कोडित एपर्चर: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{More citations needed|date=July 2007}} | {{More citations needed|date=July 2007}} | ||
[[File:Coded aperture mask (for gamma camera).jpg|thumb|गामा कैमरे के लिए कोडित अपर्चर मास्क ([[SPECT]] के लिए)]]कोडित | [[File:Coded aperture mask (for gamma camera).jpg|thumb|गामा कैमरे के लिए कोडित अपर्चर मास्क ([[SPECT]] के लिए)]]कोडित एपर्चर मास्क विद्युत चुम्बकीय विकिरण के विभिन्न तरंग दैर्ध्य के लिए अपारदर्शी सामग्री के ग्रिड, झंझरी या अन्य पैटर्न हैं। तरंग दैर्ध्य सामान्यतः उच्च-ऊर्जा विकिरण जैसे [[एक्स-रे|एक्स-किरण]] और [[गामा किरणें|गामा किरण]] होती हैं। ज्ञात पैटर्न में विकिरण को अवरुद्ध करके, विमान पर कोडित छाया डाली जाती है। मूल विकिरण स्रोतों के गुणों को इस छाया से गणितीय रूप से शोधित किया जा सकता है। एक्स और गामा किरण इमेजिंग प्रणाली में कोडित अपर्चर का उपयोग किया जाता है, क्योंकि इन उच्च-ऊर्जा किरणों को लेंस या दर्पण के साथ केंद्रित नहीं किया जा सकता है जो दृश्य प्रकाश के लिए कार्य करते हैं। | ||
== तर्क == | == तर्क == | ||
[[File:HURA_hexagonal_coded_aperture_mask_principle.svg|thumb|इंटेग्रल स्पेस टेलीस्कोप के एसपीआई उपकरण में प्रयुक्त हुरा हेक्सागोनल कोडित अपर्चर मास्क के संचालन का सरलीकृत सिद्धांत]]इमेजिंग सामान्यतः लेंस और दर्पण का उपयोग करके ऑप्टिकल तरंग दैर्ध्य पर किया जाता है। चूँकि, कठोर [[एक्स-रे]] और γ- | [[File:HURA_hexagonal_coded_aperture_mask_principle.svg|thumb|इंटेग्रल स्पेस टेलीस्कोप के एसपीआई उपकरण में प्रयुक्त हुरा हेक्सागोनल कोडित अपर्चर मास्क के संचालन का सरलीकृत सिद्धांत]]इमेजिंग सामान्यतः लेंस और दर्पण का उपयोग करके ऑप्टिकल तरंग दैर्ध्य पर किया जाता है। चूँकि, कठोर [[एक्स-रे|एक्स-किरण]] और γ-किरण की ऊर्जा परावर्तित या अपवर्तित होने के लिए अधिक है, और मात्र ऑप्टिकल[[ दूरबीन ]]के लेंस और दर्पण से गुजरती है। एपर्चर द्वारा इमेज मॉड्यूलेशन इसलिए अधिकांशतः इसके अतिरिक्त उपयोग किया जाता है। [[पिनहोल कैमरा]] इस प्रकार के मॉड्यूलेशन इमेजर का आधारस्वरूप है, किन्तु इसकी हानि निम्न थ्रुपुट है, क्योंकि इसका छोटा छिद्र न्यून विकिरण के माध्यम से अनुमति देता है। प्रकाश का मात्र छोटा सा अंश ही पिनहोल से होकर गुजरता है, जो निम्न संकेत बाधानुपात का कारण बनता है। इस समस्या का समाधान करने के लिए, उदाहरण के लिए, कई विशेष पैटर्न में, मास्क में कई छेद हो सकते हैं। डिटेक्टर से भिन्न-भिन्न दूरी पर कई मास्क, इस उपकरण में लचीलापन जोड़ते हैं। विशेष रूप से[[ फल ओडा | मिनोरू ओडा]] द्वारा आविष्कृत [[मॉडुलन समापक]] का उपयोग प्रथम ब्रह्मांडीय एक्स-[[एक्स-रे|किरण]] स्रोत की पहचान करने के लिए किया गया था और इस प्रकार 1965 में [[एक्स-रे खगोल विज्ञान|एक्स-]][[एक्स-रे|किरण]] खगोल विज्ञान के नए क्षेत्र को लॉन्च किया गया था। [[टोमोग्राफी]] जैसे अन्य क्षेत्रों में कई अन्य अनुप्रयोग तब से प्रकट हुए हैं। . | ||
पिनहोल कैमरे की तुलना में जटिल कोडित एपर्चर में, कई एपर्चर से छवियां डिटेक्टर सरणी पर ओवरलैप होंगी। इस प्रकार मूल छवि के पुनर्निर्माण के लिए कम्प्यूटेशनल एल्गोरिदम (जो एपर्चर सरणियों के त्रुटिहीन विन्यास पर निर्भर करता है) का उपयोग करना आवश्यक है। इस प्रकार बिना लेंस के उचित छवि प्राप्त की जा सकती है। छवि सेंसर की पूर्ण श्रृंखला से बनती है और इसलिए भिन्न-भिन्न सेंसर में दोषों के प्रति सहिष्णु है | पिनहोल कैमरे की तुलना में जटिल कोडित एपर्चर में, कई एपर्चर से छवियां डिटेक्टर सरणी पर ओवरलैप होंगी। इस प्रकार मूल छवि के पुनर्निर्माण के लिए कम्प्यूटेशनल एल्गोरिदम (जो एपर्चर सरणियों के त्रुटिहीन विन्यास पर निर्भर करता है) का उपयोग करना आवश्यक है। इस प्रकार बिना लेंस के उचित छवि प्राप्त की जा सकती है। छवि सेंसर की पूर्ण श्रृंखला से बनती है और इसलिए भिन्न-भिन्न सेंसर में दोषों के प्रति सहिष्णु है| दूसरी ओर यह फ़ोकसिंग-ऑप्टिक्स इमेजर (जैसे, अपवर्तक या परावर्तक टेलीस्कोप) की तुलना में अधिक पृष्ठभूमि विकिरण को स्वीकार करता है, और इसलिए सामान्यतः तरंग दैर्ध्य का पक्ष नहीं लिया जाता है जहाँ इन तकनीकों को प्रस्तावित किया जा सकता है। | ||
कोडित एपर्चर इमेजिंग तकनीक [[कम्प्यूटेशनल फोटोग्राफी]] का प्रारंभिक रूप है और [[खगोलीय इंटरफेरोमेट्री]] के लिए दृढ़ संबंध है। एपर्चर-कोडिंग को प्रथम बार एबल्स <ref name=ables>{{cite journal | कोडित एपर्चर इमेजिंग तकनीक [[कम्प्यूटेशनल फोटोग्राफी]] का प्रारंभिक रूप है और [[खगोलीय इंटरफेरोमेट्री]] के लिए दृढ़ संबंध है। एपर्चर-कोडिंग को प्रथम बार एबल्स <ref name=ables>{{cite journal | ||
Line 28: | Line 28: | ||
| doi = 10.1086/180230 | | doi = 10.1086/180230 | ||
| bibcode = 1968ApJ...153L.101D | | bibcode = 1968ApJ...153L.101D | ||
}}</ref> ने प्रस्तुत किया था और | }}</ref> ने प्रस्तुत किया था और तत्पश्यात अन्य प्रकाशनों द्वारा लोकप्रिय किया गया था।<ref name=fenimore>{{cite journal | ||
| title = Coded aperture imaging with uniformly redundant arrays | | title = Coded aperture imaging with uniformly redundant arrays | ||
| author = Edward E. Fenimore and Thomas M. Cannon | | author = Edward E. Fenimore and Thomas M. Cannon |
Revision as of 02:01, 11 April 2023
This article needs additional citations for verification. (July 2007) (Learn how and when to remove this template message) |
कोडित एपर्चर मास्क विद्युत चुम्बकीय विकिरण के विभिन्न तरंग दैर्ध्य के लिए अपारदर्शी सामग्री के ग्रिड, झंझरी या अन्य पैटर्न हैं। तरंग दैर्ध्य सामान्यतः उच्च-ऊर्जा विकिरण जैसे एक्स-किरण और गामा किरण होती हैं। ज्ञात पैटर्न में विकिरण को अवरुद्ध करके, विमान पर कोडित छाया डाली जाती है। मूल विकिरण स्रोतों के गुणों को इस छाया से गणितीय रूप से शोधित किया जा सकता है। एक्स और गामा किरण इमेजिंग प्रणाली में कोडित अपर्चर का उपयोग किया जाता है, क्योंकि इन उच्च-ऊर्जा किरणों को लेंस या दर्पण के साथ केंद्रित नहीं किया जा सकता है जो दृश्य प्रकाश के लिए कार्य करते हैं।
तर्क
इमेजिंग सामान्यतः लेंस और दर्पण का उपयोग करके ऑप्टिकल तरंग दैर्ध्य पर किया जाता है। चूँकि, कठोर एक्स-किरण और γ-किरण की ऊर्जा परावर्तित या अपवर्तित होने के लिए अधिक है, और मात्र ऑप्टिकलदूरबीन के लेंस और दर्पण से गुजरती है। एपर्चर द्वारा इमेज मॉड्यूलेशन इसलिए अधिकांशतः इसके अतिरिक्त उपयोग किया जाता है। पिनहोल कैमरा इस प्रकार के मॉड्यूलेशन इमेजर का आधारस्वरूप है, किन्तु इसकी हानि निम्न थ्रुपुट है, क्योंकि इसका छोटा छिद्र न्यून विकिरण के माध्यम से अनुमति देता है। प्रकाश का मात्र छोटा सा अंश ही पिनहोल से होकर गुजरता है, जो निम्न संकेत बाधानुपात का कारण बनता है। इस समस्या का समाधान करने के लिए, उदाहरण के लिए, कई विशेष पैटर्न में, मास्क में कई छेद हो सकते हैं। डिटेक्टर से भिन्न-भिन्न दूरी पर कई मास्क, इस उपकरण में लचीलापन जोड़ते हैं। विशेष रूप से मिनोरू ओडा द्वारा आविष्कृत मॉडुलन समापक का उपयोग प्रथम ब्रह्मांडीय एक्स-किरण स्रोत की पहचान करने के लिए किया गया था और इस प्रकार 1965 में एक्स-किरण खगोल विज्ञान के नए क्षेत्र को लॉन्च किया गया था। टोमोग्राफी जैसे अन्य क्षेत्रों में कई अन्य अनुप्रयोग तब से प्रकट हुए हैं। .
पिनहोल कैमरे की तुलना में जटिल कोडित एपर्चर में, कई एपर्चर से छवियां डिटेक्टर सरणी पर ओवरलैप होंगी। इस प्रकार मूल छवि के पुनर्निर्माण के लिए कम्प्यूटेशनल एल्गोरिदम (जो एपर्चर सरणियों के त्रुटिहीन विन्यास पर निर्भर करता है) का उपयोग करना आवश्यक है। इस प्रकार बिना लेंस के उचित छवि प्राप्त की जा सकती है। छवि सेंसर की पूर्ण श्रृंखला से बनती है और इसलिए भिन्न-भिन्न सेंसर में दोषों के प्रति सहिष्णु है| दूसरी ओर यह फ़ोकसिंग-ऑप्टिक्स इमेजर (जैसे, अपवर्तक या परावर्तक टेलीस्कोप) की तुलना में अधिक पृष्ठभूमि विकिरण को स्वीकार करता है, और इसलिए सामान्यतः तरंग दैर्ध्य का पक्ष नहीं लिया जाता है जहाँ इन तकनीकों को प्रस्तावित किया जा सकता है।
कोडित एपर्चर इमेजिंग तकनीक कम्प्यूटेशनल फोटोग्राफी का प्रारंभिक रूप है और खगोलीय इंटरफेरोमेट्री के लिए दृढ़ संबंध है। एपर्चर-कोडिंग को प्रथम बार एबल्स [1] और डिक[2] ने प्रस्तुत किया था और तत्पश्यात अन्य प्रकाशनों द्वारा लोकप्रिय किया गया था।[3]
प्रसिद्ध प्रकार के मुखौटे
भिन्न-भिन्न मुखौटा पैटर्न भिन्न-भिन्न छवि संकल्प, संवेदनशीलता और पृष्ठभूमि-शोर अस्वीकृति, और कम्प्यूटेशनल सरलता और अस्पष्टता प्रदर्शित करते हैं, एक तरफ उनके निर्माण की सापेक्ष आसानी से।
- FZP = फ्रेस्नेल जोन प्लेट
- ORA = अनुकूलित यादृच्छिक पैटर्न
- यूआरए = समान रूप से निरर्थक सरणी
- हुरा = हेक्सागोनल समान रूप से निरर्थक सरणी[4]
- MURA = संशोधित समान रूप से निरर्थक सरणी
- लेविन[5]
कोडित-एपर्चर स्पेस टेलीस्कोप
- Spacelab-2 एक्स-रे टेलीस्कोप XRT (1985)
- रॉसी एक्स-रे टाइमिंग एक्सप्लोरर (आरएक्सटीई) - एएसएम (1995-2012)
- बेपोसैक्स - वाइड फील्ड कैमरा (1996-2002)
- अभिन्न - आईबीआईएस और एसपीआई (2002-वर्तमान)
- स्विफ्ट गामा-रे बर्स्ट मिशन - बैट (2004-वर्तमान)
- अल्ट्रा-फास्ट फ्लैश ऑब्जर्वेटरी पाथफाइंडर मिशन (2016 में लॉन्च) और UFFO-100 (इसकी अगली पीढ़ी) [6]
- एस्ट्रोसैट - सीजेडटीआई (2015 में लॉन्च किया गया)
- स्पेस वेरिएबल ऑब्जेक्ट्स मॉनिटर - ECLAIRs (2022 में अनुमानित लॉन्च)
- इसके अलावा, तीसरा लघु खगोल विज्ञान उपग्रह|SAS-3 और RHESSI मिशन मास्क और घूर्णी मॉडुलन Collimator के संयोजन के आधार पर विकिरण का पता लगाते हैं।
यह भी देखें
- Computational imaging § Coded aperture imaging
- कम्प्यूटेशनल फोटोग्राफी
- विसंक्रमण
- पिनहोल कैमरा
- Range imaging § Coded aperture
- घूर्णी मॉडुलन समापक
- टोमोग्राफिक पुनर्निर्माण
- एक्स-रे कंप्यूटेड टोमोग्राफी
संदर्भ
- ↑ J. G. Ables (1968). "Fourier transform photography: a new method for X-ray astronomy". Publications of the Astronomical Society of Australia. Cambridge University Press. 1 (4): 172–173. Bibcode:1968PASA....1..172A. doi:10.1017/S1323358000011292. S2CID 117093492.
- ↑ R. H. Dicke (1968). "Scatter-hole cameras for x-rays and gamma rays". The Astrophysical Journal. 153: L101. Bibcode:1968ApJ...153L.101D. doi:10.1086/180230.
- ↑ Edward E. Fenimore and Thomas M. Cannon (1978). "Coded aperture imaging with uniformly redundant arrays". Applied Optics. Optical Society of America. 17 (3): 337–347. Bibcode:1978ApOpt..17..337F. doi:10.1364/AO.17.000337. PMID 20174412.
- ↑ Jean in 't Zand and Heiko Groeneveld. "coded aperture instruments designed for astronomical observations".
- ↑ Anat Levin, Rob Fergus, Fredo Durand and William Freeman (2007). "Image and depth from a conventional camera with a coded aperture". ACM Transactions on Graphics. ACM. 26 (3): 70. doi:10.1145/1276377.1276464.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ↑ A next generation Ultra-Fast Flash Observatory (UFFO-100) for IR/optical observations of the rise phase of gamma-ray bursts