सुपररेडियंस: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
भौतिकी में, [[क्वांटम यांत्रिकी]], [[खगोल भौतिकी]] और [[सापेक्षता के सिद्धांत]] सहित कई संदर्भों में विकिरण वृद्धि प्रभाव है।
भौतिकी में, [[क्वांटम यांत्रिकी]], [[खगोल भौतिकी]] और [[सापेक्षता के सिद्धांत]] सहित कई संदर्भों में विकिरण वृद्धि प्रभाव है।


'''हित कई संदर्भों[[खगोल भौतिकी|भौतिकी]] और [[सापेक्षता के सिद्धांत]] सहित कई संदर्भों में विकिरण वृद्धि प्रभाव है।'''   
'''हित कई संदर्भों[[खगोल भौतिकी|भौतिकी]] और [[सापेक्षता के सिद्धांत]] सहित कई संदर्भों में विकिरण वृद्धि प्रभाव है।[[सापेक्षता के सिद्धांत|पेक्षता के सिद्धांत]] सहित कई संदर्भों में विकिरण वृद्धि प्रभाव है।'''   


== क्वांटम प्रकाशिकी ==
== क्वांटम प्रकाशिकी ==
Line 27: Line 27:
इसके बाद [[स्टीफन हॉकिंग]] और अन्य लोगों ने तर्क दिया कि [[केर ब्लैक होल]] के पास त्वरित पर्यवेक्षक (उदाहरण के लिए पर्यवेक्षक सावधानी से रस्सी के अंत में क्षितिज की ओर नीचे चला गया) को वास्तविक विकिरण से बसे हुए क्षेत्र को देखना चाहिए, जबकि दूर के पर्यवेक्षक के लिए यह विकिरण को आभासी कहा जाएगा। यदि [[घटना क्षितिज]] के निकट त्वरित प्रेक्षक पास के कण को ​​पकड़ लेता है और उसे पकड़ने और अध्ययन करने के लिए दूर के प्रेक्षक को फेंक देता है, तो दूर के प्रेक्षक के लिए, कण की उपस्थिति को यह कहकर समझाया जा सकता है कि कण का भौतिक त्वरण बदल गया है यह [[आभासी कण]] से वास्तविक कण में बदल जाता है <ref>{{cite book|last=Thorne, Price and Macdonald (eds)|title=Black holes: the membrane paradigm|year=1986}}</ref> ([[हॉकिंग विकिरण]] देखें)।
इसके बाद [[स्टीफन हॉकिंग]] और अन्य लोगों ने तर्क दिया कि [[केर ब्लैक होल]] के पास त्वरित पर्यवेक्षक (उदाहरण के लिए पर्यवेक्षक सावधानी से रस्सी के अंत में क्षितिज की ओर नीचे चला गया) को वास्तविक विकिरण से बसे हुए क्षेत्र को देखना चाहिए, जबकि दूर के पर्यवेक्षक के लिए यह विकिरण को आभासी कहा जाएगा। यदि [[घटना क्षितिज]] के निकट त्वरित प्रेक्षक पास के कण को ​​पकड़ लेता है और उसे पकड़ने और अध्ययन करने के लिए दूर के प्रेक्षक को फेंक देता है, तो दूर के प्रेक्षक के लिए, कण की उपस्थिति को यह कहकर समझाया जा सकता है कि कण का भौतिक त्वरण बदल गया है यह [[आभासी कण]] से वास्तविक कण में बदल जाता है <ref>{{cite book|last=Thorne, Price and Macdonald (eds)|title=Black holes: the membrane paradigm|year=1986}}</ref> ([[हॉकिंग विकिरण]] देखें)।


त्वरित फ्रेम ([[अनरुह प्रभाव]]) में पर्यवेक्षकों के मामलों के लिए इसी तरह के तर्क लागू होते हैं। [[चेरेंकोव विकिरण]], उस माध्यम में प्रकाश की नाममात्र गति से अधिक कण माध्यम से यात्रा करने वाले आवेशित कणों द्वारा उत्सर्जित विद्युत चुम्बकीय विकिरण को भी जड़त्वीय गति सुपररेडियंस के रूप में वर्णित किया गया है।<ref name="bekenstein1998"/>
त्वरित फ्रेम ([[अनरुह प्रभाव]]) में पर्यवेक्षकों की स्थितियों के लिए इसी तरह के तर्क लागू होते हैं। [[चेरेंकोव विकिरण]], उस माध्यम में प्रकाश की नाममात्र गति से अधिक कण माध्यम से यात्रा करने वाले आवेशित कणों द्वारा उत्सर्जित विद्युत चुम्बकीय विकिरण को भी जड़त्वीय गति सुपररेडियंस के रूप में वर्णित किया गया है।<ref name="bekenstein1998"/>


खगोलभौतिक वातावरण में सुपररेडियंस के अतिरिक्त उदाहरणों में मेसर-होस्टिंग क्षेत्रों में विकिरण फ्लेयर्स का अध्ययन शामिल है <ref>{{Cite journal|first1 = F.|last1 = Rajabi|first2 = M.|last2 = Houde|date=2016|title=DICKE'S SUPERRADIANCE IN ASTROPHYSICS. I. THE 21 cm LINE|url=https://iopscience.iop.org/article/10.3847/0004-637X/826/2/216|journal=The Astrophysical Journal|volume=826|issue = 2|page = 216|doi = 10.3847/0004-637X/826/2/216|arxiv = 1601.01717|bibcode = 2016ApJ...826..216R|s2cid = 28730845}}</ref><ref>{{Cite journal|last=Rajabi|first=Fereshteh|date=2016|title=DICKE'S SUPERRADIANCE IN ASTROPHYSICS. II. THE OH 1612 MHz LINE|url=https://iopscience.iop.org/article/10.3847/0004-637X/828/1/57/meta|journal=The Astrophysical Journal|volume=828|issue=1|page=57|doi=10.3847/0004-637X/828/1/57|arxiv=1601.01718|bibcode=2016ApJ...828...57R|s2cid=20321318}}</ref> और तेज़ रेडियो फट जाता है।<ref name="houde2017">{{Cite journal |title= डिके के सुपररेडियंस के माध्यम से फास्ट रेडियो फटने की व्याख्या करना|journal= Monthly Notices of the Royal Astronomical Society|volume= 475|issue= 1|pages= 514|arxiv= 1710.00401|date = 12 December 2017|first1 = M.|last1 = Houde|first2 = A.|last2 = Mathews|first3 = F.|last3 = Rajabi|doi= 10.1093/mnras/stx3205|bibcode= 2018MNRAS.475..514H|s2cid= 119240095}}</ref> इन सेटिंग्स में सुपररेडियंस के साक्ष्य उलझी हुई क्वांटम यांत्रिक अवस्थाओं से तीव्र उत्सर्जन के अस्तित्व का सुझाव देते हैं, जिसमें बहुत बड़ी संख्या में अणु शामिल होते हैं, ब्रह्मांड में सर्वव्यापी रूप से मौजूद होते हैं और बड़ी दूरी तक फैले होते हैं (उदाहरण के लिए इंटरस्टेलर माध्यम में कुछ किलोमीटर से <ref>{{Cite journal|first1 = F.|last1 = Rajabi|first2 = M.|last2 = Houde|date=2017|title=बड़े पैमाने पर उलझी हुई क्वांटम यांत्रिक अवस्थाओं के माध्यम से आईएसएम में आवर्ती मेसर फ्लेयर्स की व्याख्या करना|url= |journal=Science Advances|volume=3|issue = 3|pages = e1601858|doi = 10.1126/sciadv.1601858|pmid = 28378015|pmc = 5365248|arxiv = 1704.01491|bibcode = 2017SciA....3E1858R}}</ref> संभवतः कई अरब किलोमीटर से अधिक <ref name="houde2017"/>).
खगोलभौतिक वातावरण में सुपररेडियंस के अतिरिक्त उदाहरणों में मेसर-होस्टिंग क्षेत्रों और तेज़ रेडियो फटने में विकिरण फ्लेयर्स का अध्ययन सम्मिलित है <ref>{{Cite journal|first1 = F.|last1 = Rajabi|first2 = M.|last2 = Houde|date=2016|title=DICKE'S SUPERRADIANCE IN ASTROPHYSICS. I. THE 21 cm LINE|url=https://iopscience.iop.org/article/10.3847/0004-637X/826/2/216|journal=The Astrophysical Journal|volume=826|issue = 2|page = 216|doi = 10.3847/0004-637X/826/2/216|arxiv = 1601.01717|bibcode = 2016ApJ...826..216R|s2cid = 28730845}}</ref><ref>{{Cite journal|last=Rajabi|first=Fereshteh|date=2016|title=DICKE'S SUPERRADIANCE IN ASTROPHYSICS. II. THE OH 1612 MHz LINE|url=https://iopscience.iop.org/article/10.3847/0004-637X/828/1/57/meta|journal=The Astrophysical Journal|volume=828|issue=1|page=57|doi=10.3847/0004-637X/828/1/57|arxiv=1601.01718|bibcode=2016ApJ...828...57R|s2cid=20321318}}</ref><ref name="houde2017">{{Cite journal |title= डिके के सुपररेडियंस के माध्यम से फास्ट रेडियो फटने की व्याख्या करना|journal= Monthly Notices of the Royal Astronomical Society|volume= 475|issue= 1|pages= 514|arxiv= 1710.00401|date = 12 December 2017|first1 = M.|last1 = Houde|first2 = A.|last2 = Mathews|first3 = F.|last3 = Rajabi|doi= 10.1093/mnras/stx3205|bibcode= 2018MNRAS.475..514H|s2cid= 119240095}}</ref> इन सेटिंग्स में सुपररेडियंस के साक्ष्य उलझी हुई क्वांटम यांत्रिक अवस्थाओं से तीव्र उत्सर्जन के अस्तित्व का सुझाव देते हैं, जिसमें बहुत बड़ी संख्या में अणु सम्मिलित होते हैं, ब्रह्मांड में सर्वव्यापी रूप से उपस्थित होते हैं और बड़ी दूरी तक फैले होते हैं (उदाहरण के लिए इंटरस्टेलर माध्यम में कुछ किलोमीटर से <ref>{{Cite journal|first1 = F.|last1 = Rajabi|first2 = M.|last2 = Houde|date=2017|title=बड़े पैमाने पर उलझी हुई क्वांटम यांत्रिक अवस्थाओं के माध्यम से आईएसएम में आवर्ती मेसर फ्लेयर्स की व्याख्या करना|url= |journal=Science Advances|volume=3|issue = 3|pages = e1601858|doi = 10.1126/sciadv.1601858|pmid = 28378015|pmc = 5365248|arxiv = 1704.01491|bibcode = 2017SciA....3E1858R}}</ref> संभवतः कई अरब किलोमीटर से अधिक <ref name="houde2017"/>)


== यह भी देखें ==
== यह भी देखें ==

Revision as of 15:51, 4 April 2023

भौतिकी में, क्वांटम यांत्रिकी, खगोल भौतिकी और सापेक्षता के सिद्धांत सहित कई संदर्भों में विकिरण वृद्धि प्रभाव है।

हित कई संदर्भोंभौतिकी और सापेक्षता के सिद्धांत सहित कई संदर्भों में विकिरण वृद्धि प्रभाव है।पेक्षता के सिद्धांत सहित कई संदर्भों में विकिरण वृद्धि प्रभाव है।

क्वांटम प्रकाशिकी

For want of a better term, a gas which is radiating strongly because of coherence will be called 'super-radiant'.

— Robert H. Dicke, 1954, [1]

क्वांटम प्रकाशिकी में, सुपररेडियंस ऐसी घटना है जो तब होती है जब एन उत्सर्जकों का समूह, जैसे उत्साहित परमाणु, सामान्य प्रकाश क्षेत्र के साथ क्रिया करते हैं। यदि प्रकाश की तरंग दैर्ध्य उत्सर्जकों के पृथक्करण से बहुत अधिक है, तो उत्सर्जक सामूहिक और सुसंगत फैशन में प्रकाश के साथ परस्पर क्रिया करते हैं।[2] यह समूह को उच्च तीव्रता वाली नाड़ी (N2 के आनुपातिक दर के साथ) के रूप में प्रकाश का उत्सर्जन करने का कारण बनता है। यह आश्चर्यजनक परिणाम है, स्वतंत्र परमाणुओं के समूह के अपेक्षित घातीय क्षय (एन के आनुपातिक दर के साथ) से अधिक अलग है (सहज उत्सर्जन देखें)। तब से सुपररेडियंस को क्वांटम डॉट एरेज़[3] और जे-समुच्चय जैसे भौतिक और रासायनिक प्रणालियों की विस्तृत विविधता में प्रदर्शित किया गया है।[4] इस प्रभाव का उपयोग सुपररेडिएंट लेजर बनाने के लिए किया गया है।

घूर्णी सुपररेडियंस

घूर्णी सुपररेडिएशन[5] पास के पिंड के त्वरण या गति से जुड़ा हुआ है (जो प्रभाव के लिए ऊर्जा और संवेग प्रदान करता है)। इसे कभी-कभी शरीर के चारों ओर प्रभावी क्षेत्र अंतर के परिणाम के रूप में भी वर्णित किया जाता है (उदाहरण के लिए ज्वारीय बल का प्रभाव)। यह शरीर को कोणीय या रैखिक गति की एकाग्रता के साथ कम ऊर्जा स्थिति की ओर बढ़ने की अनुमति देता है, तथापि ऐसा होने के लिए कोई स्पष्ट शास्त्रीय तंत्र न हो। इस अर्थ में, क्वांटम टनलिंग के साथ प्रभाव में कुछ समानताएं हैं (उदाहरण के लिए, ऐसा होने के लिए स्पष्ट शास्त्रीय तंत्र की अनुपस्थिति के अतिरिक्त, ऊर्जा क्षमता के अस्तित्व का लाभ उठाने के लिए तरंगों और कणों की प्रवृत्ति)।

  • शास्त्रीय भौतिकी में, कण माध्यम में किसी पिंड की गति या घुमाव से सामान्यतः गति और ऊर्जा को आसपास के कणों में स्थानांतरित करने की अपेक्षा की जाती है, और फिर प्रक्षेपवक्र के बाद कणों की खोज की बढ़ी हुई सांख्यिकीय संभावना होती है जो शरीर से गति हटाने का संकेत देती है।
  • क्वांटम यांत्रिकी में, इस सिद्धांत को निर्वात में गतिमान, त्वरित या घूमने वाले निकायों की स्थितियों में विस्तारित किया जाता है - क्वांटम स्थितियों में, उपयुक्त वैक्टर के साथ क्वांटम उतार-चढ़ाव को फैलाया और विकृत कहा जाता है और पास के शरीर द्वारा ऊर्जा और गति प्रदान की जाती है। गति, इस चयनात्मक एम्पलीफायर के साथ शरीर के चारों ओर वास्तविक भौतिक विकिरण उत्पन्न करता है।

जहां निर्वात में घूर्णन पृथक भारहीन क्षेत्र का शास्त्रीय वर्णन यह कहता है कि क्वांटम यांत्रिकी के अनुसार घर्षण प्रभावों की कमी या इसके चिकनी खाली वातावरण के साथ स्पष्ट युग्मन के किसी अन्य रूप के कारण क्षेत्र अनिश्चित काल तक घूमता रहेगा। निर्वात के आसपास का क्षेत्र पूरी तरह से चिकना नहीं है, और गोले का क्षेत्र क्वांटम उतार-चढ़ाव के साथ जुड़ सकता है और वास्तविक विकिरण उत्पन्न करने के लिए उन्हें गति दे सकता है। शरीर के चारों ओर उपयुक्त रास्तों के साथ हाइपोथेटिकल वर्चुअल वेवफ्रंट्स को उत्तेजित किया जाता है और युग्मन प्रक्रिया द्वारा एम्पलीफायर को वास्तविक भौतिक वेवफ्रंट्स में बदल दिया जाता है। विवरण कभी-कभी प्रभाव उत्पन्न करने के लिए क्षेत्र को गुदगुदाने वाले इन उतार-चढ़ावों का उल्लेख करते हैं।

ब्लैक होल के सैद्धांतिक अध्ययन में, प्रभाव को कभी-कभी गुरुत्वाकर्षण ज्वारीय बलों के परिणाम के रूप में भी वर्णित किया जाता है, जो जोरदार गुरुत्वाकर्षण वाले पिंड के चारों ओर आभासी जोड़ी उत्पादन को अलग करता है, जो अन्यथा तीव्रता से पारस्परिक रूप से नष्ट हो जाएगा, वास्तविक कणों की आबादी का उत्पादन करने के लिए बाहर के क्षेत्र में क्षितिज।

ब्लैक होल बम बड़े पैमाने पर बोसोनिक क्षेत्र और घूर्णन ब्लैक होल के बीच की क्रिया में तेजी से बढ़ती अस्थिरता है।

खगोल भौतिकी और सापेक्षता

खगोल भौतिकी में, सुपररेडियंस का संभावित उदाहरण ज़ेल्डोविच विकिरण है।[6] यह याकोव बोरिसोविच ज़ेल्डोविच था | याकोव ज़ेल्डोविच ने पहली बार 1971 में इस प्रभाव का वर्णन किया था,[7] मॉस्को विश्वविद्यालय में इगोर दिमित्रिच नोविकोव ने इस सिद्धांत को और विकसित किया। याकोव बोरिसोविच ज़ेल्डोविच ने क्वांटम इलेक्ट्रोडायनामिक्स (QED) के अनुसार स्थितियों को उठाया, जहां कताई धातु क्षेत्र के भूमध्य रेखा के आसपास के क्षेत्र से विद्युत चुम्बकीय विकिरण को स्पर्शरेखा से फेंकने की उम्मीद है, और सुझाव दिया कि कताई गुरुत्वाकर्षण द्रव्यमान की स्थिति, जैसे कि केर ब्लैक छेद को समान युग्मन प्रभाव उत्पन्न करना चाहिए, और समान विधियों से विकीर्ण होना चाहिए।

इसके बाद स्टीफन हॉकिंग और अन्य लोगों ने तर्क दिया कि केर ब्लैक होल के पास त्वरित पर्यवेक्षक (उदाहरण के लिए पर्यवेक्षक सावधानी से रस्सी के अंत में क्षितिज की ओर नीचे चला गया) को वास्तविक विकिरण से बसे हुए क्षेत्र को देखना चाहिए, जबकि दूर के पर्यवेक्षक के लिए यह विकिरण को आभासी कहा जाएगा। यदि घटना क्षितिज के निकट त्वरित प्रेक्षक पास के कण को ​​पकड़ लेता है और उसे पकड़ने और अध्ययन करने के लिए दूर के प्रेक्षक को फेंक देता है, तो दूर के प्रेक्षक के लिए, कण की उपस्थिति को यह कहकर समझाया जा सकता है कि कण का भौतिक त्वरण बदल गया है यह आभासी कण से वास्तविक कण में बदल जाता है [8] (हॉकिंग विकिरण देखें)।

त्वरित फ्रेम (अनरुह प्रभाव) में पर्यवेक्षकों की स्थितियों के लिए इसी तरह के तर्क लागू होते हैं। चेरेंकोव विकिरण, उस माध्यम में प्रकाश की नाममात्र गति से अधिक कण माध्यम से यात्रा करने वाले आवेशित कणों द्वारा उत्सर्जित विद्युत चुम्बकीय विकिरण को भी जड़त्वीय गति सुपररेडियंस के रूप में वर्णित किया गया है।[5]

खगोलभौतिक वातावरण में सुपररेडियंस के अतिरिक्त उदाहरणों में मेसर-होस्टिंग क्षेत्रों और तेज़ रेडियो फटने में विकिरण फ्लेयर्स का अध्ययन सम्मिलित है [9][10][11] इन सेटिंग्स में सुपररेडियंस के साक्ष्य उलझी हुई क्वांटम यांत्रिक अवस्थाओं से तीव्र उत्सर्जन के अस्तित्व का सुझाव देते हैं, जिसमें बहुत बड़ी संख्या में अणु सम्मिलित होते हैं, ब्रह्मांड में सर्वव्यापी रूप से उपस्थित होते हैं और बड़ी दूरी तक फैले होते हैं (उदाहरण के लिए इंटरस्टेलर माध्यम में कुछ किलोमीटर से [12] संभवतः कई अरब किलोमीटर से अधिक [11])।

यह भी देखें

  • क्वांटम प्रकाशिकी
  • स्वत: उत्सर्जन
  • सुपररेडिएंट चरण संक्रमण
  • मोटा मॉडल
  • हॉकिंग विकिरण
  • अनरुह प्रभाव
  • चेरेंकोव विकिरण
  • ब्लैक होल बम
  • सेमीकंडक्टर प्रकाशिकी में सुसंगत प्रभाव#उत्तेजनाओं का सुपररेडियंस

संदर्भ

  1. Dicke, Robert H. (1954). "Coherence in Spontaneous Radiation Processes". Physical Review. 93 (1): 99–110. Bibcode:1954PhRv...93...99D. doi:10.1103/PhysRev.93.99.
  2. Gross, M.; Haroche, S. (1 December 1982). "Superradiance: An essay on the theory of collective spontaneous emission". Physics Reports. 93 (5): 301–396. Bibcode:1982PhR....93..301G. doi:10.1016/0370-1573(82)90102-8.
  3. Benedict, M.G. (1996). Super-radiance : multiatomic coherent emission. Bristol [u.a.]: Inst. of Physics Publ. ISBN 0750302836.
  4. Scheibner, Michael; Schmidt, T.; Worschech, L.; Forchel, A.; Bacher, G.; Passow, T.; Hommel, D. (2007). "क्वांटम डॉट्स का सुपररेडिएशन". Nature Physics. 3 (2): 106–110. Bibcode:2007NatPh...3..106S. doi:10.1038/nphys494.
  5. 5.0 5.1 Bekenstein, Jacob; Schiffer, Marcelo (1998). "सुपररेडियंस के कई चेहरे". Physical Review D. 58 (6): 064014. arXiv:gr-qc/9803033. Bibcode:1998PhRvD..58f4014B. doi:10.1103/PhysRevD.58.064014. S2CID 14585592.
  6. Thorne, Kip S. (1994). Black holes and timewarps: Einstein's outrageous legacy. p. 432.
  7. Zel'Dovich, Yakov Borisovich (1971). "एक घूर्णन पिंड द्वारा तरंगों का निर्माण।" (PDF). ZhETF Pisma Redaktsiiu. 14: 270. Bibcode:1971ZhPmR..14..270Z – via http://adsabs.harvard.edu/. {{cite journal}}: External link in |via= (help)
  8. Thorne, Price and Macdonald (eds) (1986). Black holes: the membrane paradigm. {{cite book}}: |last= has generic name (help)
  9. Rajabi, F.; Houde, M. (2016). "DICKE'S SUPERRADIANCE IN ASTROPHYSICS. I. THE 21 cm LINE". The Astrophysical Journal. 826 (2): 216. arXiv:1601.01717. Bibcode:2016ApJ...826..216R. doi:10.3847/0004-637X/826/2/216. S2CID 28730845.
  10. Rajabi, Fereshteh (2016). "DICKE'S SUPERRADIANCE IN ASTROPHYSICS. II. THE OH 1612 MHz LINE". The Astrophysical Journal. 828 (1): 57. arXiv:1601.01718. Bibcode:2016ApJ...828...57R. doi:10.3847/0004-637X/828/1/57. S2CID 20321318.
  11. 11.0 11.1 Houde, M.; Mathews, A.; Rajabi, F. (12 December 2017). "डिके के सुपररेडियंस के माध्यम से फास्ट रेडियो फटने की व्याख्या करना". Monthly Notices of the Royal Astronomical Society. 475 (1): 514. arXiv:1710.00401. Bibcode:2018MNRAS.475..514H. doi:10.1093/mnras/stx3205. S2CID 119240095.
  12. Rajabi, F.; Houde, M. (2017). "बड़े पैमाने पर उलझी हुई क्वांटम यांत्रिक अवस्थाओं के माध्यम से आईएसएम में आवर्ती मेसर फ्लेयर्स की व्याख्या करना". Science Advances. 3 (3): e1601858. arXiv:1704.01491. Bibcode:2017SciA....3E1858R. doi:10.1126/sciadv.1601858. PMC 5365248. PMID 28378015.