विद्युत तत्व: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 74: Line 74:
: <math> \begin{bmatrix}  V_1  \\ V_2  \end{bmatrix} = \begin{bmatrix} 0 & -r \\ r & 0 \end{bmatrix}\begin{bmatrix} I_1  \\ I_2 \end{bmatrix}</math>
: <math> \begin{bmatrix}  V_1  \\ V_2  \end{bmatrix} = \begin{bmatrix} 0 & -r \\ r & 0 \end{bmatrix}\begin{bmatrix} I_1  \\ I_2 \end{bmatrix}</math>


ट्रांसफार्मर एक पोर्ट पर एक वोल्टेज को दूसरे पोर्ट पर n के अनुपात में वोल्टेज में मानचित्रित करता है। उसी दो-पोर्ट के बीच वर्तमान को 1/n से मानचित्रित किया जाता है। दूसरी तरफ,[[ गाइरेटर | गाइरेटर]], एक पोर्ट पर एक वोल्टेज को दूसरे पोर्ट पर एक करंट में मानचित्रित करता है। उसी तरह, करंट को वोल्टेज में मानचित्रित किया जाता है। मैट्रिक्स में r मात्रिक्स के इकाई रिसिस्टेंस के इकाई में होता है। विश्लेषण में जाइरेटर एक आवश्यक तत्व है क्योंकि यह असमान होने के कारण आपको उत्पन्न नहीं करने देता। मूल रैखिक तत्वों से बने नेटवर्क समानांतर होने के लिए आवश्यक होते हैं और इसलिए एक असमान नेटवर्क को उत्पन्न करने के लिए खुद इन्हें प्रतिनिधित्व के रूप में उपयोग नहीं किया जा सकता है। हालांकि, ट्रांसफार्मर और जाइरेटर दोनों का होना आवश्यक नहीं है। दो जाइरेटर के संयोग से एक ट्रांसफार्मर के समान हो जाते हैं, लेकिन सुविधा के लिए ट्रांसफार्मर आमतौर पर बरकरार रखा जाता है। इन्हें अस्तित्व में आने वाले कैपैसिटेंस या इंडक्टन्स भी अनिवार्य नहीं होते हैं क्योंकि एक जाइरेटर पोर्ट 2 पर इनमें से किसी एक के साथ समाप्त होने पर पोर्ट 1 पर दूसरे के समान होता है। हालांकि, ट्रांसफार्मर, कैपैसिटेंस और इंडक्टन्स सामान्यतया विश्लेषण में बरकरार रखे जाते हैं क्योंकि वे बुनियादी भौतिक घटक[[ ट्रांसफार्मर ]],[[ प्रारंभ करनेवाला |प्रारंभ करनेवाला]] और [[ कैपेसिटर |कैपेसिटर]] चूँकि एक [[ गाइरेटर#कार्यान्वयन: एक नकली प्रारंभ करनेवाला |प्रैक्टिकल गाइरेटर]] को एक्टिव सर्किट के रूप में निर्मित किया जाना चाहिए।<ref>वधवा, सी। एल।, '' नेटवर्क एनालिसिस एंड सिंथेसिस '', पीपी .17–22, न्यू एज इंटरनेशनल, {{ISBN|81-224-1753-1}}</ref><ref>हर्बर्ट जे। कार्लिन, पियर पाओलो सिवलेरी, '' वाइडबैंड सर्किट डिज़ाइन '', पीपी .171–172, सीआरसी प्रेस, 1998 {{ISBN|0-8493-7897-4}}</ref><ref>Vjekoslav damić, जॉन मोंटगोमरी, '' मेकैट्रोनिक्स बाय बॉन्ड ग्राफ़: मॉडलिंग और सिमुलेशन के लिए एक ऑब्जेक्ट-ओरिएंटेड दृष्टिकोण '', pp.32–33, स्प्रिंगर, 2003 {{ISBN|3-540-42375-3}}</ref>
ट्रांसफार्मर एक पोर्ट पर वोल्टेज को n अनुपात में दूसरे पोर्ट पर वोल्टेज मैप करता है। दोनों पोर्ट के बीच वर्तमान 1/n के अनुपात से मैप होता है। दूसरी तरफ,[[ गाइरेटर | गाइरेटर]], एक पोर्ट पर वोल्टेज को दूसरे पोर्ट पर एक विद्युत धारा में मैप करता है। उसी तरह, धाराएँ वोल्टेजों में मैप होती हैं। मैट्रिक्स में r मात्रा विद्युत प्रतिरोध की इकाई में होती है। जायरेटर विश्लेषण में आवश्यक होता है क्योंकि यह अपरत्याश्रुतिशील होता है। मूल रूप से बनाए गए नेटवर्क अपरत्याश्रुतिशील होते हैं इसलिए वे अपने आप में एक असमान्य सिस्टम को दर्शाने के लिए उपयोग नहीं किए जा सकते हैं। हालांकि, ट्रांसफार्मर और जायरेटर दोनों को होना आवश्यक नहीं है। दो जायरेटर एक के बाद एक लगाये जाने पर एक ट्रांसफार्मर के समान होते हैं, लेकिन सुविधा के लिए आमतौर पर ट्रांसफार्मर का उपयोग किया जाता है। दो जाइरेटर के संयोग से एक ट्रांसफार्मर के समान हो जाते हैं, लेकिन सुविधा के लिए ट्रांसफार्मर आमतौर पर बरकरार रखा जाता है। इन्हें अस्तित्व में आने वाले कैपैसिटेंस या इंडक्टन्स भी अनिवार्य नहीं होते हैं क्योंकि एक जाइरेटर पोर्ट 2 पर इनमें से किसी एक के साथ समाप्त होने पर पोर्ट 1 पर दूसरे के समान होता है। हालांकि, ट्रांसफार्मर, कैपैसिटेंस और इंडक्टन्स सामान्यतया विश्लेषण में बरकरार रखे जाते हैं क्योंकि वे बुनियादी भौतिक घटक[[ ट्रांसफार्मर ]],[[ प्रारंभ करनेवाला |प्रारंभ करनेवाला]] और [[ कैपेसिटर |कैपेसिटर]] चूँकि एक [[ गाइरेटर#कार्यान्वयन: एक नकली प्रारंभ करनेवाला |प्रैक्टिकल गाइरेटर]] को एक्टिव सर्किट के रूप में निर्मित किया जाना चाहिए।<ref>वधवा, सी। एल।, '' नेटवर्क एनालिसिस एंड सिंथेसिस '', पीपी .17–22, न्यू एज इंटरनेशनल, {{ISBN|81-224-1753-1}}</ref><ref>हर्बर्ट जे। कार्लिन, पियर पाओलो सिवलेरी, '' वाइडबैंड सर्किट डिज़ाइन '', पीपी .171–172, सीआरसी प्रेस, 1998 {{ISBN|0-8493-7897-4}}</ref><ref>Vjekoslav damić, जॉन मोंटगोमरी, '' मेकैट्रोनिक्स बाय बॉन्ड ग्राफ़: मॉडलिंग और सिमुलेशन के लिए एक ऑब्जेक्ट-ओरिएंटेड दृष्टिकोण '', pp.32–33, स्प्रिंगर, 2003 {{ISBN|3-540-42375-3}}</ref>


== उदाहरण ==
== उदाहरण ==
निम्नलिखित विद्युत तत्वों के माध्यम से घटकों के प्रतिनिधित्व के उदाहरण हैं।
निम्नलिखित विद्युत तत्वों के माध्यम से घटकों के प्रतिनिधित्व के उदाहरण हैं।
* पहले स्तर पर, एक [[ बैटरी (बिजली) |बैटरी]] को एक वोल्टेज स्रोत द्वारा प्रतिनिधित्व किया जाता है। एक और रिफाइंड मॉडल भी शामिल होता है, जिसमें बैटरी की आंतरिक रोधकता को दर्शाने के लिए एक वोल्टेज स्रोत के साथ एक प्रतिरोध जोड़ा जाता है (जो बैटरी को उष्ण होने और इस्तेमाल करने पर वोल्टेज गिरने के नतीजे में आता है)। एक धारणा स्रोत संयुक्त में जोड़ा जा सकता है ताकि इसकी लीकेज (जो लंबे समय तक बैटरी को डिस्चार्ज करती है) को दर्शाया जा सके।
* पहले स्तर पर, एक [[ बैटरी (बिजली) |बैटरी]] को एक वोल्टेज स्रोत द्वारा दर्शाया जाता है। एक और उन्नत मॉडल में, उसमें एक सीरीज रेसिस्टेंस भी शामिल हो सकता है, जो बैटरी की आंतरिक रेसिस्टेंस को दर्शाता है (जो उष्मागत होती है और उपयोग में होने पर वोल्टेज कम होती है)। एक वर्तमान स्रोत पैरालल में जोड़ा जा सकता है ताकि इसके लीकेज को दर्शाया जा सके (जो बैटरी को दीर्घकालिक रूप से खाली करता है)
* पहले स्तर पर, एक [[ रोकनेवाला ]] को एक प्रतिरोध द्वारा प्रतिनिधित्व किया जाता है। एक और रिफाइंड मॉडल में, इसके लीड इंडक्टेंस के प्रभाव को दर्शाने के लिए एक श्रृंखला इंडक्टेंस भी शामिल हो सकती है (स्पाइरल के रूप में निर्मित रेसिस्टर में अधिक महत्वपूर्ण इंडक्टेंस होती है)। एक पारलल कैपैसिटेंस भी जोड़ा जा सकता है ताकि रेसिस्टर लीडों की एक दूसरे के पास होने के क्षमताओं को दर्शाया जा सके। एक तार को एक कम मूल्य वाले रेसिस्टर के रूप में दर्शाया जा सकता है।
* पहले स्तर पर, एक [[ रोकनेवाला | रेसिस्टर]] को एक रेसिस्टेंस द्वारा दर्शाया जाता है। एक और उन्नत मॉडल में, उसमें एक सीरीज इंडक्टेंस शामिल की जा सकती है, जो इसके लीड इंडक्टेंस के प्रतिफलन को दर्शाती है (जो स्पाइरल के रूप में बने रेसिस्टर में अधिक महत्वपूर्ण होता है)। एक कैपेसिटेंस पैरालल में जोड़ा जा सकता है ताकि रेसिस्टर लीडों के पास आपस में कैपैसिटिव प्रभाव को दर्शाए। एक तार को कम मूल्य वाले रेसिस्टर के रूप में दर्शाया जा सकता है।
अधिकतर समय [[ सेमीकंडक्टर |सेमीकंडक्टर]] का प्रतिनिधित्व करते समय धारणा स्रोत का उपयोग किया जाता है। उदाहरण के लिए, पहले स्तर पर, एक बाइपोलर[[ ट्रांजिस्टर ]]को एक चलती धारा स्रोत द्वारा प्रतिनिधित्व किया जा सकता है जो इनपुट धारा द्वारा नियंत्रित होता है।
*  [[ सेमीकंडक्टर |सेमीकंडक्टर]] को दर्शाते समय, वर्तमान मान को बढ़ाने के लिए वर्तमान स्रोत अधिक उपयोग में आते हैं। उदाहरण के लिए, पहले तख्ते पर, एक बायोपोलर[[ ट्रांजिस्टर ]]को एक चरम वर्तमान स्रोत द्वारा दर्शाया जा सकता है जो इनपुट वर्तमान द्वारा नियंत्रित होता है।


==See also==
==See also==

Revision as of 11:22, 9 April 2023

विद्युत तत्व वैचारिक अमूर्त हैं जो आदर्शित विद्युत घटक एस का प्रतिनिधित्व करते हैंCite error: Closing </ref> missing for <ref> tag

  • विद्युत विद्युतवर्द्धकता: विद्युतीय संबंध को निम्न रूप में परिभाषित किया जाता है में से किसी भी दो चरणों के लिए।।
  • समाई: संवैधानिक संबंध के रूप में परिभाषित किया गया में से किसी भी दो चरणों के लिए।
  • इंडक्शन: संवैधानिक संबंध के रूप में परिभाषित किया गया में से किसी भी दो चरणों के लिए।
  • यादगार: संवैधानिक संबंध के रूप में परिभाषित किया गया में से किसी भी दो चरणों के लिए।
जहाँ दो चरणों के लिए किसी भी दो चरणों के लिए किसी भी विशिष्ट फ़ंक्शन हो सकता है।

कुछ विशेष स्थितियों में संवैधानिक संबंध एक चर के एक समारोह के लिए सरल करता है।यह सभी रैखिक तत्वों के लिए मामला है, किन्तु उदाहरण के लिए, एक आदर्श डायोड , जो सर्किट सिद्धांत में एक गैर-रैखिक अवरोधक है, का रूप का एक संवैधानिक संबंध है ।दोनों स्वतंत्र वोल्टेज, और स्वतंत्र वर्तमान स्रोतों को इस परिभाषा के अनुसार गैर-रैखिक प्रतिरोध माना जा सकता है[1]

चौथा निष्क्रिय तत्व, मेम्टर, 1971 के एक पेपर में लियोन चुआ के माध्यम से प्रस्तावित किया गया था, किन्तु एक भौतिक घटक जो यादगार प्रदर्शन का प्रदर्शन करता है, वह सैंतीस साल बाद तक नहीं बनाया गया था। यह 30 अप्रैल, 2008 को बताया गया था कि एक कार्यशील मेमिस्टर को एचपी लैब्स में एक टीम के माध्यम से विकसित किया गया था, जिसका नेतृत्व वैज्ञानिक आर। स्टेनली विलियम्स ने किया था[2][3][4][5] मेम्टर के आगमन के साथ, चार चर की प्रत्येक जोड़ी अब संबंधित हो सकती है।

दो विशेष गैर-रैखिक तत्व भी हैं जो कभी-कभी विश्लेषण में उपयोग किए जाते हैं किन्तु जो किसी भी वास्तविक घटक के आदर्श समकक्ष नहीं हैं:

  • नलक : के रूप में परिभाषित किया गया
  • नॉरटोर : एक तत्व के रूप में परिभाषित किया गया है जो वोल्टेज और वर्तमान पर कोई प्रतिबंध नहीं रखता है।

इन्हें कभी -कभी दो से अधिक टर्मिनलों वाले घटकों के मॉडल में उपयोग किया जाता है: उदाहरण के लिए ट्रांजिस्टर[1]

दो-पोर्ट तत्व

उपरोक्त उल्लिखित सभी तत्व दो-टर्मिनल याएक-पोर्ट तत्व हैं, अपेक्षा नियमित स्रोतों के। नेटवर्क विश्लेषण में सामान्यतः पेश किए जाने वाले दो लॉसलेस, पैसिव, रैखिक दो-पोर्ट तत्व होते हैं। मैट्रिक्स नोटेशन में उनके संरचनात्मक संबंध होते हैं।

ट्रांसफार्मर
जायरेटर

ट्रांसफार्मर एक पोर्ट पर वोल्टेज को n अनुपात में दूसरे पोर्ट पर वोल्टेज मैप करता है। दोनों पोर्ट के बीच वर्तमान 1/n के अनुपात से मैप होता है। दूसरी तरफ, गाइरेटर, एक पोर्ट पर वोल्टेज को दूसरे पोर्ट पर एक विद्युत धारा में मैप करता है। उसी तरह, धाराएँ वोल्टेजों में मैप होती हैं। मैट्रिक्स में r मात्रा विद्युत प्रतिरोध की इकाई में होती है। जायरेटर विश्लेषण में आवश्यक होता है क्योंकि यह अपरत्याश्रुतिशील होता है। मूल रूप से बनाए गए नेटवर्क अपरत्याश्रुतिशील होते हैं इसलिए वे अपने आप में एक असमान्य सिस्टम को दर्शाने के लिए उपयोग नहीं किए जा सकते हैं। हालांकि, ट्रांसफार्मर और जायरेटर दोनों को होना आवश्यक नहीं है। दो जायरेटर एक के बाद एक लगाये जाने पर एक ट्रांसफार्मर के समान होते हैं, लेकिन सुविधा के लिए आमतौर पर ट्रांसफार्मर का उपयोग किया जाता है। दो जाइरेटर के संयोग से एक ट्रांसफार्मर के समान हो जाते हैं, लेकिन सुविधा के लिए ट्रांसफार्मर आमतौर पर बरकरार रखा जाता है। इन्हें अस्तित्व में आने वाले कैपैसिटेंस या इंडक्टन्स भी अनिवार्य नहीं होते हैं क्योंकि एक जाइरेटर पोर्ट 2 पर इनमें से किसी एक के साथ समाप्त होने पर पोर्ट 1 पर दूसरे के समान होता है। हालांकि, ट्रांसफार्मर, कैपैसिटेंस और इंडक्टन्स सामान्यतया विश्लेषण में बरकरार रखे जाते हैं क्योंकि वे बुनियादी भौतिक घटकट्रांसफार्मर ,प्रारंभ करनेवाला और कैपेसिटर चूँकि एक प्रैक्टिकल गाइरेटर को एक्टिव सर्किट के रूप में निर्मित किया जाना चाहिए।[6][7][8]

उदाहरण

निम्नलिखित विद्युत तत्वों के माध्यम से घटकों के प्रतिनिधित्व के उदाहरण हैं।

  • पहले स्तर पर, एक बैटरी को एक वोल्टेज स्रोत द्वारा दर्शाया जाता है। एक और उन्नत मॉडल में, उसमें एक सीरीज रेसिस्टेंस भी शामिल हो सकता है, जो बैटरी की आंतरिक रेसिस्टेंस को दर्शाता है (जो उष्मागत होती है और उपयोग में होने पर वोल्टेज कम होती है)। एक वर्तमान स्रोत पैरालल में जोड़ा जा सकता है ताकि इसके लीकेज को दर्शाया जा सके (जो बैटरी को दीर्घकालिक रूप से खाली करता है)।
  • पहले स्तर पर, एक रेसिस्टर को एक रेसिस्टेंस द्वारा दर्शाया जाता है। एक और उन्नत मॉडल में, उसमें एक सीरीज इंडक्टेंस शामिल की जा सकती है, जो इसके लीड इंडक्टेंस के प्रतिफलन को दर्शाती है (जो स्पाइरल के रूप में बने रेसिस्टर में अधिक महत्वपूर्ण होता है)। एक कैपेसिटेंस पैरालल में जोड़ा जा सकता है ताकि रेसिस्टर लीडों के पास आपस में कैपैसिटिव प्रभाव को दर्शाए। एक तार को कम मूल्य वाले रेसिस्टर के रूप में दर्शाया जा सकता है।
  • सेमीकंडक्टर को दर्शाते समय, वर्तमान मान को बढ़ाने के लिए वर्तमान स्रोत अधिक उपयोग में आते हैं। उदाहरण के लिए, पहले तख्ते पर, एक बायोपोलरट्रांजिस्टर को एक चरम वर्तमान स्रोत द्वारा दर्शाया जा सकता है जो इनपुट वर्तमान द्वारा नियंत्रित होता है।

See also

  • संचरण लाइन
  1. 1.0 1.1 Cite error: Invalid <ref> tag; no text was provided for refs named Trajkovic
  2. Strukov, Dmitri B; Snider, Gregory S; Stewart, Duncan R; Williams, Stanley R (2008), "The missing memristor found", Nature, 453 (7191): 80–83, Bibcode:2008Natur.453...80S, doi:10.1038/nature06932, PMID 18451858
  3. Eetimes, 30 अप्रैल 2008, [http://www.eetimes.com/news/latest/showarticle.jhtml?articleid=207403521
  4. ]
  5. ]
  6. वधवा, सी। एल।, नेटवर्क एनालिसिस एंड सिंथेसिस , पीपी .17–22, न्यू एज इंटरनेशनल, ISBN 81-224-1753-1
  7. हर्बर्ट जे। कार्लिन, पियर पाओलो सिवलेरी, वाइडबैंड सर्किट डिज़ाइन , पीपी .171–172, सीआरसी प्रेस, 1998 ISBN 0-8493-7897-4
  8. Vjekoslav damić, जॉन मोंटगोमरी, मेकैट्रोनिक्स बाय बॉन्ड ग्राफ़: मॉडलिंग और सिमुलेशन के लिए एक ऑब्जेक्ट-ओरिएंटेड दृष्टिकोण , pp.32–33, स्प्रिंगर, 2003 ISBN 3-540-42375-3