बहुपद लंबा विभाजन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 6: Line 6:
और या तो '<nowiki/>''R''<nowiki/>' = 0 या '<nowiki/>''R''<nowiki/>' की डिग्री '''B''<nowiki/>' की डिग्री से कम है। ये स्थितियाँ विशिष्ट रूप से ''Q'' और ''R'' को परिभाषित करती हैं। जिसका अर्थ है कि ''Q'' और ''R'' उनकी गणना करने के लिए उपयोग की जाने वाली विधि पर निर्भर नहीं करते हैं।
और या तो '<nowiki/>''R''<nowiki/>' = 0 या '<nowiki/>''R''<nowiki/>' की डिग्री '''B''<nowiki/>' की डिग्री से कम है। ये स्थितियाँ विशिष्ट रूप से ''Q'' और ''R'' को परिभाषित करती हैं। जिसका अर्थ है कि ''Q'' और ''R'' उनकी गणना करने के लिए उपयोग की जाने वाली विधि पर निर्भर नहीं करते हैं।


परिणाम '''R''<nowiki/>' = 0 होता है। यदि और केवल यदि बहुपद '' A '' में '' B '' एक बहुपद कारक के रूप में होता है। इस प्रकार दीर्घ विभाजन यह जाँचने का एक साधन है कि क्या एक बहुपद में दूसरा गुणनखंड है और यदि ऐसा है। तो इसे गुणनखंड करने के लिए उदाहरण, यदि ''A'' के बहुपद ''r'' की रूट ज्ञात है। तो इसे ''A'' को (''x'' – ''r'') से भाग देकर गुणनखण्ड किया जा सकता है।
परिणाम '''R''<nowiki/>' = 0 होता है। यदि और केवल यदि बहुपद '' A '' में '' B '' एक बहुपद कारक के रूप में होता है। इस प्रकार दीर्घ विभाजन यह जाँचने का एक साधन है कि क्या एक बहुपद में दूसरा गुणनखंड है और यदि ऐसा है। तो इसे गुणनखंड करने के लिए उदाहरण, यदि ''A'' के बहुपद ''r'' की मूल ज्ञात है। तो इसे ''A'' को (''x'' – ''r'') से भाग देकर गुणनखण्ड किया जा सकता है।


== उदाहरण ==
== उदाहरण ==
Line 102: Line 102:


   
   
'''function''' n / d '''is'''   
'''function''' n / d '''is'''   


Line 122: Line 123:




ध्यान दें कि यह समान रूप से अच्छी प्रकार से काम करता है जब Degree(''n'') < Degree(''d''); उस स्थिति में परिणाम केवल तुच्छ (0, ''n'') होता है।
ध्यान दें कि यह समान रूप से अच्छी प्रकार से काम करता है। जब डिग्री(''n'') < डिग्री(''d''); उस स्थिति में परिणाम केवल तुच्छ (0, ''n'') होता है।


यह एल्गोरिथम उपरोक्त कागज और पेंसिल विधि का बिल्कुल वर्णन करता है: {{var|d}} के बाईं ओर लिखा है); {{var|q}} लिखा है, पद के बाद पद, क्षैतिज रेखा के ऊपर, अंतिम पद का मान है {{var|t}}; क्षैतिज रेखा के नीचे के क्षेत्र का उपयोग गणना करने और क्रमिक मूल्यों को लिखने के लिए किया जाता है {{var|r}}.
यह एल्गोरिथम उपरोक्त कागज और पेंसिल विधि का बिल्कुल वर्णन करता है: {{var|d}} के बाईं ओर {{var|q}} लिखा है। पद के बाद पद क्षैतिज रेखा के ऊपर अंतिम पद का मान {{var|t}} है। क्षैतिज रेखा के नीचे {{var|r}} के क्षेत्र का उपयोग गणना करने और क्रमिक मूल्यों को लिखने के लिए किया जाता है।


== यूक्लिडियन डिवीजन ==
== यूक्लिडियन डिवीजन ==
{{anchor|Division transformation}}
 
{{main|Euclidean division of polynomials}}
{{main|बहुपदों का यूक्लिडियन विभाजन}}
बहुपदों (, बी) की प्रत्येक जोड़ी के लिए जैसे कि बी ≠ 0, बहुपद विभाजन एक भागफल क्यू और शेष आर प्रदान करता है जैसे कि
 
बहुपदों (''A'', ''B'') की प्रत्येक जोड़ी के लिए जैसे कि ''B'' ≠ 0, बहुपद विभाजन एक भागफल ''Q'' और शेष आर प्रदान करता है जैसे कि-
:<math>A=BQ+R,</math>
:<math>A=BQ+R,</math>
और या तो आर = 0 या डिग्री (आर) <डिग्री (बी)। इसके अलावा (क्यू, आर) इस संपत्ति वाले बहुपदों की अनूठी जोड़ी है।
और या तो ''R'' = 0 या डिग्री (''R'') <डिग्री (''B'')। इसके अतिरिक्त (''Q'', ''R'') इस गुण वाले बहुपदों की विशेष जोड़ी है।


और बी से विशिष्ट रूप से परिभाषित बहुपद क्यू और आर प्राप्त करने की प्रक्रिया को यूक्लिडियन डिवीजन (कभी-कभी विभाजन परिवर्तन) कहा जाता है। बहुपद लंबा विभाजन इस प्रकार यूक्लिडियन विभाजन के लिए एक एल्गोरिथम है।<ref>{{cite book|author=S. Barnard|title=उच्च बीजगणित|year=2008|publisher=READ BOOKS|isbn=1-4437-3086-6|page=24}}</ref>
''A और'' ''B'' से विशिष्ट रूप से परिभाषित बहुपद ''Q'' और ''R'' प्राप्त करने की प्रक्रिया को यूक्लिडियन डिवीजन (कभी-कभी विभाजन परिवर्तन) कहा जाता है। बहुपद लंबा विभाजन इस प्रकार यूक्लिडियन विभाजन के लिए एक एल्गोरिथम है।<ref>{{cite book|author=S. Barnard|title=उच्च बीजगणित|year=2008|publisher=READ BOOKS|isbn=1-4437-3086-6|page=24}}</ref>




Line 140: Line 142:
=== गुणनखंड बहुपद ===
=== गुणनखंड बहुपद ===


कभी-कभी एक बहुपद की एक या अधिक जड़ें ज्ञात होती हैं, शायद परिमेय मूल प्रमेय का उपयोग करके पाया गया है। यदि घात n वाले बहुपद P(x) का एक मूल r ज्ञात हो तो बहुपद दीर्घ विभाजन का उपयोग P(x) को गुणनखण्ड करने के लिए किया जा सकता है {{nowrap|(''x'' − ''r'')(''Q''(''x''))}} जहाँ Q(x) डिग्री n - 1 का एक बहुपद है। Q(x) केवल विभाजन प्रक्रिया से प्राप्त भागफल है; चूंकि आर को पी (एक्स) की जड़ के रूप में जाना जाता है, यह ज्ञात है कि शेष शून्य होना चाहिए।
सामान्यतः एक बहुपद की एक या एक से अधिक रूट्स ज्ञात होती हैं। संभवतः परिमेय मूल प्रमेय का उपयोग करके पाया गया है। यदि घात n वाले बहुपद P(x) का एक मूल r ज्ञात हो। तो बहुपद {{nowrap|(''x'' − ''r'')(''Q''(''x''))}} दीर्घ विभाजन का उपयोग P(x) को गुणनखण्ड करने के लिए किया जा सकता है। जहाँ Q(x) डिग्री n - 1 का एक बहुपद है। Q(x) केवल विभाजन प्रक्रिया से प्राप्त भागफल है। चूंकि को P(x) की जड़ के रूप में जाना जाता है। यह ज्ञात है कि शेष शून्य होना चाहिए।
 
इसी प्रकार, यदि एक से अधिक मूल ज्ञात हों, तो एक रैखिक गुणनखंड {{nowrap|(''x'' − ''r'')}} उनमें से एक में (r) को Q(x)  प्राप्त करने के लिए विभाजित किया जा सकता है और फिर एक अन्य मूल में एक रैखिक शब्द, ''s'' को Q(x)  आदि से विभाजित किया जा सकता है। वैकल्पिक रूप से वे सभी को विभाजित किया जा सकता है। उदाहरण के लिए रैखिक कारक {{nowrap|''x'' − ''r''}} तथा {{nowrap|''x'' − ''s''}} द्विघात कारक प्राप्त करने के लिए {{nowrap|''x''<sup>2</sup> − (''r'' + ''s'')''x'' + ''rs'',}} एक साथ गुणा किया जा सकता है। जिसे बाद में {{nowrap|''n'' − 2.}} डिग्री का भागफल प्राप्त करने के लिए मूल बहुपद P(x) में विभाजित किया जा सकता है।


इसी प्रकार, यदि एक से अधिक मूल ज्ञात हों, तो एक रैखिक गुणनखंड {{nowrap|(''x'' − ''r'')}} उनमें से एक में (आर) को क्यू(एक्स) प्राप्त करने के लिए विभाजित किया जा सकता है, और फिर एक अन्य रूट में एक रैखिक शब्द, एस, को क्यू(एक्स), आदि से विभाजित किया जा सकता है। वैकल्पिक रूप से, वे सभी को विभाजित किया जा सकता है एक बार: उदाहरण के लिए रैखिक कारक {{nowrap|''x'' − ''r''}} तथा {{nowrap|''x'' − ''s''}} द्विघात कारक प्राप्त करने के लिए एक साथ गुणा किया जा सकता है {{nowrap|''x''<sup>2</sup> − (''r'' + ''s'')''x'' + ''rs'',}} जिसे बाद में डिग्री का भागफल प्राप्त करने के लिए मूल बहुपद P(x) में विभाजित किया जा सकता है {{nowrap|''n'' − 2.}}
इस प्रकार कभी-कभी चार से अधिक डिग्री वाले बहुपद के सभी मूल प्राप्त किए जा सकते हैं।  यह सदैव संभव न हो। उदाहरण के लिए, यदि परिमेय मूल प्रमेय का उपयोग पंचांक फलन के एकल (तर्कसंगत) मूल को प्राप्त करने के लिए किया जा सकता है। तो इसे क्वार्टिक (चौथी डिग्री) भागफल प्राप्त करने के लिए गुणनखंडित किया जा सकता है। क्वार्टिक फलन की मूल के लिए स्पष्ट सूत्र का उपयोग क्विंटिक की अन्य चार मूल को खोजने के लिए किया जा सकता है।
इस प्रकार, कभी-कभी चार से अधिक डिग्री वाले बहुपद के सभी मूल प्राप्त किए जा सकते हैं, भले ही यह हमेशा संभव न हो। उदाहरण के लिए, यदि परिमेय मूल प्रमेय का उपयोग पंचांक फलन के एकल (तर्कसंगत) मूल को प्राप्त करने के लिए किया जा सकता है, तो इसे क्वार्टिक (चौथी डिग्री) भागफल प्राप्त करने के लिए गुणनखंडित किया जा सकता है; क्वार्टिक फ़ंक्शन की जड़ों के लिए स्पष्ट सूत्र का उपयोग क्विंटिक की अन्य चार जड़ों को खोजने के लिए किया जा सकता है।


=== बहुपद कार्यों के लिए स्पर्शरेखा ढूँढना ===
=== बहुपद कार्यों के लिए स्पर्श रेखा ढूँढना ===


बहुपद लंबे विभाजन का उपयोग उस रेखा के समीकरण को खोजने के लिए किया जा सकता है जो किसी विशेष बिंदु पर बहुपद P(x) द्वारा परिभाषित फ़ंक्शन के ग्राफ़ पर स्पर्शरेखा है। {{nowrap|''x'' {{=}} ''r''.}}<ref>Strickland-Constable, Charles, "A simple method for finding tangents to polynomial graphs", ''[[Mathematical Gazette]]'' 89, November 2005: 466-467.</ref> यदि R(x) द्वारा P(x) के विभाजन का शेषफल है {{nowrap|(''x'' – ''r'')<sup>2</sup>,}} फिर स्पर्श रेखा का समीकरण पर {{nowrap|''x'' {{=}} ''r''}} समारोह के ग्राफ के लिए {{nowrap|''y'' {{=}} ''P''(''x'')}} है {{nowrap|''y'' {{=}} ''R''(''x''),}} इस बात की परवाह किए बिना कि r बहुपद का एक मूल है या नहीं।
बहुपद लंबे विभाजन का उपयोग उस रेखा के समीकरण को खोजने के लिए किया जा सकता है। जो किसी विशेष बिंदु {{nowrap|''x'' {{=}} ''r''.}} पर बहुपद P(x) द्वारा परिभाषित फलन के ग्राफ़ पर स्पर्शरेखा है।<ref>Strickland-Constable, Charles, "A simple method for finding tangents to polynomial graphs", ''[[Mathematical Gazette]]'' 89, November 2005: 466-467.</ref> यदि R(x) द्वारा P(x) के विभाजन का शेषफल {{nowrap|(''x'' – ''r'')<sup>2</sup>,}}है।  फिर स्पर्श रेखा का समीकरण पर {{nowrap|''x'' {{=}} ''r''}} फलन के ग्राफ के लिए {{nowrap|''y'' {{=}} ''P''(''x'')}}{{nowrap|''y'' {{=}} ''R''(''x''),}} है। इस बात की जानकारी किए बिना कि r बहुपद का एक मूल है या नहीं।


==== उदाहरण ====
==== उदाहरण ====
उस रेखा का समीकरण ज्ञात कीजिए जो निम्न वक्र पर स्पर्श रेखा है {{nowrap|''x'' {{=}} 1}}:
उस रेखा का समीकरण ज्ञात कीजिए। जो निम्न वक्र पर स्पर्श रेखा {{nowrap|''x'' {{=}} 1}} है।
: <math>y = x^3 - 12x^2 - 42.</math>
: <math>y = x^3 - 12x^2 - 42.</math>
द्वारा बहुपद को विभाजित करके प्रारंभ करें {{nowrap|(''x'' − 1)<sup>2</sup> {{=}} ''x''<sup>2</sup> − 2''x'' + 1}}:
{{nowrap|(''x'' − 1)<sup>2</sup> {{=}} ''x''<sup>2</sup> − 2''x'' + 1}} द्वारा बहुपद को विभाजित करके प्रारंभ करें :
: <math>
: <math>
\begin{array}{r}
\begin{array}{r}
Line 163: Line 166:
\end{array}
\end{array}
</math>
</math>
स्पर्श रेखा है {{nowrap|''y'' {{=}} −21''x'' − 32}}.
{{nowrap|''y'' {{=}} −21''x'' − 32}} स्पर्श रेखा है।


=== चक्रीय अतिरेक जाँच ===
=== चक्रीय अतिरेक जाँच ===


प्रेषित संदेशों में त्रुटियों का पता लगाने के लिए एक चक्रीय अतिरेक जाँच बहुपद विभाजन के शेष का उपयोग करती है।
प्रेषित संदेशों में त्रुटियों का पता लगाने के लिए एक चक्रीय जाँच बहुपद विभाजन के शेष का उपयोग करती है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 21:44, 27 March 2023

बीजगणित में बहुपद लंबा विभाजन बहुपद के समान या निम्न डिग्री के बहुपद द्वारा बहुपद को विभाजित करने के लिए एक एल्गोरिथ्म है। जो परिचित अंकगणितीय विधि का एक सामान्यीकृत संस्करण है। जिसे दीर्घ विभाजन कहा जाता है। यह सरलता से हाथ से किया जा सकता है क्योंकि यह अन्यथा जटिल विभाजन समस्या को छोटे में अलग करता है। कभी-कभी सिंथेटिक डिवीजन नामक आशुलिपि संस्करण का उपयोग करना कम लेखन और कम गणनाओं के साथ तेज़ होता है। एक अन्य संक्षिप्त विधि बहुपद लघु विभाजन (ब्लोमकविस्ट की विधि) है।

बहुपद लंबा विभाजन एक एल्गोरिथ्म है। जो बहुपदों के यूक्लिडियन विभाजन को संचालित करता है। जो दो बहुपदों A (भाज्य) और B (भाजक) से प्रारम्भ होता है। यदि ' 'B' शून्य नहीं है, एक भागफल Q और एक शेष R ऐसा है कि-

A = BQ + R,

और या तो 'R' = 0 या 'R' की डिग्री 'B' की डिग्री से कम है। ये स्थितियाँ विशिष्ट रूप से Q और R को परिभाषित करती हैं। जिसका अर्थ है कि Q और R उनकी गणना करने के लिए उपयोग की जाने वाली विधि पर निर्भर नहीं करते हैं।

परिणाम 'R' = 0 होता है। यदि और केवल यदि बहुपद A में B एक बहुपद कारक के रूप में होता है। इस प्रकार दीर्घ विभाजन यह जाँचने का एक साधन है कि क्या एक बहुपद में दूसरा गुणनखंड है और यदि ऐसा है। तो इसे गुणनखंड करने के लिए उदाहरण, यदि A के बहुपद r की मूल ज्ञात है। तो इसे A को (x – r) से भाग देकर गुणनखण्ड किया जा सकता है।

उदाहरण

बहुपद दीर्घ विभाजन

के भाग का भागफल और शेषफल ज्ञात कीजिए भाज्य द्वारा भाजक।

भाज्य को पहले इस प्रकार से लिखा जाता है:

तब भागफल और शेषफल निम्नानुसार निर्धारित किया जा सकता है:

भाज्य के पहले पद को भाजक के उच्चतम पद से विभाजित करें (जिसका अर्थ है कि x की उच्चतम घात वाला, जो इस स्थिति में x है)। (x3 ÷ x = x2) परिणाम को बार के ऊपर रखें।

भाजक को अभी प्राप्त परिणाम से गुणा करें (अंतिम भागफल का पहला पद)। (x2 · (x − 3) = x3 − 3x2) भाज्य के पहले दो पदों के अनुसार परिणाम लिखें।

मूल भाज्य की उपयुक्त नियमों से अभी प्राप्त उत्पाद को घटाएं (सावधान रहें कि ऋण चिह्न वाली किसी चीज़ को घटाना धन चिह्न वाली चीज़ को जोड़ने के बराबर है) और परिणाम ((x3 − 2x2) − (x3 − 3x2) = −2x2 + 3x2 = x2) को नीचे लिखें। फिर अगले पद को भाज्य से नीचे लाएँ।

पिछले तीन चरणों को दोहराएं, इस समय को छोड़कर उन दो शब्दों का उपयोग करें। जिन्हें भाज्य के रूप में अभी लिखा गया है।

चरण 4 को दोहराएँ। इस बार नीचे लाने के लिए कुछ भी नहीं है।


बार के ऊपर का बहुपद भागफल q(x) है और 5 के बाद बची हुई संख्या शेष r(x) है।

अंकगणित के लिए दीर्घ विभाजन एल्गोरिथम उपरोक्त एल्गोरिथम के समान है। जिसमें चर x को (आधार 10 में) विशिष्ट संख्या 10 से बदल दिया जाता है।

बहुपद लघु विभाजन

ब्लोमक्विस्ट की विधि[1] उपरोक्त दीर्घ विभाजन का संक्षिप्त रूप है। यह पेन-एंड-पेपर विधि समान एल्गोरिथ्म का उपयोग बहुपद लंबे विभाजन के रूप में करती है। किन्तु मानसिक गणना का उपयोग अवशेषों को निर्धारित करने के लिए किया जाता है। इसके लिए कम लेखन की आवश्यकता होती है और इसलिए एक बार निपुणता प्राप्त करने के बाद यह एक तेज़ उपाय हो सकता है।

विभाजन को पहले उसी प्रकार से लिखा जाता है। जैसे शीर्ष पर भाजक और उसके नीचे विभाजक के साथ दीर्घ गुणन भागफल को बार के नीचे बाएँ से दाएँ लिखा जाना है।

(x3 ÷ x = x2) भाजक के पहले पद को भाजक के उच्चतम पद से विभाजित करें। परिणाम को बार के नीचे रखें। x3 को कोई शेष नहीं छोड़ते हुए विभाजित किया गया है और इसलिए इसे बैकस्लैश के साथ उपयोग किए गए के रूप में चिह्नित किया जा सकता है। परिणाम x2 को भाजक −3 = −3x के दूसरे पद से गुणा किया जाता है। −2x2 − (−3x2) = x2 को घटाकर आंशिक शेषफल ज्ञात करें। −2x2 को प्रयुक्त के रूप में चिन्हित करें और इसके ऊपर नया शेष x2 रखें।

शेष के उच्चतम पद को भाजक (x2 ÷ x = x) के उच्चतम पद से विभाजित करें। परिणाम (+x) को बार के नीचे रखें। x2 को कोई शेष नहीं छोड़ते हुए विभाजित किया गया है और इसलिए इसे उपयोग किए गए के रूप में चिह्नित किया जा सकता है। इसके बाद परिणाम x को भाजक −3 = −3x के दूसरे पद से गुणा किया जाता है। 0x - (−3x) = 3x घटाकर आंशिक शेषफल ज्ञात करें। 0x को प्रयुक्त के रूप में चिह्नित करें और इसके ऊपर नया शेष 3x रखें।

शेषफल के उच्चतम पद को भाजक के उच्चतम पद (3x ÷ x = 3) से विभाजित करें। परिणाम (+3) को बार के नीचे रखें। 3x को कोई शेष नहीं छोड़ते हुए विभाजित किया गया है और इसलिए इसे प्रयुक्त के रूप में चिह्नित किया जा सकता है। इसके बाद परिणाम 3 को भाजक −3 = −9 के दूसरे पद से गुणा किया जाता है। −4 − (−9) = 5 घटाकर आंशिक शेषफल निर्धारित करें। −4 को प्रयुक्त के रूप में चिह्नित करें और नए शेष 5 को इसके ऊपर रखें।

बार के नीचे बहुपद भागफल q(x) है और शेष संख्या (5) शेषफल r(x) है।

स्यूडोकोड

एल्गोरिथ्म को स्यूडोकोड में निम्नानुसार प्रदर्शित किया जा सकता है। जहां +, - और × बहुपद अंकगणित का प्रतिनिधित्व करते हैं और / दो शब्दों के सरल विभाजन का प्रतिनिधित्व करते हैं:


function n / d is

require d ≠ 0

q ← 0

r ← n // At each step n = d × q + r

while r ≠ 0 and degree(r) ≥ degree(d) do

t ← lead(r) / lead(d) // Divide the leading terms

q ← q + t

r ← r − t × d

return (q, r)


ध्यान दें कि यह समान रूप से अच्छी प्रकार से काम करता है। जब डिग्री(n) < डिग्री(d); उस स्थिति में परिणाम केवल तुच्छ (0, n) होता है।

यह एल्गोरिथम उपरोक्त कागज और पेंसिल विधि का बिल्कुल वर्णन करता है: d के बाईं ओर q लिखा है। पद के बाद पद क्षैतिज रेखा के ऊपर अंतिम पद का मान t है। क्षैतिज रेखा के नीचे r के क्षेत्र का उपयोग गणना करने और क्रमिक मूल्यों को लिखने के लिए किया जाता है।

यूक्लिडियन डिवीजन

बहुपदों (A, B) की प्रत्येक जोड़ी के लिए जैसे कि B ≠ 0, बहुपद विभाजन एक भागफल Q और शेष आर प्रदान करता है जैसे कि-

और या तो R = 0 या डिग्री (R) <डिग्री (B)। इसके अतिरिक्त (Q, R) इस गुण वाले बहुपदों की विशेष जोड़ी है।

A और B से विशिष्ट रूप से परिभाषित बहुपद Q और R प्राप्त करने की प्रक्रिया को यूक्लिडियन डिवीजन (कभी-कभी विभाजन परिवर्तन) कहा जाता है। बहुपद लंबा विभाजन इस प्रकार यूक्लिडियन विभाजन के लिए एक एल्गोरिथम है।[2]


अनुप्रयोग

गुणनखंड बहुपद

सामान्यतः एक बहुपद की एक या एक से अधिक रूट्स ज्ञात होती हैं। संभवतः परिमेय मूल प्रमेय का उपयोग करके पाया गया है। यदि घात n वाले बहुपद P(x) का एक मूल r ज्ञात हो। तो बहुपद (xr)(Q(x)) दीर्घ विभाजन का उपयोग P(x) को गुणनखण्ड करने के लिए किया जा सकता है। जहाँ Q(x) डिग्री n - 1 का एक बहुपद है। Q(x) केवल विभाजन प्रक्रिया से प्राप्त भागफल है। चूंकि r को P(x) की जड़ के रूप में जाना जाता है। यह ज्ञात है कि शेष शून्य होना चाहिए।

इसी प्रकार, यदि एक से अधिक मूल ज्ञात हों, तो एक रैखिक गुणनखंड (xr) उनमें से एक में (r) को Q(x) प्राप्त करने के लिए विभाजित किया जा सकता है और फिर एक अन्य मूल में एक रैखिक शब्द, s को Q(x) आदि से विभाजित किया जा सकता है। वैकल्पिक रूप से वे सभी को विभाजित किया जा सकता है। उदाहरण के लिए रैखिक कारक xr तथा xs द्विघात कारक प्राप्त करने के लिए x2 − (r + s)x + rs, एक साथ गुणा किया जा सकता है। जिसे बाद में n − 2. डिग्री का भागफल प्राप्त करने के लिए मूल बहुपद P(x) में विभाजित किया जा सकता है।

इस प्रकार कभी-कभी चार से अधिक डिग्री वाले बहुपद के सभी मूल प्राप्त किए जा सकते हैं। यह सदैव संभव न हो। उदाहरण के लिए, यदि परिमेय मूल प्रमेय का उपयोग पंचांक फलन के एकल (तर्कसंगत) मूल को प्राप्त करने के लिए किया जा सकता है। तो इसे क्वार्टिक (चौथी डिग्री) भागफल प्राप्त करने के लिए गुणनखंडित किया जा सकता है। क्वार्टिक फलन की मूल के लिए स्पष्ट सूत्र का उपयोग क्विंटिक की अन्य चार मूल को खोजने के लिए किया जा सकता है।

बहुपद कार्यों के लिए स्पर्श रेखा ढूँढना

बहुपद लंबे विभाजन का उपयोग उस रेखा के समीकरण को खोजने के लिए किया जा सकता है। जो किसी विशेष बिंदु x = r. पर बहुपद P(x) द्वारा परिभाषित फलन के ग्राफ़ पर स्पर्शरेखा है।[3] यदि R(x) द्वारा P(x) के विभाजन का शेषफल (xr)2,है। फिर स्पर्श रेखा का समीकरण पर x = r फलन के ग्राफ के लिए y = P(x), y = R(x), है। इस बात की जानकारी किए बिना कि r बहुपद का एक मूल है या नहीं।

उदाहरण

उस रेखा का समीकरण ज्ञात कीजिए। जो निम्न वक्र पर स्पर्श रेखा x = 1 है।

(x − 1)2 = x2 − 2x + 1 द्वारा बहुपद को विभाजित करके प्रारंभ करें :

y = −21x − 32 स्पर्श रेखा है।

चक्रीय अतिरेक जाँच

प्रेषित संदेशों में त्रुटियों का पता लगाने के लिए एक चक्रीय जाँच बहुपद विभाजन के शेष का उपयोग करती है।

यह भी देखें

  • बहुपद शेष प्रमेय
  • सिंथेटिक विभाजन, यूक्लिडियन बहुपद विभाजन करने की एक अधिक संक्षिप्त विधि
  • रफिनी का नियम
  • यूक्लिडियन डोमेन
  • ग्रोबनर आधार
  • दो बहुपदों का महत्तम समापवर्तक


इस पेज में लापता आंतरिक लिंक की सूची

संदर्भ

  1. Archived at Ghostarchive and the Wayback Machine: Blomqvist’s division: the simplest method for solving divisions? (in English), retrieved 2019-12-10
  2. S. Barnard (2008). उच्च बीजगणित. READ BOOKS. p. 24. ISBN 1-4437-3086-6.
  3. Strickland-Constable, Charles, "A simple method for finding tangents to polynomial graphs", Mathematical Gazette 89, November 2005: 466-467.