e0561-98|access-date=2019-05-10}}</ref> इस मानक में सामग्री की न्यूनतम मोटाई पर कोई प्रतिबंध नहीं है एवं इसलिए इसका उपयोग पतली शीट के लिए किया जा सकता है, हालांकि परीक्षण के वैध होने के लिए एलईएफएम की आवश्यकताओं को पूरा किया जाना चाहिए। एलईएफएम के लिए मानदंड अनिवार्य रूप से बताता है कि कृत्रिम क्षेत्र की तुलना में इन-प्लेन आयाम बड़ा होना चाहिए। आर वक्र के आकार पर मोटाई के प्रभाव के बारे में गलत धारणा है। यह संकेत दिया जाता है कि समान सामग्री के लिए मोटा खंड समतल घृष्टता अस्थि-भंग द्वारा विफल हो जाता है एवं एकल-मूल्यवान अस्थि-भंग क्रूरता दिखाता है, पतला खंड विमान घृष्टता अस्थि-भंग द्वारा विफल हो जाता है एवं बढ़ते आर-वक्र को दर्शाता है। हालांकि, आर वक्र के ढलान को नियंत्रित करने वाला मुख्य कारक अस्थि-भंग आकारिकी है न कि मोटाई। कुछ सामग्री खंड मोटाई में अस्थि-भंग आकारिकी को नमनीय फाड़ से दरार को पतले से मोटे खंड में बदल दिया जाता है, इस मामले में मोटाई अकेले आर-वक्र के ढलान को निर्धारित करती है। ऐसे मामले हैं जहां माइक्रोवॉइड कोलेसेंस विफलता का तरीका होने के कारण बढ़ते आर-वक्र में विमान घृष्टता की स्थिति अस्थि-भंग भी होता है। | स्थिर दरार वृद्धि दिखाने वाला प्रतिरूप अस्थि-भंग की कठोरता में बढ़ती प्रवृत्ति को दर्शाता है क्योंकि दरार की लंबाई बढ़ जाती है (नमनीय दरार विस्तार)। अस्थि-भंग निष्ठुरता बनाम दरार की लंबाई के इस क्षेत्र को प्रतिरोध (आर) -वक्र कहा जाता है। ASTM E561 सामग्री में कठोरता बनाम दरार वृद्धि वक्रों के निर्धारण के लिए एक प्रक्रिया की रूपरेखा तैयार करता है।<ref>{{Cite journal|url=https://www.astm.org/cgi-bin/resolver.cgi?E561-98|title=आर-वक्र निर्धारण के लिए मानक अभ्यास|website=www.astm.org|doi=10.1520/e0561-98|access-date=2019-05-10}}</ref> इस मानक में सामग्री की न्यूनतम मोटाई पर कोई प्रतिबंध नहीं है एवं इसलिए इसका उपयोग पतली शीट के लिए किया जा सकता है, हालांकि परीक्षण के वैध होने के लिए एलईएफएम की आवश्यकताओं को पूरा किया जाना चाहिए। एलईएफएम के लिए मानदंड अनिवार्य रूप से बताता है कि कृत्रिम क्षेत्र की तुलना में इन-प्लेन आयाम बड़ा होना चाहिए। आर वक्र के आकार पर मोटाई के प्रभाव के बारे में गलत धारणा है। यह संकेत दिया जाता है कि समान सामग्री के लिए मोटा खंड समतल घृष्टता अस्थि-भंग द्वारा विफल हो जाता है एवं एकल-मूल्यवान अस्थि-भंग क्रूरता दिखाता है, पतला खंड विमान घृष्टता अस्थि-भंग द्वारा विफल हो जाता है एवं बढ़ते आर-वक्र को दर्शाता है। हालांकि, आर वक्र के ढलान को नियंत्रित करने वाला मुख्य कारक अस्थि-भंग आकारिकी है न कि मोटाई। कुछ सामग्री खंड मोटाई में अस्थि-भंग आकारिकी को नमनीय फाड़ से दरार को पतले से मोटे खंड में बदल दिया जाता है, इस मामले में मोटाई अकेले आर-वक्र के ढलान को निर्धारित करती है। ऐसे मामले हैं जहां माइक्रोवॉइड कोलेसेंस विफलता का तरीका होने के कारण बढ़ते आर-वक्र में विमान घृष्टता की स्थिति अस्थि-भंग भी होता है। | ||
के-आर वक्र का मूल्यांकन करने का सबसे सटीक तरीका कृत्रिम क्षेत्र के सापेक्ष आकार के आधार पर प्लास्टिसिटी की उपस्थिति को ध्यान में रखना है। नगण्य प्लास्टिसिटी के मामले में, | के-आर वक्र का मूल्यांकन करने का सबसे सटीक तरीका कृत्रिम क्षेत्र के सापेक्ष आकार के आधार पर प्लास्टिसिटी की उपस्थिति को ध्यान में रखना है। नगण्य प्लास्टिसिटी के मामले में, भार बनाम विस्थापन वक्र परीक्षण से प्राप्त किया जाता है एवं प्रत्येक बिंदु पर अनुपालन पाया जाता है। अनुपालन वक्र के ढलान का पारस्परिक है जिसका पालन किया जाएगा यदि प्रतिरूप एक निश्चित बिंदु पर उतार दिया जाता है, जिसे एलईएफएम के लिए विस्थापन के अनुपात के रूप में दिया जा सकता है। एएसटीएम मानक में दिए गए संबंध के माध्यम से तात्कालिक दरार की लंबाई निर्धारित करने के लिए अनुपालन का उपयोग किया जाता है। | ||
प्रभावी दरार लंबाई की गणना करके घृष्टता की तीव्रता को ठीक किया जाना चाहिए। एएसटीएम मानक दो वैकल्पिक तरीकों का सुझाव देता है। पहली विधि को इरविन का कृत्रिम क्षेत्र करेक्शन नाम दिया गया है। इरविन का दृष्टिकोण प्रभावी दरार की लंबाई का वर्णन करता है <math>a_\text{eff}</math> होना<ref name="notch">{{cite journal|last1= Liu | first1= M. | display-authors=etal |title= राउंड-टिप नॉच पर तनाव के लिए एक बेहतर अर्ध-विश्लेषणात्मक समाधान| journal= Engineering Fracture Mechanics | year=2015 | volume=149| pages=134–143 |url= http://drgan.org/wp-content/uploads/2014/07/032_EFM_2015.pdf | doi= 10.1016/j.engfracmech.2015.10.004 | s2cid= 51902898 }}</ref> | प्रभावी दरार लंबाई की गणना करके घृष्टता की तीव्रता को ठीक किया जाना चाहिए। एएसटीएम मानक दो वैकल्पिक तरीकों का सुझाव देता है। पहली विधि को इरविन का कृत्रिम क्षेत्र करेक्शन नाम दिया गया है। इरविन का दृष्टिकोण प्रभावी दरार की लंबाई का वर्णन करता है <math>a_\text{eff}</math> होना<ref name="notch">{{cite journal|last1= Liu | first1= M. | display-authors=etal |title= राउंड-टिप नॉच पर तनाव के लिए एक बेहतर अर्ध-विश्लेषणात्मक समाधान| journal= Engineering Fracture Mechanics | year=2015 | volume=149| pages=134–143 |url= http://drgan.org/wp-content/uploads/2014/07/032_EFM_2015.pdf | doi= 10.1016/j.engfracmech.2015.10.004 | s2cid= 51902898 }}</ref> | ||
Line 139: | Line 139: | ||
इरविन का दृष्टिकोण पुनरावृत्त समाधान की ओर ले जाता है क्योंकि K स्वयं दरार की लंबाई का कार्य है। | इरविन का दृष्टिकोण पुनरावृत्त समाधान की ओर ले जाता है क्योंकि K स्वयं दरार की लंबाई का कार्य है। | ||
दूसरी विधि, अर्थात् छेदक विधि, प्रभावी अनुपालन से प्रभावी दरार लंबाई की गणना करने के लिए एएसटीएम मानक द्वारा दिए गए अनुपालन-दरार लंबाई समीकरण का उपयोग करती है। | दूसरी विधि, अर्थात् छेदक विधि, प्रभावी अनुपालन से प्रभावी दरार लंबाई की गणना करने के लिए एएसटीएम मानक द्वारा दिए गए अनुपालन-दरार लंबाई समीकरण का उपयोग करती है। भार बनाम विस्थापन वक्र में किसी भी बिंदु पर अनुपालन अनिवार्य रूप से वक्र के ढलान का पारस्परिक होता है जो उस बिंदु पर प्रतिरूप उतारने पर होता है। अब अनभारिंग वक्र रैखिक कृत्रिमर सामग्री के लिए उत्पत्ति पर लौटता है किन्तु कृत्रिमर कृत्रिम सामग्री के लिए नहीं क्योंकि स्थायी विरूपण होता है। कृत्रिमर कृत्रिम के मामले के लिए एक बिंदु पर प्रभावी अनुपालन को बिंदु एवं मूल में सम्मिलित होने वाली रेखा के ढलान के रूप में लिया जाता है (यानी अनुपालन यदि सामग्री एक कृत्रिमर थी)। इस प्रभावी अनुपालन का उपयोग प्रभावी दरार वृद्धि प्राप्त करने के लिए किया जाता है एवं शेष गणना समीकरण का अनुसरण करती है | ||
::<math>K_I=\frac{P}{\sqrt{W}B} f(a_\text{eff}/W,...)</math> | ::<math>K_I=\frac{P}{\sqrt{W}B} f(a_\text{eff}/W,...)</math> | ||
Line 145: | Line 145: | ||
=== जे का निर्धारण<sub>IC</sub> === | === जे का निर्धारण<sub>IC</sub> === | ||
घृष्टता ऊर्जा रिलीज दर प्रति यूनिट अस्थि-भंग सतह क्षेत्र की गणना जे-इंटीग्रल विधि द्वारा की जाती है जो दरार की सीमा के चारों ओर एक समोच्च पथ अभिन्न है जहां पथ प्रारम्भ होता है एवं दोनों दरार सतहों पर समाप्त होता है। जे-क्रूरता मूल्य एक दरार के बढ़ने के लिए आवश्यक घृष्टता ऊर्जा की मात्रा के संदर्भ में सामग्री के प्रतिरोध को दर्शाता है। जे<sub>IC</sub> निष्ठुरता मूल्य कृत्रिमर कृत्रिम सामग्री के लिए मापा जाता है। अब एकल-मूल्यवान जे<sub>IC</sub> तन्य दरार विस्तार की शुरुआत के निकट कठोरता के रूप में निर्धारित किया जाता है (घृष्टता दृढ़ होने का प्रभाव महत्वपूर्ण नहीं है)। प्रत्येक नमूने को विभिन्न स्तरों पर | घृष्टता ऊर्जा रिलीज दर प्रति यूनिट अस्थि-भंग सतह क्षेत्र की गणना जे-इंटीग्रल विधि द्वारा की जाती है जो दरार की सीमा के चारों ओर एक समोच्च पथ अभिन्न है जहां पथ प्रारम्भ होता है एवं दोनों दरार सतहों पर समाप्त होता है। जे-क्रूरता मूल्य एक दरार के बढ़ने के लिए आवश्यक घृष्टता ऊर्जा की मात्रा के संदर्भ में सामग्री के प्रतिरोध को दर्शाता है। जे<sub>IC</sub> निष्ठुरता मूल्य कृत्रिमर कृत्रिम सामग्री के लिए मापा जाता है। अब एकल-मूल्यवान जे<sub>IC</sub> तन्य दरार विस्तार की शुरुआत के निकट कठोरता के रूप में निर्धारित किया जाता है (घृष्टता दृढ़ होने का प्रभाव महत्वपूर्ण नहीं है)। प्रत्येक नमूने को विभिन्न स्तरों पर भार करने एवं उतारने के लिए कई नमूनों के साथ परीक्षण किया जाता है। यह दरार माउथ ओपनिंग कंप्लायंस देता है जिसका उपयोग एएसटीएम मानक ई 1820 में दिए गए रिश्तों की मदद से दरार लेंथ प्राप्त करने के लिए किया जाता है, जिसमें जे-इंटीग्रल टेस्टिंग सम्मिलित है।<ref>{{Cite journal|url=https://www.astm.org/cgi-bin/resolver.cgi?E1820-01|title=फ्रैक्चर टफनेस के मापन के लिए मानक परीक्षण विधि|website=www.astm.org|doi=10.1520/e1820-01|access-date=2019-05-10}}</ref> दरार वृद्धि को मापने का एक अन्य तरीका प्रतिरूप को हीट टिंटिंग या थव्योम दरारिंग के साथ चिह्नित करना है। प्रतिरूप अंततः अलग हो जाता है एवं निशान की मदद से दरार विस्तार को मापा जाता है। | ||
इस प्रकार किए गए परीक्षण से कई | इस प्रकार किए गए परीक्षण से कई भार बनाम दरार माउथ ओपनिंग डिसप्लेसमेंट (CMOD) वक्र प्राप्त होते हैं, जिनका उपयोग J की गणना करने के लिए किया जाता है: - | ||
::<math>J=J_{el}+J_{pl}</math> | ::<math>J=J_{el}+J_{pl}</math> |
Revision as of 16:13, 25 March 2023
सामग्री विज्ञान में, अस्थि-भंग की कठोरता तीव्र अस्थि-भंग का महत्वपूर्ण घृष्टता तीव्रता कारक है जहां दरार का प्रसार तीव्र गति से एवं असीमित हो जाता है। घटक की मोटाई समतल घृष्टता की स्थिति वाले पतले घटकों एवं समतल घृष्टता की स्थिति वाले मोटे घटकों के साथ दरार की सीमा पर बाधा की स्थिति को प्रभावित करती है। विमान घृष्टता की स्थिति सबसे अर्घ्य अस्थि-भंग मूल्य देती है, जो भौतिक गुण है। विमान घृष्टता की स्थितियों के अनुसार मापे गए अस्थि-भंग मैकेनिक्स भारिंग में घृष्टता की स्थिति, फैक्टर के महत्वपूर्ण मूल्य को विमान घृष्टता की स्थिति अस्थि-भंग क्रूरता के रूप में जाना जाता है, जिसे निरूपित किया जाता है I[1] जब परीक्षण मोटाई एवं अन्य परीक्षण आवश्यकताओं को पूर्ण करने में विफल रहता है जो विमान घृष्टता की स्थिति सुनिश्चित करने के लिए होता है, तो उत्पादित अस्थि-भंग क्रूरता मूल्य को पदनाम दिया जाता हैI अस्थि-भंग निर्दयता प्रसार के लिए सामग्री के प्रतिरोध को व्यक्त करने का मात्रात्मक विधि है एवं किसी दिए गए सामग्री के लिए मानक मान उपलब्ध होते हैं।
घृष्टता संघर्ष सुम के रूप में जाना जाने वाला मंद आत्मनिर्भर दरार प्रसार, दहलीज के ऊपर एवं संक्षारक वातावरण में नीचे हो सकता हैI दरार विस्तार की छोटी वृद्धि थव्योम (सामग्री) दरार वृद्धि के समय भी हो सकती है, जो बार-बार भारिंग चक्रों के पश्चात, मंद-मंद दरार को बढ़ा सकती है, जब तक कि अंतिम विफलता अस्थि-भंग की कठोरता से अधिक न हो जाए।
सामग्री भिन्नता
Material type | Material | KIc (MPa · m1/2) |
---|---|---|
Metal | Aluminum | 14–28 |
Aluminum alloy (7075) | 20-35[2] | |
Inconel 718 | 73-87[3] | |
Maraging steel (200 Grade) | 175 | |
Steel alloy (4340) | 50 | |
Titanium alloy | 84–107[4] | |
Ceramic | Aluminum oxide | 3–5 |
Silicon carbide | 3–5 | |
Soda-lime glass | 0.7–0.8 | |
Concrete | 0.2–1.4 | |
Polymer | Polymethyl methacrylate | 0.7–1.60 |
Polystyrene | 0.7–1.1 | |
Composite | Mullite-fibre composite | 1.8–3.3[5] |
Silica aerogels | 0.0008–0.0048[6] |
अस्थि-भंग निष्ठुरता सामग्री में परिमाण के लगभग 4 आदेशों से भिन्न होती है। धातु अस्थि-भंग निष्ठुरता के उच्चतम मूल्यों को धारण करते हैं। कठोर सामग्रियों में सरलता से फैल नहीं सकती हैं, जिससे धातुएं घृष्टता के अनुसार दरार के लिए अत्यधिक प्रतिरोधी बन जाती हैं एवं उनके घृष्टता वक्र को कृत्रिम प्रवाह का बड़ा क्षेत्र बना देती हैं। सेरेमिक्स में अस्थि-भंग की कठोरता अर्घ्य होती है, किन्तु घृष्टताअस्थि-भंग में असाधारण सुधार होता है, जो धातुओं के सापेक्ष उनके 1.5 परिमाण की शक्ति में वृद्धि के लिए उत्तरदायी होता है। इंजीनियरिंग पॉलिमर के साथ इंजीनियरिंग सिरेमिक के संयोजन से बने सम्मिश्र की अस्थि-भंग निष्ठुरता, घटक सामग्री की व्यक्तिगत अस्थि-भंग क्रूरता से अधिक है।
तंत्र
आंतरिक तंत्र
आंतरिक दृढ़ तंत्र ऐसी प्रक्रियाएं हैं जो सामग्री की कठोरता को बढ़ाने के लिए दरार की सीमा के आगे कार्य करती हैं। ये आधार सामग्री की संरचना एवं बंधन के साथ-साथ सूक्ष्म संरचनात्मक विशेषताएं एवं प्रकृति से संबंधित होंगे, तंत्र के उदाहरणों में सम्मिलित हैं।
- द्वितीयक चरणों द्वारा दरार विक्षेपण होता है।
- महीन सूक्ष्म संरचना के कारण दरार द्विभाजन होता है।
- अनाज की सीमाओं के कारण दरार पथ में परिवर्तन होता है।
आधार सामग्री में कोई परिवर्तन जो इसकी प्रतिरोधक्षमता बढ़ाता है, को भी आंतरिक दृढ़ माना जा सकता है।[7]
अनाज की सीमाएं
सामग्री में अनाज की उपस्थिति भी दरारें फैलने की विधि को प्रभावित करके इसकी कठोरता को प्रभावित कर सकती है। दरार के सामने, सामग्री उपज के रूप में कृत्रिम क्षेत्र उपस्थित हो सकता है। उस क्षेत्र से भिन्न, सामग्री कृत्रिमर रहती है। इस कृत्रिम एवं कृत्रिम क्षेत्र के मध्य की सीमा पर अस्थि-भंग की स्थिति सबसे अनुकूल होती है, एवं इस प्रकार दरारें प्रायः उस स्थान पर अनाज की दरार से प्रारम्भ होती हैं।
अर्घ्य तापमान पर, जहां सामग्री पूर्ण रूप से अस्थि-अनित्य हो सकती है, जैसे शरीर-केंद्रित घन (बीसीसी) धातु में, कृत्रिम क्षेत्र सिकुड़ जाता है, एवं केवल कृत्रिम क्षेत्र उपस्थित होता है। इस अवस्था में, अनाज के क्रमिक विदलन से दरार फैल जाएगी। इन अर्घ्य तापमानों पर, उपज शक्ति अधिक होती है, किन्तु अस्थि-भंग शक्ति एवं दरार टिप वक्रता की त्रिज्या अर्घ्य होती है, जिससे अर्घ्य कठोरता होती है।[8] उच्च तापमान पर, उपज शक्ति अर्घ्य हो जाती है एवं कृत्रिम क्षेत्र का निर्माण होता है। कृत्रिमर-कृत्रिम क्षेत्र की सीमा पर विदलन प्रारम्भ होने की संभावना है, एवं फिर मुख्य दरार टिप पर वापस लिंक करें। यह सामान्यतः अनाज के दरारों का मिश्रण होता है, एवं रेशेदार लिंकेज के रूप में जाने वाले अनाज के नमनीय अस्थि-भंग होते हैं। जब तक लिंकअप पूर्ण रूप से रेशेदार लिंकेज नहीं हो जाता, तब तक रेशेदार लिंकेज का प्रतिशत तापमान बढ़ने के साथ बढ़ता है। इस अवस्था में, भले ही उपज शक्ति अर्घ्य हो, तन्य अस्थि-भंग की उपस्थिति एवं वक्रता के एक उच्च दरार टिप त्रिज्या के परिणामस्वरूप उच्च क्रूरता होती है।[8]
समावेशन
दूसरे चरण के कणों जैसी सामग्री में समावेश अस्थि-भंगुर अनाज के समान कार्य कर सकता है जो दरार प्रसार को प्रभावित कर सकता है। समावेशन पर अस्थि-भंग या डीकोहेसन या तो बाहरी लागू घृष्टता या इसके आसपास मैट्रिक्स के साथ निकटता बनाए रखने के लिए समावेशन की आवश्यकता से उत्पन्न अव्यवस्थाओं के कारण हो सकता है। अनाज के समान, कृत्रिम-कृत्रिमर क्षेत्र की सीमा पर अस्थि-भंग होने की सबसे अधिक संभावना है। फिर दरार वापस मुख्य दरार से जुड़ सकती है। यदि कृत्रिम क्षेत्र छोटा है या समावेशन का घनत्व छोटा है, तो अस्थि-भंग की मुख्य दरार अंश के साथ सीधे जुड़ने की संभावना अधिक होती है। यदि कृत्रिम क्षेत्र बड़ा है, या समावेशन का घनत्व अधिक है, तो कृत्रिम क्षेत्र के अंदर अतिरिक्त समावेशन अस्थि-भंग हो सकते हैं, एवं लिंकअप दरार से क्षेत्र के अंदर निकटतम अस्थि-निर्माणयोग्य समावेशन की प्रगति से होता है।[8]
परिवर्तन दृढ़
परिवर्तन दृढ़ घटना है, जिससे सामग्री एक से अधिक विस्थापन परिवर्तन चरण परिवर्तनों से निर्वाह होती है, जिसके परिणाम स्वरूप उस सामग्री की मात्रा में लगभग तात्कालिक परिवर्तन होता है। यह परिवर्तन सामग्री की घृष्टता स्थिति में परिवर्तन से प्रारम्भ होता है, जैसे तन्य घृष्टता में वृद्धि, एवं प्रारम्भ घृष्टता के विरोध में कार्य करता है। इस प्रकार जब सामग्री को स्थानीय रूप से घृष्टता में रखा जाता है, उदाहरण के लिए बढ़ती दरार की सीमा पर, यह चरण परिवर्तन से निर्वाह हो सकता है, जो इसकी मात्रा बढ़ाता है, स्थानीय तन्यता घृष्टता को अर्घ्य करता है एवं सामग्री के माध्यम से दरार की प्रगति में बाधा उत्पन्न करता है। सिरेमिक सामग्री की कठोरता को बढ़ाने के लिए इस तंत्र का उपयोग किया जाता है, विशेष रूप से जेट इंजन टरबाइन ब्लेड पर सिरेमिक चाकू एवं थर्मल बैरियर कोटिंग्स जैसे अनुप्रयोगों के लिए येट्रिया-स्थिर ज़िरकोनिया में होते है।[9]
बाहरी तंत्र
बाहरी दृढ़ तंत्र ऐसी प्रक्रियाएं हैं जो दरार की सीमा के पीछे कार्य करती हैं जिससे इसके आगे खुलने का विरोध किया जा सके। उदाहरणों में सम्मिलित हैं।
- रेशा, जहां आधात्री के माध्यम से दरार के प्रसार के पश्चात ये संरचनाएं दो अस्थि-भंग सतहों को साथ रखती हैंI
- दो कठोर अस्थि-भंग सतहों के मध्य घर्षण से दरार वेजिंग होती हैं
- सूक्ष्म दरारे, जहां मुख्य दरार के आसपास सामग्री में अल्प दरारें बनती हैं, सामग्री के कृत्रिम मापांक को प्रभावी रूप से बढ़ाकर दरार की सीमा पर घृष्टता से विश्राम मिलता है।[10]
परीक्षण की विधि
दरारो द्वारा विफलता के लिए सामग्री के प्रतिरोध को मापने के लिए अस्थि-भंग क्रूरता परीक्षण किया जाता है। इस प्रकार के परीक्षणों के परिणाम स्वरूप या तो अस्थि-भंग की कठोरता का एकल-मूल्यवान माप होता है या दरार विकास प्रतिरोध वक्र होता है। प्रतिरोध वक्र ऐसे क्षेत्र होते हैं जहां अस्थि-भंग क्रूरता पैरामीटर्स (K, J आदि) को दरार के प्रसार को चिह्नित करने वाले मापदंडों के विरुद्ध क्षेत्र किया जाता है। अस्थि-भंग के तंत्र एवं स्थिरता के आधार पर प्रतिरोध वक्र या एकल-मूल्यवान अस्थि-भंग क्रूरता प्राप्त की जाती है। अस्थि-भंग निष्ठुरता इंजीनियरिंग अनुप्रयोगों के लिए महत्वपूर्ण यांत्रिक संपत्ति है। सामग्री की अस्थि-भंग कठोरता को मापने के लिए कई प्रकार के परीक्षण होते हैं, जो सामान्यतः विभिन्न विन्यासों में श्रेणी (इंजीनियरिंग) प्रतिरूप का उपयोग करते हैं। व्यापक रूप से उपयोग की जाने वाली मानकीकृत परीक्षण विधि चरपी प्रभाव परीक्षण है जिसके अनुसार वी-नॉट या यू-नॉच के साथ प्रतिरूप श्रेणी के पीछे से प्रभाव के अधीन होता है। दरार विस्थापन परीक्षण भी व्यापक रूप से उपयोग किए जाते हैं जैसे भार लगाने से पूर्व परीक्षण प्रतिरूपो में पतली दरारों के साथ तीन-बिंदु बीम झुकने वाले परीक्षण होते है।
परीक्षण आवश्यकता
प्रतिरूप का चुनाव
अस्थि-भंग निष्ठुरता के माप के लिए ASTM मानक E1820[11] अस्थि-भंग क्रूरता टेस्टिंग के लिए तीन कूपन प्रकारों का अनुरोध करता हैI एकल बढ़त बंकनग कूपन SE (एसई) (B), ठोस घृष्टता प्रतिरूप C (T) एवं डिस्क के आकार का ठोस घृष्टता कूपन DC (डीसी) (T)होते हैI प्रत्येक प्रतिरूप विन्यास को तीन आयामों की विशेषता है, अर्थात् दरार की लंबाई (A), मोटाई (B) एवं चौड़ाई (W) है। इन आयामों के मूल्यों को उस विशेष परीक्षण की मांग से निर्धारित किया जाता है जो प्रतिरूप पर किया जा रहा है। अधिकांश परीक्षण ठोस घृष्टता प्रतिरूप या तीन सूत्री वंक परीक्षण विन्यास पर किए जाते हैं। समान विशिष्ट आयामों के लिए, ठोस विन्यास तीन-बिंदु वंक संबंधी परीक्षण की तुलना में अर्घ्य मात्रा में सामग्री लेता है।
भौतिक अभिविन्यास
अधिकांश इंजीनियरिंग सामग्रियों की अंतर्निहित गैर-आइसोट्रोपिक प्रकृति के कारण अस्थि-भंग का अनुस्थापन महत्वपूर्ण है। इसके कारण, सामग्री के अंदर अशक्तता के तल हो सकते हैं, एवं इस तल के साथ दरार विकास अन्य दिशाओं की तुलना में सरल हो सकता है। इस महत्व के कारण एएसटीएम ने फोर्जिंग एक्सिस के संबंध में दरार अनुस्थापन सूचना की मानकीकृत विधि प्रस्तुत की गयी है।[12] अक्षर L, T एवं S का उपयोग अनुदैर्ध्य, अनुप्रस्थ एवं लघु अनुप्रस्थ दिशाओं को निरूपित करने के लिए किया जाता है, जहाँ अनुदैर्ध्य दिशा फोर्जिंग अक्ष के साथ संयुक्त होती है। अभिविन्यास को दो अक्षरों के साथ परिभाषित किया गया है, प्रथम मुख्य तन्यता घृष्टता की दिशा है एवं दूसरा दरार प्रसार की दिशा है। सामान्यतया, किसी सामग्री की कठोरता की निचली सीमा उस अभिविन्यास में प्राप्त की जाती है जहां फोर्जिंग अक्ष की दिशा में दरार बढ़ती है।
पूर्व-दरारे
स्थिर परिणामों के लिए, परीक्षण से पूर्व तीव्र दरार की आवश्यकता होती है। मशीनी खांचे एवं खांचे इस मानक पर सफल नहीं होते है। पर्याप्त रूप से तीव्र दरार को प्रस्तुत करने की सबसे प्रभावी विधि स्लॉट से दरार को विकसित करने के लिए चक्रीय भारिंग प्रारम्भ करना है। स्लॉट की सीमा पर थव्योम दरारें प्रारम्भ की जाती हैं एवं दरार की लंबाई अपने वांछित मूल्य तक पहुंचने तक बढ़ने की अनुमति दी जाती है।
चक्रीय भारिंग को सावधानी पूर्वक नियंत्रित किया जाता है जिससे शक्ति-हार्डनिंग के माध्यम से सामग्री की कठोरता को प्रभावित न किया जा सके। यह मुख्य अस्थि-भंग के कृत्रिम क्षेत्र की तुलना में अधिक अल्प कृत्रिम क्षेत्र का उत्पादन करने वाले चक्रीय भार को चयनित किया जाता है। उदाहरण के लिए, ASTM E399 के अनुसार, अधिकतम घृष्टता तीव्रता Kmax 0.6 से बड़ा नहीं होना चाहिए I प्रारंभिक चरण के समय एवं 0.8 से अर्घ्य जब दरार अपने अंतिम आकार तक पहुँच जाती है।[13] कुछ स्थितियों में खांचे को अस्थि-भंग निष्ठुरता के प्रतिरूप के किनारों में मशीनीकृत किया जाता है जिससे दरार विस्तार के इच्छित पथ के साथ प्रतिरूप की मोटाई मूल मोटाई के न्यूनतम 80% तक अर्घ्य हो जाए।[14] इसका कारण R-वक्र परीक्षण के समय सीधे दरार वाले मोर्चे को बनाए रखना है।
रैखिक-कृत्रिम अस्थि-भंग यांत्रिकी (LEFM) के लिए मान्य KIc एवं KR के साथ चार मुख्य मानकीकृत परीक्षणों का वर्णन नीचे किया गया है, जबकि J एवं JR कृत्रिम अस्थि-भंग यांत्रिकी (EPFM) के लिए परीक्षण मान्य हैI
विमान घृष्टता की स्थिति, अस्थि-भंग निष्ठुरता का निर्धारण
जब कोई सामग्री विफलता से पूर्व रैखिक कृत्रिम विधि से व्यवहार करती है, जैसे कि कृत्रिम क्षेत्र प्रतिरूप आयाम की तुलना में अल्प होता है, तो मोड घृष्टता तीव्रता कारक का महत्वपूर्ण मान उपयुक्त अस्थि-भंग पैरामीटर हो सकता है। यह विधि महत्वपूर्ण मान उपयुक्त घृष्टता सिद्धांत घृष्टता तीव्रता कारक के संदर्भ में अस्थि-भंग क्रूरता का मात्रात्मक माप प्रदान करती है। परिणाम सार्थक हैंI यह सुनिश्चित करने के लिए परीक्षण के पूर्ण होने के पश्चात् मान्य किया जाना चाहिए। प्रतिरूप आकार निश्चित है, एवं दरार की सीमा पर समतल घृष्टता की स्थिति सुनिश्चित करने के लिए पर्याप्त होना चाहिए।
प्रतिरूप मोटाई दरार स्पर्श पर बाधा की मात्रा को प्रभावित करती है जो अस्थि-भंग क्रूरता मूल्य को प्रभावित करती हैI पठार तक पहुंचने तक प्रतिरूप आकार में वृद्धि के साथ अस्थि-भंग की कठोरता अर्घ्य हो जाती है। एएसटीएम E 399 में प्रतिरूप आकार की आवश्यकताओं का उद्देश्य यह सुनिश्चित करना है माप विमान घृष्टता पठार के अनुरूप होते हैं, यह सुनिश्चित करके कि नाममात्र रैखिक कृत्रिमर स्थितियों के अनुसार प्रतिरूप अस्थि-भंग यही हैI प्रतिरूप व्यापक प्रतिनिधित्व की तुलना में कृत्रिम क्षेत्र अल्प होना चाहिए। E 399 के वर्तमान संस्करण द्वारा चार प्रतिरूप विन्यास की अनुमति है: ठोस, एसई (B), आर्क-आकार एवं डिस्क-आकार के प्रतिरूप के लिए परीक्षण सामान्यतः चौड़ाई के साथ बनाये जाते हैंI मोटाई के दोगुने के सामान थव्योम पूर्व-दरार हैंI जिससे दरार लंबाई/चौड़ाई अनुपात () 0.45 एवं 0.55 के मध्य स्थित है। इस प्रकार, प्रतिरूप रूप-रेखा ऐसा है कि सभी प्रमुख आयाम, , , एवं −, लगभग समान हैं। इस रूप-रेखा के परिणाम स्वरूप सामग्री का कुशल उपयोग होता है, क्योंकि मानक के लिए आवश्यक है कि इनमें से प्रत्येक आयाम कृत्रिम क्षेत्र की तुलना में बड़ा होना चाहिए।
सतह घृष्टता अस्थि-भंग कठोरता परीक्षण
अस्थि-भंग निष्ठुरता परीक्षण करते समय, सबसे सरल परीक्षण प्रतिरूप विन्यास पृथक धार कोर चिह्न (इंजीनियरिंग) वक्र, एवं ठोस घृष्टता (CT) मानक हैं। परीक्षण से ज्ञात हुआ है कि विमान-घृष्टता की स्थिति सामान्यतः प्रबल होती है जब [15]
जहाँ न्यूनतम आवश्यक मोटाई है, सामग्री की अस्थि-भंग निष्ठुरता एवं भौतिक उपज शक्ति है।
परीक्षण ऐसी दर पर स्थिर रूप से भार करके किया जाता है जैसे कि KI 0.55 से 2.75 (MPa तक बढ़ जाता हैI )/S परीक्षण के समय, भार एवं दरार कृत्रिमता प्रारंभिक स्थानांतरण (CMOD) अभिलेख किया जाता है एवं अधिकतम भार तक पहुंचने तक परीक्षण निरंतर रहता है। क्रिटिकल भार <PQ भार बनाम सीएमओडी क्षेत्र के माध्यम से गणना की जाती है। अनंतिम क्रूरता KQ के रूप में दिया जाता है
- .
ज्यामिति कारक a/W का आयाम रहित फलन है एवं E 399 मानक में बहुपद रूप में दिया गया है। ठोस परीक्षण ज्यामिति के लिए ज्यामिति कारक ठोस घृष्टता प्रतिरूप पाया जा सकता है।[16] निम्नलिखित आवश्यकताओं को पूरा करने पर इस अनंतिम क्रूरता मूल्य को मान्य माना जाता है:
- एवं
जब अज्ञात अस्थि-भंग निष्ठुरता की सामग्री का परीक्षण किया जाता है, तो पूर्ण सामग्री खंड मोटाई का एक प्रतिरूप परीक्षण किया जाता है या अस्थि-भंग क्रूरता की भविष्यवाणी के आधार पर प्रतिरूप का आकार होता है। यदि परीक्षण से उत्पन्न अस्थि-भंग निष्ठुरता मूल्य उपरोक्त समीकरण की आवश्यकता को पूरा नहीं करता है, तो मोटे नमूने का उपयोग करके परीक्षण को दोहराया जाना चाहिए। इस मोटाई की गणना के अलावा, परीक्षण विनिर्देशों में कई अन्य आवश्यकताएं होती हैं जिन्हें पूरा किया जाना चाहिए (जैसे कतरनी होंठ का आकार) परीक्षण से पूर्व कहा जा सकता है कि K में परिणाम हुआ हैIC कीमत।
जब एक परीक्षण मोटाई एवं अन्य सादा-घृष्टता आवश्यकताओं को पूरा करने में विफल रहता है, तो उत्पादित अस्थि-भंग निष्ठुरता मूल्य को पदनाम K दिया जाता हैc. कभी-कभी, मोटाई की आवश्यकता को पूरा करने वाले नमूने का उत्पादन करना संभव नहीं होता है। उदाहरण के लिए, जब उच्च कठोरता वाली एक अपेक्षाकृत पतली प्लेट का परीक्षण किया जा रहा है, तो दरार की सीमा पर विमान-घृष्टता की स्थिति के साथ एक मोटा प्रतिरूप तैयार करना संभव नहीं हो सकता है।
आर-वक्र का निर्धारण, के-आर
स्थिर दरार वृद्धि दिखाने वाला प्रतिरूप अस्थि-भंग की कठोरता में बढ़ती प्रवृत्ति को दर्शाता है क्योंकि दरार की लंबाई बढ़ जाती है (नमनीय दरार विस्तार)। अस्थि-भंग निष्ठुरता बनाम दरार की लंबाई के इस क्षेत्र को प्रतिरोध (आर) -वक्र कहा जाता है। ASTM E561 सामग्री में कठोरता बनाम दरार वृद्धि वक्रों के निर्धारण के लिए एक प्रक्रिया की रूपरेखा तैयार करता है।[17] इस मानक में सामग्री की न्यूनतम मोटाई पर कोई प्रतिबंध नहीं है एवं इसलिए इसका उपयोग पतली शीट के लिए किया जा सकता है, हालांकि परीक्षण के वैध होने के लिए एलईएफएम की आवश्यकताओं को पूरा किया जाना चाहिए। एलईएफएम के लिए मानदंड अनिवार्य रूप से बताता है कि कृत्रिम क्षेत्र की तुलना में इन-प्लेन आयाम बड़ा होना चाहिए। आर वक्र के आकार पर मोटाई के प्रभाव के बारे में गलत धारणा है। यह संकेत दिया जाता है कि समान सामग्री के लिए मोटा खंड समतल घृष्टता अस्थि-भंग द्वारा विफल हो जाता है एवं एकल-मूल्यवान अस्थि-भंग क्रूरता दिखाता है, पतला खंड विमान घृष्टता अस्थि-भंग द्वारा विफल हो जाता है एवं बढ़ते आर-वक्र को दर्शाता है। हालांकि, आर वक्र के ढलान को नियंत्रित करने वाला मुख्य कारक अस्थि-भंग आकारिकी है न कि मोटाई। कुछ सामग्री खंड मोटाई में अस्थि-भंग आकारिकी को नमनीय फाड़ से दरार को पतले से मोटे खंड में बदल दिया जाता है, इस मामले में मोटाई अकेले आर-वक्र के ढलान को निर्धारित करती है। ऐसे मामले हैं जहां माइक्रोवॉइड कोलेसेंस विफलता का तरीका होने के कारण बढ़ते आर-वक्र में विमान घृष्टता की स्थिति अस्थि-भंग भी होता है।
के-आर वक्र का मूल्यांकन करने का सबसे सटीक तरीका कृत्रिम क्षेत्र के सापेक्ष आकार के आधार पर प्लास्टिसिटी की उपस्थिति को ध्यान में रखना है। नगण्य प्लास्टिसिटी के मामले में, भार बनाम विस्थापन वक्र परीक्षण से प्राप्त किया जाता है एवं प्रत्येक बिंदु पर अनुपालन पाया जाता है। अनुपालन वक्र के ढलान का पारस्परिक है जिसका पालन किया जाएगा यदि प्रतिरूप एक निश्चित बिंदु पर उतार दिया जाता है, जिसे एलईएफएम के लिए विस्थापन के अनुपात के रूप में दिया जा सकता है। एएसटीएम मानक में दिए गए संबंध के माध्यम से तात्कालिक दरार की लंबाई निर्धारित करने के लिए अनुपालन का उपयोग किया जाता है।
प्रभावी दरार लंबाई की गणना करके घृष्टता की तीव्रता को ठीक किया जाना चाहिए। एएसटीएम मानक दो वैकल्पिक तरीकों का सुझाव देता है। पहली विधि को इरविन का कृत्रिम क्षेत्र करेक्शन नाम दिया गया है। इरविन का दृष्टिकोण प्रभावी दरार की लंबाई का वर्णन करता है होना[18]
इरविन का दृष्टिकोण पुनरावृत्त समाधान की ओर ले जाता है क्योंकि K स्वयं दरार की लंबाई का कार्य है।
दूसरी विधि, अर्थात् छेदक विधि, प्रभावी अनुपालन से प्रभावी दरार लंबाई की गणना करने के लिए एएसटीएम मानक द्वारा दिए गए अनुपालन-दरार लंबाई समीकरण का उपयोग करती है। भार बनाम विस्थापन वक्र में किसी भी बिंदु पर अनुपालन अनिवार्य रूप से वक्र के ढलान का पारस्परिक होता है जो उस बिंदु पर प्रतिरूप उतारने पर होता है। अब अनभारिंग वक्र रैखिक कृत्रिमर सामग्री के लिए उत्पत्ति पर लौटता है किन्तु कृत्रिमर कृत्रिम सामग्री के लिए नहीं क्योंकि स्थायी विरूपण होता है। कृत्रिमर कृत्रिम के मामले के लिए एक बिंदु पर प्रभावी अनुपालन को बिंदु एवं मूल में सम्मिलित होने वाली रेखा के ढलान के रूप में लिया जाता है (यानी अनुपालन यदि सामग्री एक कृत्रिमर थी)। इस प्रभावी अनुपालन का उपयोग प्रभावी दरार वृद्धि प्राप्त करने के लिए किया जाता है एवं शेष गणना समीकरण का अनुसरण करती है
प्लास्टिसिटी सुधार का विकल्प कृत्रिम क्षेत्र के आकार पर निर्भर करता है। एएसटीएम मानक आवरण प्रतिरोध वक्र सुझाव देता है कि इरविन की विधि का उपयोग छोटे कृत्रिम क्षेत्र के लिए स्वीकार्य है एवं दरार-टिप प्लास्टिसिटी अधिक प्रमुख होने पर सिकेंट विधि का उपयोग करने की सिफारिश करता है। चूंकि एएसटीएम ई 561 मानक में प्रतिरूप आकार या अधिकतम स्वीकार्य दरार विस्तार पर आवश्यकताएं सम्मिलित नहीं हैं, इसलिए प्रतिरोध वक्र के आकार की स्वतंत्रता की गारंटी नहीं है। कुछ अध्ययनों से पता चलता है कि सिकेंट विधि के लिए प्रायोगिक डेटा में आकार की निर्भरता अर्घ्य पाई गई है।
जे का निर्धारणIC
घृष्टता ऊर्जा रिलीज दर प्रति यूनिट अस्थि-भंग सतह क्षेत्र की गणना जे-इंटीग्रल विधि द्वारा की जाती है जो दरार की सीमा के चारों ओर एक समोच्च पथ अभिन्न है जहां पथ प्रारम्भ होता है एवं दोनों दरार सतहों पर समाप्त होता है। जे-क्रूरता मूल्य एक दरार के बढ़ने के लिए आवश्यक घृष्टता ऊर्जा की मात्रा के संदर्भ में सामग्री के प्रतिरोध को दर्शाता है। जेIC निष्ठुरता मूल्य कृत्रिमर कृत्रिम सामग्री के लिए मापा जाता है। अब एकल-मूल्यवान जेIC तन्य दरार विस्तार की शुरुआत के निकट कठोरता के रूप में निर्धारित किया जाता है (घृष्टता दृढ़ होने का प्रभाव महत्वपूर्ण नहीं है)। प्रत्येक नमूने को विभिन्न स्तरों पर भार करने एवं उतारने के लिए कई नमूनों के साथ परीक्षण किया जाता है। यह दरार माउथ ओपनिंग कंप्लायंस देता है जिसका उपयोग एएसटीएम मानक ई 1820 में दिए गए रिश्तों की मदद से दरार लेंथ प्राप्त करने के लिए किया जाता है, जिसमें जे-इंटीग्रल टेस्टिंग सम्मिलित है।[19] दरार वृद्धि को मापने का एक अन्य तरीका प्रतिरूप को हीट टिंटिंग या थव्योम दरारिंग के साथ चिह्नित करना है। प्रतिरूप अंततः अलग हो जाता है एवं निशान की मदद से दरार विस्तार को मापा जाता है।
इस प्रकार किए गए परीक्षण से कई भार बनाम दरार माउथ ओपनिंग डिसप्लेसमेंट (CMOD) वक्र प्राप्त होते हैं, जिनका उपयोग J की गणना करने के लिए किया जाता है: -
रैखिक कृत्रिमर J का उपयोग करके गणना की जाती है
एवं K से निर्धारित होता है जहां बीN साइड-ग्रूव्ड नमूने के लिए शुद्ध मोटाई है एवं साइड-ग्रूव्ड नमूने के लिए बी के बराबर नहीं है
कृत्रिमर कृत्रिम जे का उपयोग करके गणना की जाती है
जहाँ =2 SENB नमूने के लिए
बीo प्रारंभिक बंधन लंबाई चौड़ाई एवं प्रारंभिक दरार लंबाई के मध्य के अंतर से दी गई है
एPl भार-विस्थापन वक्र के अंतर्गत कृत्रिम क्षेत्र है।
एक अनंतिम जे प्राप्त करने के लिए विशिष्ट डेटा कटौती तकनीक का उपयोग किया जाता हैQ. निम्नलिखित मानदंड पूरा होने पर मूल्य स्वीकार किया जाता है
विंदु प्रतिरोध का निर्धारण (व्योम विंदु परीक्षण)
विंदु परीक्षण (उदाहरण व्योम विंदु परीक्षण) विंदु प्रतिरोध के स्थिती में क्रूरता का अर्ध-मात्रात्मक माप प्रदान करता है। इस प्रकार के परीक्षण के लिए अल्प प्रतिरूप की आवश्यकता होती है, एवं इसलिए, उत्पाद रूपों की विस्तृत श्रृंखला के लिए इसका उपयोग किया जा सकता है। विंदु परीक्षण का उपयोग अधिक नमनीय एल्यूमीनियम मिश्र धातुओं (जैसे 1100, 3003) के लिए भी किया जा सकता है, जहां रैखिक कृत्रिम अस्थि-भंग यांत्रिकी प्रारम्भ नहीं होती है।
मानक परीक्षण की विधि
एएसटीएम अंतर्राष्ट्रीय, बीएसआई समूह , आईएसओ, जेएसएमई जैसे कई संगठन अस्थि-भंग क्रूरता मापन से संबंधित मानकों को प्रकाशित करते हैं।
- एएसटीएम C1161 परिवेशी तापमान पर उन्नत सिरामिक्स की वंक संबंधी संख्या के लिए परिक्षण विधि होती है।
- एएसटीएम C1421 परिवेश के तापमान पर उन्नत सिरेमिक की अस्थि-भंग कठोरता के निर्धारण के लिए मानक परीक्षण विधियाँ होती है।
- धात्विक सामग्री के प्लेन-शक्ति अस्थि-भंग क्रूरता के लिए एएसटीएम E399 परिक्षण विधि होती है।
- सतह-दरार घृष्टता प्रतिरूपोके साथ अस्थि-भंग परीक्षण के लिए एएसटीएम E740 अभ्यास होती है।
- अस्थि-भंग कठोरता के मापन के लिए एएसटीएम E1820 मानक परीक्षण विधि होती है I
- एएसटीएम E1823 थव्योम एवं अस्थि-भंग परीक्षण से संबंधित शब्दावली है I
- आईएसओ 12135 धात्विक सामग्री - अर्धस्थैतिक अस्थि-भंग क्रूरता के निर्धारण के लिए परीक्षण की एकीकृत विधि होती है I
- आईएसओ 28079:2009, पामक्विस्ट विधि, शक्तिशाली कार्बाइड के लिए अस्थि-भंग की कठोरता को निर्धारित करने के लिए प्रयोग किया जाता है[20]
दरार विक्षेपण दृढ़
पाली क्रिस्टलीय संरचनाओं वाले कई सिरेमिक में बड़ी दरारें विकसित होती हैं जो अनाज के मध्य की सीमाओं के साथ फैलती हैंI व्यक्तिगत क्रिस्टल के माध्यम से,क्योंकि अनाज की सीमाओं की कठोरता क्रिस्टल की तुलना में अधिक अर्घ्य होती है। अनाज की सीमा के पहलुओं एवं अवशिष्ट घृष्टता के कारण दरार कठोर प्रविधि से आगे बढ़ती है जिसका विश्लेषण करना कठिन है। इस घुमावदार के कारण बढ़ी हुई अनाज सीमा सतह क्षेत्र से जुड़ी अतिरिक्त सतह ऊर्जा की गणना करना स्थिर नहीं है, क्योंकि दरार की सतह बनाने के लिए कुछ ऊर्जा अवशिष्ट घृष्टता से आती है।[21]
प्रतिरूप
कैथरीन फैबर एवं एंथोनी जी. इवांस द्वारा प्रस्तुत किए गए सामग्री प्रतिरूप के यांत्रिकी को दूसरे चरण के कणों के आसपास दरार विक्षेपण के कारण सिरेमिक में अस्थि-भंग की कठोरता में वृद्धि की भविष्यवाणी करने के लिए विकसित किया गया है जो साँचा में सूक्ष्म दरारो के लिए प्रवण हैं।[22] प्रतिरूप दूसरे चरण के कण आकृति विज्ञान, पहलू अनुपात, रिक्ति एवं आयतन अंश को ध्यान में रखता है, साथ ही दरार की सीमा पर स्थानीय घृष्टता की तीव्रता में कमी आती है, जब दरार विक्षेपित होती है या दरार विमान झुक जाता है। वास्तविक दरार टेढ़ापन इमेजिंग प्रौद्योगिकी के माध्यम से प्राप्त किया जाता है, जिससे विक्षेपण एवं झुके हुए कोणों को सीधे प्रतिरूप में इनपुट किया जा सकता है।
अस्थि-भंग की कठोरता में परिणामी वृद्धि की तुलना प्लेन आधात्री के माध्यम से समतल दरार की तुलना में की जाती है। दृढ़ होने का परिमाण थर्मल संकुचन असंगति एवं कण अंतरापृष्ठ के सूक्ष्म अस्थि-भंग प्रतिरोध के कारण होने वाले घृष्टता से निर्धारित होता है।[23] यह कड़ापन ध्यान देने योग्य हो जाता है जब कणों का संकीर्ण आकार वितरण होता है जो उचित आकार के होते हैं। शोधकर्ता सामान्यतः फैबर के विश्लेषण के निष्कर्षों को स्वीकार करते हैं, जो विचार प्रकट करते हैं कि समान अनाज वाले सामग्रियों में विक्षेपण प्रभाव अनाज सीमा मूल्य के लगभग दो बार अस्थि-भंग की कठोरता को बढ़ा सकता है।
यह भी देखें
- भंगुर-तन्य संक्रमण क्षेत्र
- चरपी प्रभाव परीक्षण
- नमनीय-भंगुर संक्रमण तापमान
- प्रभाव (यांत्रिकी)
- इज़ोड प्रभाव शक्ति परीक्षण
- पंचर प्रतिरोधी
- शॉक (यांत्रिकी)
- तीन-बिन्दु रेशम परीक्षण दरार दृढ़ परिक्षण
- अभिस्थापन द्वारा सिरेमिक की कठोरता
संदर्भ
- ↑ Suresh, S. (2004). सामग्री की थकान. Cambridge University Press. ISBN 978-0-521-57046-6.
- ↑ Kaufman, J. Gilbert (2015), Aluminum Alloy Database, Knovel, retrieved 1 August 2019
- ↑ ASM International Handbook Committee (1996), ASM Handbook, Volume 19 - Fatigue and Fracture, ASM International, p. 377
- ↑ Titanium Alloys - Ti6Al4V Grade 5, AZO Materials, 2000, retrieved 24 September 2014
- ↑ AR Boccaccini; S Atiq; DN Boccaccini; I Dlouhy; C Kaya (2005). "Fracture behaviour of mullite fibre reinforced-mullite matrix composites under quasi-static and ballistic impact loading". Composites Science and Technology. 65 (2): 325–333. doi:10.1016/j.compscitech.2004.08.002.
- ↑ J. Phalippou; T. Woignier; R. Rogier (1989). "Fracture toughness of silica aerogels". Journal de Physique Colloques. 50: C4–191. doi:10.1051/jphyscol:1989431.
- ↑ Wei, Robert (2010), Fracture Mechanics: Integration of Mechanics, Materials Science and Chemistry, Cambridge University Press, ASIN 052119489X
- ↑ 8.0 8.1 8.2 Courtney, Thomas H. (2000). सामग्री का यांत्रिक व्यवहार. McGraw Hill. ISBN 9781577664253. OCLC 41932585.
- ↑ Padture, Nitin (12 April 2002). "Thermal Barrier Coatings for Gas-Turbine Engine Applications". Science. 296 (5566): 280–284. Bibcode:2002Sci...296..280P. doi:10.1126/science.1068609. PMID 11951028. S2CID 19761127.
- ↑ Liang, Yiling (2010), The toughening mechanism in hybrid epoxy-silica-rubber nanocomposites, Lehigh University, p. 20, OCLC 591591884
- ↑ E08 Committee. "फ्रैक्चर टफनेस के मापन के लिए टेस्ट विधि" (in English). doi:10.1520/e1820-20a.
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ "थकान फ्रैक्चर परीक्षण से संबंधित मानक शब्दावली". www.astm.org. doi:10.1520/e1823-13. Retrieved 2019-05-10.
- ↑ "धातु सामग्री के प्लेन-स्ट्रेन फ्रैक्चर टफनेस के लिए मानक परीक्षण विधि।". www.astm.org. doi:10.1520/e0399-90r97. Retrieved 2019-05-10.
- ↑ Andrews, WR; Shih, CF. "Thickness and Side-Groove Effects on J- and δ-Resistance Curves for A533-B Steel at 93C". www.astm.org: 426. doi:10.1520/stp35842s. Retrieved 2019-05-10.
- ↑ "धातु सामग्री के प्लेन-स्ट्रेन फ्रैक्चर टफनेस के लिए मानक परीक्षण विधि". www.astm.org. doi:10.1520/e0399-90r97. Retrieved 2019-05-10.
- ↑ "Stress Intensity Factors Compliances And Elastic Nu Factors For Six Test Geometries".
- ↑ "आर-वक्र निर्धारण के लिए मानक अभ्यास". www.astm.org. doi:10.1520/e0561-98. Retrieved 2019-05-10.
- ↑ Liu, M.; et al. (2015). "राउंड-टिप नॉच पर तनाव के लिए एक बेहतर अर्ध-विश्लेषणात्मक समाधान" (PDF). Engineering Fracture Mechanics. 149: 134–143. doi:10.1016/j.engfracmech.2015.10.004. S2CID 51902898.
- ↑ "फ्रैक्चर टफनेस के मापन के लिए मानक परीक्षण विधि". www.astm.org. doi:10.1520/e1820-01. Retrieved 2019-05-10.
- ↑ ISO 28079:2009, Palmqvist toughness test, Retrieved 22 January 2016
- ↑ Hutchinson, John (1989). "चीनी मिट्टी की चीज़ें सख्त करने की क्रियाविधि". Theoretical and applied mechanics: 139–144 – via Elsevier.
- ↑ Faber, K. T.; Evans, A. G. (1983-04-01). "Crack deflection processes—I. Theory". Acta Metallurgica (in English). 31 (4): 565–576. doi:10.1016/0001-6160(83)90046-9. ISSN 0001-6160.
- ↑ Faber, K. T.; Evans, A. G. (1983-04-01). "Crack deflection processes—II. Experiment". Acta Metallurgica (in English). 31 (4): 577–584. doi:10.1016/0001-6160(83)90047-0. ISSN 0001-6160.
अग्रिम पठन
- Anderson, T. L., Fracture Mechanics: Fundamentals and Applications (CRC Press, Boston 1995).
- Davidge, R. W., Mechanical Behavior of Ceramics (Cambridge University Press 1979).
- Knott, K. F., Fundamentals of Fracture Mechanics (1973).
- Suresh, S., Fatigue of Materials (Cambridge University Press 1998, 2nd edition).