औसत पूर्ण प्रतिशत त्रुटि: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 13: Line 13:
मानक प्रतिगमन व्यवस्था पर विचार करें जिसमें एक यादृच्छिक समरूप द्वारा डेटा का पूरी तरह से वर्णन किया गया है <math>Z=(X,Y)</math> मूल्यों के साथ <math>\mathbb{R}^d\times\mathbb{R}</math>, और {{mvar|n}} आई.आई.डी. प्रतियां <math>(X_1, Y_1), ..., (X_n, Y_n)</math> का <math>(X,Y)</math>. प्रतिगमन मॉडल का उद्देश्य समरूप के लिए एक उचित मॉडल खोजना है, जो एक मापने योग्य कार्य  है {{mvar|g}} से <math>\mathbb{R}^d</math> को <math>\mathbb{R}</math> ऐसा है कि <math>g(X)</math> {{mvar|Y}} के निकट है .
मानक प्रतिगमन व्यवस्था पर विचार करें जिसमें एक यादृच्छिक समरूप द्वारा डेटा का पूरी तरह से वर्णन किया गया है <math>Z=(X,Y)</math> मूल्यों के साथ <math>\mathbb{R}^d\times\mathbb{R}</math>, और {{mvar|n}} आई.आई.डी. प्रतियां <math>(X_1, Y_1), ..., (X_n, Y_n)</math> का <math>(X,Y)</math>. प्रतिगमन मॉडल का उद्देश्य समरूप के लिए एक उचित मॉडल खोजना है, जो एक मापने योग्य कार्य  है {{mvar|g}} से <math>\mathbb{R}^d</math> को <math>\mathbb{R}</math> ऐसा है कि <math>g(X)</math> {{mvar|Y}} के निकट है .


मौलिक प्रतिगमन व्यवस्था में, की निकटता <math>g(X)</math> {{mvar|Y}} को {{math|''L''<sub>2</sub>}} जोखिम द्वारा मापा जाता है  , जिसे माध्य वक्रता त्रुटि (MSE) भी कहा जाता है। एमएपीई प्रतिगमन संदर्भ में,<ref name="demyttenaere2016"/> की निकटता <math>g(X)</math> को {{mvar|Y}} को एमएपीई के माध्यम से मापा जाता है, और एमएपीई प्रतिगमन का उद्देश्य एक मॉडल खोजना है <math>g_\text{MAPE}</math> ऐसा है कि:
मौलिक प्रतिगमन व्यवस्था में, की निकटता <math>g(X)</math> {{mvar|Y}} को {{math|''L''<sub>2</sub>}} हानियाँ द्वारा मापा जाता है  , जिसे माध्य वक्रता त्रुटि (एमएसई) भी कहा जाता है। एमएपीई प्रतिगमन संदर्भ में,<ref name="demyttenaere2016"/> की निकटता <math>g(X)</math> को {{mvar|Y}} को एमएपीई के माध्यम से मापा जाता है, और एमएपीई प्रतिगमन का उद्देश्य एक मॉडल खोजना है <math>g_\text{MAPE}</math> ऐसा है कि:


:<math>g_\text{MAPE}(x) = \arg\min_{g \in \mathcal{G}} \mathbb{E}\left[ \left|\frac{g(X) - Y}{Y}\right||X = x\right]</math>
:<math>g_\text{MAPE}(x) = \arg\min_{g \in \mathcal{G}} \mathbb{E}\left[ \left|\frac{g(X) - Y}{Y}\right||X = x\right]</math>
जहाँ <math>\mathcal{G}</math> माना जाने वाला मॉडल का वर्ग है (उदाहरण के लिए रैखिक मॉडल)।
जहाँ <math>\mathcal{G}</math> माना जाने वाला मॉडल का वर्ग है (उदाहरण के लिए रैखिक मॉडल)।


व्यवहार में
व्यवहारतः


व्यवहार में <math>g_\text{MAPE}(x)</math> [[अनुभवजन्य जोखिम न्यूनीकरण]] रणनीति द्वारा अनुमान लगाया जा सकता है, जिससे
व्यवहारतः <math>g_\text{MAPE}(x)</math> [[अनुभवजन्य जोखिम न्यूनीकरण|अनुभवजन्य हानियाँ न्यूनीकरण]] रणनीति द्वारा आकलन किया जा सकता है, जिससे


:<math> \widehat{g}_\text{MAPE}(x) = \arg\min_{g \in \mathcal{G}} \sum_{i=1}^n \left|\frac{g(X_i) - Y_i}{Y_i}\right|</math>
:<math> \widehat{g}_\text{MAPE}(x) = \arg\min_{g \in \mathcal{G}} \sum_{i=1}^n \left|\frac{g(X_i) - Y_i}{Y_i}\right|</math>
व्यावहारिक दृष्टिकोण से, प्रतिगमन मॉडल के लिए गुणवत्ता फ़ंक्शन के रूप में एमएपीई का उपयोग भारित औसत पूर्ण त्रुटि (एमएई) प्रतिगमन करने के बराबर है, जिसे [[मात्रात्मक प्रतिगमन]] भी कहा जाता है। यह संपत्ति तुच्छ है
व्यावहारिक दृष्टिकोण से, प्रतिगमन मॉडल के लिए गुणवत्ता फ़ंक्शन के रूप में एमएपीई का उपयोग भारित औसत पूर्ण त्रुटि (एमएई) प्रतिगमन करने के बराबर है, जिसे [[मात्रात्मक प्रतिगमन]] भी कहा जाता है। यह गुणधर्म नगण्य है


:<math> \widehat{g}_\text{MAPE}(x) = \arg\min_{g \in \mathcal{G}} \sum_{i=1}^n \omega(Y_i) \left|g(X_i) - Y_i\right| \mbox{ with } \omega(Y_i) = \left|\frac{1}{Y_i}\right|</math>
:<math> \widehat{g}_\text{MAPE}(x) = \arg\min_{g \in \mathcal{G}} \sum_{i=1}^n \omega(Y_i) \left|g(X_i) - Y_i\right| \mbox{ with } \omega(Y_i) = \left|\frac{1}{Y_i}\right|</math>
नतीजतन, एमएपीई का उपयोग व्यवहार में बहुत आसान है, उदाहरण के लिए वजन की अनुमति देने वाले मात्रात्मक प्रतिगमन के लिए मौजूदा पुस्तकालयों का उपयोग करना।
परिणामस्वरूप, एमएपीई का उपयोग व्यवहारतः बहुत सरल है, उदाहरण के लिए भार की अनुमति देने वाले मात्रात्मक प्रतिगमन के लिए उपस्थित पुस्तकालयों का उपयोग करना।


=== संगति ===
=== संगति ===


प्रतिगमन विश्लेषण के लिए नुकसान समारोह के रूप में एमएपीई का उपयोग व्यावहारिक दृष्टिकोण और सैद्धांतिक दोनों पर संभव है, क्योंकि एक इष्टतम मॉडल के अस्तित्व और अनुभवजन्य जोखिम न्यूनीकरण की [[स्थिरता (सांख्यिकी)]] साबित हो सकती है।<ref name="demyttenaere2016">de Myttenaere, B Golden, B Le Grand, F Rossi (2015). "Mean absolute percentage error for regression models", Neurocomputing 2016 {{ArXiv|1605.02541}}</ref>
प्रतिगमन विश्लेषण के लिए हानिकारक कार्य के रूप में एमएपीई का उपयोग व्यावहारिक दृष्टिकोण और सैद्धांतिक दृष्टिकोण दोनों पर संभव है, क्योंकि एक इष्टतम मॉडल के अस्तित्व और अनुभवजन्य हानियाँ न्यूनीकरण की [[स्थिरता (सांख्यिकी)]] सिद्ध हो सकती है।<ref name="demyttenaere2016">de Myttenaere, B Golden, B Le Grand, F Rossi (2015). "Mean absolute percentage error for regression models", Neurocomputing 2016 {{ArXiv|1605.02541}}</ref>




Line 47: Line 47:
*इसका उपयोग नहीं किया जा सकता है यदि शून्य या निकट-शून्य मान हैं (जो कभी-कभी होता है, उदाहरण के लिए मांग डेटा में) क्योंकि शून्य से एक विभाजन होगा या एमएपीई के मूल्य अनंत तक चल रहे हैं।<ref>{{cite journal |last1=Kim |first1=Sungil |last2=Kim |first2=Heeyoung |title=आंतरायिक मांग पूर्वानुमानों के लिए पूर्ण प्रतिशत त्रुटि का एक नया मीट्रिक|journal=International Journal of Forecasting |date=1 July 2016 |volume=32 |issue=3 |pages=669–679 |doi=10.1016/j.ijforecast.2015.12.003 |doi-access=free }}</ref>
*इसका उपयोग नहीं किया जा सकता है यदि शून्य या निकट-शून्य मान हैं (जो कभी-कभी होता है, उदाहरण के लिए मांग डेटा में) क्योंकि शून्य से एक विभाजन होगा या एमएपीई के मूल्य अनंत तक चल रहे हैं।<ref>{{cite journal |last1=Kim |first1=Sungil |last2=Kim |first2=Heeyoung |title=आंतरायिक मांग पूर्वानुमानों के लिए पूर्ण प्रतिशत त्रुटि का एक नया मीट्रिक|journal=International Journal of Forecasting |date=1 July 2016 |volume=32 |issue=3 |pages=669–679 |doi=10.1016/j.ijforecast.2015.12.003 |doi-access=free }}</ref>
*उन पूर्वानुमानों के लिए जो बहुत कम हैं, प्रतिशत त्रुटि 100% से अधिक नहीं हो सकती है, लेकिन उन पूर्वानुमानों के लिए जो बहुत अधिक हैं, प्रतिशत त्रुटि की कोई ऊपरी सीमा नहीं है।
*उन पूर्वानुमानों के लिए जो बहुत कम हैं, प्रतिशत त्रुटि 100% से अधिक नहीं हो सकती है, लेकिन उन पूर्वानुमानों के लिए जो बहुत अधिक हैं, प्रतिशत त्रुटि की कोई ऊपरी सीमा नहीं है।
*एमएपीई नकारात्मक त्रुटियों पर भारी जुर्माना लगाता है, <math>A_t < F_t</math> सकारात्मक त्रुटियों की तुलना में।<ref>Makridakis, Spyros (1993) "Accuracy measures: theoretical and practical concerns." ''International Journal of Forecasting'', 9(4):527-529 [[doi:10.1016/0169-2070(93)90079-3]]</ref> परिणामस्वरूप, जब एमएपीई का उपयोग भविष्यवाणी विधियों की सटीकता की तुलना करने के लिए किया जाता है तो यह पक्षपाती होता है कि यह व्यवस्थित रूप से एक ऐसी विधि का चयन करेगा जिसका पूर्वानुमान बहुत कम है। इस अल्पज्ञात लेकिन गंभीर मुद्दे को सटीकता अनुपात के लघुगणक (वास्तविक मूल्य के लिए अनुमानित अनुपात) के आधार पर सटीकता माप का उपयोग करके दूर किया जा सकता है। <math display="inline">\log\left(\frac{\text{predicted}}{\text{actual}}\right) </math>. यह दृष्टिकोण बेहतर सांख्यिकीय गुणों की ओर जाता है और उन भविष्यवाणियों की ओर भी ले जाता है जिनकी व्याख्या ज्यामितीय माध्य के रूप में की जा सकती है।<ref name="tofallis2015"/>* लोग अक्सर सोचते हैं कि एमएपीई माध्यिका पर अनुकूलित होगा। लेकिन उदाहरण के लिए, एक लॉग नॉर्मल का माध्यिका होता है <math>e^\mu</math> जहां पर यह एमएपीई अनुकूलित है <math>e^{\mu - \sigma^{2}}</math>.
*एमएपीई नकारात्मक त्रुटियों पर भारी जुर्माना लगाता है, <math>A_t < F_t</math> सकारात्मक त्रुटियों की तुलना में।<ref>Makridakis, Spyros (1993) "Accuracy measures: theoretical and practical concerns." ''International Journal of Forecasting'', 9(4):527-529 [[doi:10.1016/0169-2070(93)90079-3]]</ref> परिणामस्वरूप, जब एमएपीई का उपयोग भविष्यवाणी विधियों की सटीकता की तुलना करने के लिए किया जाता है तो यह पक्षपाती होता है कि यह व्यवस्थित रूप से एक ऐसी विधि का चयन करेगा जिसका पूर्वानुमान बहुत कम है। इस अल्पज्ञात लेकिन गंभीर मुद्दे को सटीकता अनुपात के लघुगणक (वास्तविक मूल्य के लिए आकलनित अनुपात) के आधार पर सटीकता माप का उपयोग करके दूर किया जा सकता है। <math display="inline">\log\left(\frac{\text{predicted}}{\text{actual}}\right) </math>. यह दृष्टिकोण बेहतर सांख्यिकीय गुणों की ओर जाता है और उन भविष्यवाणियों की ओर भी ले जाता है जिनकी व्याख्या ज्यामितीय माध्य के रूप में की जा सकती है।<ref name="tofallis2015"/>* लोग अक्सर सोचते हैं कि एमएपीई माध्यिका पर अनुकूलित होगा। लेकिन उदाहरण के लिए, एक लॉग नॉर्मल का माध्यिका होता है <math>e^\mu</math> जहां पर यह एमएपीई अनुकूलित है <math>e^{\mu - \sigma^{2}}</math>.


एमएपीई के साथ इन मुद्दों को दूर करने के लिए साहित्य में कुछ अन्य उपाय प्रस्तावित हैं:
एमएपीई के साथ इन मुद्दों को दूर करने के लिए साहित्य में कुछ अन्य उपाय प्रस्तावित हैं:

Revision as of 23:27, 27 March 2023

औसत पूर्ण प्रतिशत त्रुटि (एमएपीई), जिसे औसत पूर्ण प्रतिशत विचलन (एमएपीडी) के रूप में भी जाना जाता है, आंकड़ों में पूर्वानुमान पद्धति की भविष्यवाणी सटीकता का एक उपाय है। यह सामान्यता सटीकता को सूत्र द्वारा परिभाषित अनुपात के रूप में व्यक्त करता है:

जहाँ At वास्तविक मूल्य है और Ft पूर्वानुमान मान है। उनके अंतर को वास्तविक मूल्य से विभाजित किया जाता है At. इस अनुपात का निरपेक्ष मूल्य समय में प्रत्येक पूर्वानुमानित बिंदु के लिए अभिव्यक्त किया जाता है और n फिट किए गए बिंदुओं की संख्या से विभाजित किया जाता है.

प्रतिगमन समस्याओं में एमएपीई

सापेक्ष त्रुटि के संदर्भ में इसकी बहुत सहज व्याख्या के कारण औसत पूर्ण प्रतिशत त्रुटि सामान्यता प्रतिगमन विश्लेषण और मॉडल मूल्यांकन के लिए हानिकारक कार्य के रूप में उपयोग की जाती है।

परिभाषा

मानक प्रतिगमन व्यवस्था पर विचार करें जिसमें एक यादृच्छिक समरूप द्वारा डेटा का पूरी तरह से वर्णन किया गया है मूल्यों के साथ , और n आई.आई.डी. प्रतियां का . प्रतिगमन मॉडल का उद्देश्य समरूप के लिए एक उचित मॉडल खोजना है, जो एक मापने योग्य कार्य है g से को ऐसा है कि Y के निकट है .

मौलिक प्रतिगमन व्यवस्था में, की निकटता Y को L2 हानियाँ द्वारा मापा जाता है , जिसे माध्य वक्रता त्रुटि (एमएसई) भी कहा जाता है। एमएपीई प्रतिगमन संदर्भ में,[1] की निकटता को Y को एमएपीई के माध्यम से मापा जाता है, और एमएपीई प्रतिगमन का उद्देश्य एक मॉडल खोजना है ऐसा है कि:

जहाँ माना जाने वाला मॉडल का वर्ग है (उदाहरण के लिए रैखिक मॉडल)।

व्यवहारतः

व्यवहारतः अनुभवजन्य हानियाँ न्यूनीकरण रणनीति द्वारा आकलन किया जा सकता है, जिससे

व्यावहारिक दृष्टिकोण से, प्रतिगमन मॉडल के लिए गुणवत्ता फ़ंक्शन के रूप में एमएपीई का उपयोग भारित औसत पूर्ण त्रुटि (एमएई) प्रतिगमन करने के बराबर है, जिसे मात्रात्मक प्रतिगमन भी कहा जाता है। यह गुणधर्म नगण्य है

परिणामस्वरूप, एमएपीई का उपयोग व्यवहारतः बहुत सरल है, उदाहरण के लिए भार की अनुमति देने वाले मात्रात्मक प्रतिगमन के लिए उपस्थित पुस्तकालयों का उपयोग करना।

संगति

प्रतिगमन विश्लेषण के लिए हानिकारक कार्य के रूप में एमएपीई का उपयोग व्यावहारिक दृष्टिकोण और सैद्धांतिक दृष्टिकोण दोनों पर संभव है, क्योंकि एक इष्टतम मॉडल के अस्तित्व और अनुभवजन्य हानियाँ न्यूनीकरण की स्थिरता (सांख्यिकी) सिद्ध हो सकती है।[1]


डब्ल्यूएमएपीई

Wएमएपीई (कभी-कभी स्पेलिंग wएमएपीई) भारित माध्य निरपेक्ष प्रतिशत त्रुटि के लिए है।[2] यह प्रतिगमन या पूर्वानुमान मॉडल के प्रदर्शन का मूल्यांकन करने के लिए उपयोग किया जाने वाला एक उपाय है। यह एमएपीई का एक रूप है जिसमें औसत पूर्ण प्रतिशत त्रुटियों को भारित अंकगणितीय माध्य के रूप में माना जाता है। आम तौर पर पूर्ण प्रतिशत त्रुटियां वास्तविक द्वारा भारित होती हैं (उदाहरण के लिए बिक्री पूर्वानुमान के मामले में, त्रुटियों को बिक्री मात्रा द्वारा भारित किया जाता है)।[3]. प्रभावी रूप से, यह 'अनंत त्रुटि' के मुद्दे पर काबू पा लेता है।[4]इसका सूत्र है:[4]

जहाँ वजन है, वास्तविक डेटा का एक वेक्टर है और पूर्वानुमान या भविष्यवाणी है। हालाँकि, यह प्रभावी रूप से बहुत सरल सूत्र को सरल करता है:

भ्रामक रूप से, कभी-कभी जब लोग डब्ल्यूएमएपीई का उल्लेख करते हैं तो वे एक अलग मॉडल के बारे में बात कर रहे होते हैं जिसमें उपरोक्त डब्ल्यूएमएपीई सूत्र के अंश और भाजक को फिर से कस्टम वजन के दूसरे सेट द्वारा भारित किया जाता है। . शायद इसे डबल वेटेड एमएपीई (wwएमएपीई) कहना अधिक सटीक होगा। इसका सूत्र है:


मुद्दे

हालांकि एमएपीई की अवधारणा बहुत सरल और ठोस लगती है, व्यावहारिक अनुप्रयोग में इसकी बड़ी कमियां हैं,[5] और एमएपीई की कमियों और भ्रामक परिणामों पर कई अध्ययन हैं।[6][7]

  • इसका उपयोग नहीं किया जा सकता है यदि शून्य या निकट-शून्य मान हैं (जो कभी-कभी होता है, उदाहरण के लिए मांग डेटा में) क्योंकि शून्य से एक विभाजन होगा या एमएपीई के मूल्य अनंत तक चल रहे हैं।[8]
  • उन पूर्वानुमानों के लिए जो बहुत कम हैं, प्रतिशत त्रुटि 100% से अधिक नहीं हो सकती है, लेकिन उन पूर्वानुमानों के लिए जो बहुत अधिक हैं, प्रतिशत त्रुटि की कोई ऊपरी सीमा नहीं है।
  • एमएपीई नकारात्मक त्रुटियों पर भारी जुर्माना लगाता है, सकारात्मक त्रुटियों की तुलना में।[9] परिणामस्वरूप, जब एमएपीई का उपयोग भविष्यवाणी विधियों की सटीकता की तुलना करने के लिए किया जाता है तो यह पक्षपाती होता है कि यह व्यवस्थित रूप से एक ऐसी विधि का चयन करेगा जिसका पूर्वानुमान बहुत कम है। इस अल्पज्ञात लेकिन गंभीर मुद्दे को सटीकता अनुपात के लघुगणक (वास्तविक मूल्य के लिए आकलनित अनुपात) के आधार पर सटीकता माप का उपयोग करके दूर किया जा सकता है। . यह दृष्टिकोण बेहतर सांख्यिकीय गुणों की ओर जाता है और उन भविष्यवाणियों की ओर भी ले जाता है जिनकी व्याख्या ज्यामितीय माध्य के रूप में की जा सकती है।[5]* लोग अक्सर सोचते हैं कि एमएपीई माध्यिका पर अनुकूलित होगा। लेकिन उदाहरण के लिए, एक लॉग नॉर्मल का माध्यिका होता है जहां पर यह एमएपीई अनुकूलित है .

एमएपीई के साथ इन मुद्दों को दूर करने के लिए साहित्य में कुछ अन्य उपाय प्रस्तावित हैं:


यह भी देखें

बाहरी संबंध


संदर्भ

  1. 1.0 1.1 de Myttenaere, B Golden, B Le Grand, F Rossi (2015). "Mean absolute percentage error for regression models", Neurocomputing 2016 arXiv:1605.02541
  2. Forecast Accuracy: MAPE, WAPE, WMAPE https://www.baeldung.com/cs/mape-vs-wape-vs-wmape%7Ctitle=Understanding Forecast Accuracy: MAPE, WAPE, WMAPE. {{cite web}}: Check |url= value (help); Missing or empty |title= (help)
  3. Weighted Mean Absolute Percentage Error https://ibf.org/knowledge/glossary/weighted-mean-absolute-percentage-error-wmape-299%7Ctitle=WMAPE: Weighted Mean Absolute Percentage Error. {{cite web}}: Check |url= value (help); Missing or empty |title= (help)
  4. 4.0 4.1 "सांख्यिकीय पूर्वानुमान त्रुटियां".
  5. 5.0 5.1 Tofallis (2015). "A Better Measure of Relative Prediction Accuracy for Model Selection and Model Estimation", Journal of the Operational Research Society, 66(8):1352-1362. archived preprint
  6. Hyndman, Rob J., and Anne B. Koehler (2006). "Another look at measures of forecast accuracy." International Journal of Forecasting, 22(4):679-688 doi:10.1016/j.ijforecast.2006.03.001.
  7. 7.0 7.1 Kim, Sungil and Heeyoung Kim (2016). "A new metric of absolute percentage error for intermittent demand forecasts." International Journal of Forecasting, 32(3):669-679 doi:10.1016/j.ijforecast.2015.12.003.
  8. Kim, Sungil; Kim, Heeyoung (1 July 2016). "आंतरायिक मांग पूर्वानुमानों के लिए पूर्ण प्रतिशत त्रुटि का एक नया मीट्रिक". International Journal of Forecasting. 32 (3): 669–679. doi:10.1016/j.ijforecast.2015.12.003.
  9. Makridakis, Spyros (1993) "Accuracy measures: theoretical and practical concerns." International Journal of Forecasting, 9(4):527-529 doi:10.1016/0169-2070(93)90079-3