ऊष्मागतिकी सीमान्त: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{redirect|macroscopic limit|the limit between microscopic and macroscopic|microscopic scale|and|macroscopic scale|the limit between macroscopic and microscopic celestial bodies|macroscopic bodies|the limit between quantum and classical realms|Quantum mechanics}} | {{redirect|macroscopic limit|the limit between microscopic and macroscopic|microscopic scale|and|macroscopic scale|the limit between macroscopic and microscopic celestial bodies|macroscopic bodies|the limit between quantum and classical realms|Quantum mechanics}} | ||
[[सांख्यिकीय यांत्रिकी]] में, किसी प्रणाली की थर्मोडायनामिक सीमा या मैक्रोस्कोपिक सीमा,<ref>{{cite book |title=लघु प्रणालियों के ऊष्मप्रवैगिकी|last1=Hill |first1=Terrell L. |year=2002 |publisher=Courier Dover Publications |isbn=9780486495095 }}</ref> कणों की (जैसे, परमाणु या [[अणु]]) एक बहुत बड़ी संख्या N के लिए [[सीमा (गणित)|सीमा है]]जहां | [[सांख्यिकीय यांत्रिकी]] में, किसी प्रणाली की थर्मोडायनामिक सीमा या मैक्रोस्कोपिक सीमा,<ref>{{cite book |title=लघु प्रणालियों के ऊष्मप्रवैगिकी|last1=Hill |first1=Terrell L. |year=2002 |publisher=Courier Dover Publications |isbn=9780486495095 }}</ref> कणों की (जैसे, परमाणु या [[अणु]]) एक बहुत बड़ी संख्या N के लिए एक [[सीमा (गणित)|सीमा है]] जहां आयतन को कणों की संख्या के अनुपात में बढ़ने के लिए लिया जाता है।<ref name="blundell">S.J. Blundell and K.M. Blundell, "Concepts in Thermal Physics", Oxford University Press (2009)</ref>थर्मोडायनामिक सीमा को एक बड़ी आयतन वाली प्रणाली की सीमा के रूप में परिभाषित किया जाता है, जिसमें कण [[घनत्व]] स्थिर होता है।<ref name="huang">{{cite book |title=सांख्यिकीय यांत्रिकी|last1=Huang |first1=Kerson |year=1987 |publisher=Wiley |isbn=0471815187 }}</ref> | ||
: <math>N \to \infty,\, V \to \infty,\, \frac N V =\text{constant}</math> | : <math>N \to \infty,\, V \to \infty,\, \frac N V =\text{constant}</math> | ||
इस सीमा में, | इस सीमा में, माइक्रोस्कोपिक थर्मोडीनमिक्स मान्य है। वहां, वैश्विक मात्रा में [[थर्मल उतार-चढ़ाव]] नगण्य हैं, और थर्मोडायनामिक गुणों की सभी सूची, जैसे दबाव और [[ऊर्जा]], [[तापमान]] और घनत्व जैसे थर्मोडायनामिक चर के कार्य हैं। उदाहरण के लिए, [[गैस]] की एक बड़ी मात्रा के लिए, कुल [[आंतरिक ऊर्जा]] का उतार-चढ़ाव नगण्य है और इसे अनदेखा किया जा सकता है, और गैस के दबाव और तापमान के ज्ञान से औसत आंतरिक ऊर्जा की भविष्यवाणी की जा सकती है। | ||
ध्यान दें कि थर्मोडायनामिक सीमा में सभी प्रकार के थर्मल उतार-चढ़ाव गायब नहीं होते हैं - केवल सिस्टम चर में उतार-चढ़ाव महत्वपूर्ण होना बंद हो जाता है। | ध्यान दें कि थर्मोडायनामिक सीमा में सभी प्रकार के थर्मल उतार-चढ़ाव गायब नहीं होते हैं - केवल सिस्टम चर में उतार-चढ़ाव महत्वपूर्ण होना बंद हो जाता है। |
Revision as of 19:47, 11 April 2023
सांख्यिकीय यांत्रिकी में, किसी प्रणाली की थर्मोडायनामिक सीमा या मैक्रोस्कोपिक सीमा,[1] कणों की (जैसे, परमाणु या अणु) एक बहुत बड़ी संख्या N के लिए एक सीमा है जहां आयतन को कणों की संख्या के अनुपात में बढ़ने के लिए लिया जाता है।[2]थर्मोडायनामिक सीमा को एक बड़ी आयतन वाली प्रणाली की सीमा के रूप में परिभाषित किया जाता है, जिसमें कण घनत्व स्थिर होता है।[3]
इस सीमा में, माइक्रोस्कोपिक थर्मोडीनमिक्स मान्य है। वहां, वैश्विक मात्रा में थर्मल उतार-चढ़ाव नगण्य हैं, और थर्मोडायनामिक गुणों की सभी सूची, जैसे दबाव और ऊर्जा, तापमान और घनत्व जैसे थर्मोडायनामिक चर के कार्य हैं। उदाहरण के लिए, गैस की एक बड़ी मात्रा के लिए, कुल आंतरिक ऊर्जा का उतार-चढ़ाव नगण्य है और इसे अनदेखा किया जा सकता है, और गैस के दबाव और तापमान के ज्ञान से औसत आंतरिक ऊर्जा की भविष्यवाणी की जा सकती है।
ध्यान दें कि थर्मोडायनामिक सीमा में सभी प्रकार के थर्मल उतार-चढ़ाव गायब नहीं होते हैं - केवल सिस्टम चर में उतार-चढ़ाव महत्वपूर्ण होना बंद हो जाता है। कुछ भौतिक रूप से देखने योग्य मात्राओं में अभी भी पता लगाने योग्य उतार-चढ़ाव (आमतौर पर सूक्ष्म पैमाने पर) होंगे, जैसे
- गैस स्कैटरिंग लाइट में सूक्ष्म स्थानिक घनत्व में उतार-चढ़ाव (रेले स्कैटरिंग)
- दृश्यमान कणों की गति (एक प्रकार कि गति)
- विद्युत चुम्बकीय क्षेत्र में उतार-चढ़ाव, (मुक्त स्थान में कृष्णिका विकिरण, तारों में जॉनसन-निक्विस्ट शोर)
थर्मोडायनामिक सीमा पर विचार करते समय गणितीय रूप से एक स्पर्शोन्मुख विश्लेषण किया जाता है।
थर्मोडायनामिक सीमा का कारण
थर्मोडायनामिक सीमा अनिवार्य रूप से संभाव्यता सिद्धांत के केंद्रीय सीमा प्रमेय का परिणाम है। एन अणुओं की एक गैस की आंतरिक ऊर्जा क्रम एन योगदान का योग है, जिनमें से प्रत्येक लगभग स्वतंत्र है, और इसलिए केंद्रीय सीमा प्रमेय भविष्यवाणी करता है कि उतार-चढ़ाव के आकार का अनुपात 1/N क्रम का है1/2. इस प्रकार अणुओं की एवोगैड्रो संख्या के साथ एक स्थूल आयतन के लिए, उतार-चढ़ाव नगण्य हैं, और इसलिए ऊष्मप्रवैगिकी काम करती है। सामान्य तौर पर, गैसों, तरल पदार्थों और ठोस पदार्थों के लगभग सभी मैक्रोस्कोपिक संस्करणों को थर्मोडायनामिक सीमा में माना जा सकता है।
छोटे सूक्ष्म प्रणालियों के लिए, अलग-अलग सांख्यिकीय पहनावा (माइक्रोकैनोनिकल पहनावा, कैनोनिकल पहनावा, ग्रैंड कैनोनिकल पहनावा) अलग-अलग व्यवहारों की अनुमति देता है। उदाहरण के लिए, विहित पहनावा में सिस्टम के अंदर कणों की संख्या को स्थिर रखा जाता है, जबकि कण संख्या में भव्य विहित पहनावा में उतार-चढ़ाव हो सकता है। थर्मोडायनामिक सीमा में, ये वैश्विक उतार-चढ़ाव महत्वपूर्ण नहीं रह जाते हैं।[3]
यह थर्मोडायनामिक सीमा पर है कि मैक्रोस्कोपिक व्यापक मात्रा की योज्यता संपत्ति का पालन किया जाता है। यही है, दो प्रणालियों या वस्तुओं की एक साथ ली गई एंट्रॉपी (उनकी ऊर्जा और मात्रा के अतिरिक्त) दो अलग-अलग मूल्यों का योग है। सांख्यिकीय यांत्रिकी के कुछ मॉडलों में, ऊष्मप्रवैगिकी सीमा मौजूद है, लेकिन सीमा स्थितियों पर निर्भर करती है। उदाहरण के लिए, यह छह शीर्ष मॉडल में होता है: थोक मुक्त ऊर्जा आवधिक सीमा स्थितियों और डोमेन दीवार सीमा स्थितियों के लिए अलग होती है।
ऐसे मामले जहां कोई थर्मोडायनामिक सीमा नहीं है
थर्मोडायनामिक सीमा सभी मामलों में मौजूद नहीं है। आमतौर पर, एक मॉडल को [[कण संख्या घनत्व]] स्थिर रखते हुए कण संख्या के साथ मात्रा बढ़ाकर थर्मोडायनामिक सीमा तक ले जाया जाता है। दो सामान्य नियमितीकरण बॉक्स नियमितीकरण हैं, जहां मामला एक ज्यामितीय बॉक्स तक ही सीमित है, और आवधिक नियमितीकरण, जहां मामला एक फ्लैट टोरस की सतह पर रखा जाता है (यानी आवधिक सीमा शर्तों के साथ बॉक्स)। हालाँकि, निम्नलिखित तीन उदाहरण उन मामलों को प्रदर्शित करते हैं जहाँ ये दृष्टिकोण थर्मोडायनामिक सीमा तक नहीं ले जाते हैं:
- एक आकर्षक क्षमता वाले कण जो (अणुओं के बीच वान डेर वाल्स बल के विपरीत) घूमते नहीं हैं और बहुत कम दूरी पर भी प्रतिकारक बन जाते हैं: ऐसे मामले में, सभी उपलब्ध वस्तुओं पर समान रूप से फैलने के बजाय एक साथ चिपक जाता है अंतरिक्ष। यह गुरुत्वाकर्षण प्रणालियों के लिए मामला है, जहां पदार्थ फिलामेंट्स, गैलेक्टिक सुपरक्लस्टर्स, आकाशगंगाओं, तारकीय समूहों और सितारों में फंस जाता है।
- शून्येतर औसत चार्ज घनत्व वाली प्रणाली: इस मामले में, आवधिक सीमा स्थितियों का उपयोग नहीं किया जा सकता है क्योंकि विद्युत प्रवाह के लिए कोई संगत मान नहीं है। दूसरी ओर, एक बॉक्स नियमितीकरण के साथ, मामला केवल मामूली फ्रिंज प्रभावों के साथ कम या ज्यादा समान रूप से फैलने के बजाय बॉक्स की सीमा के साथ जमा होता है।
- पूर्ण शून्य तापमान के पास कुछ क्वांटम यांत्रिकी घटनाएं विसंगतियाँ पेश करती हैं; उदा., बोस-आइंस्टीन संघनन | बोस-आइंस्टीन संघनन, अतिचालकता और अतिप्रवाहिता।[citation needed]
- कोई भी प्रणाली जो एच-स्थिर नहीं है; इस मामले को विनाशकारी भी कहा जाता है।
संदर्भ
- ↑ Hill, Terrell L. (2002). लघु प्रणालियों के ऊष्मप्रवैगिकी. Courier Dover Publications. ISBN 9780486495095.
- ↑ S.J. Blundell and K.M. Blundell, "Concepts in Thermal Physics", Oxford University Press (2009)
- ↑ 3.0 3.1 Huang, Kerson (1987). सांख्यिकीय यांत्रिकी. Wiley. ISBN 0471815187.