लीड-लैग कम्पेसाटर: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
'''लीड-लैग कम्पेसाटर''' [[नियंत्रण प्रणाली]] में घटक है। जो प्रतिक्रिया और नियंत्रण प्रणाली में अवांछनीय [[आवृत्ति प्रतिक्रिया]] में सुधार करता है। मौलिक [[नियंत्रण सिद्धांत]] में यह मौलिक बिल्डिंग ब्लॉक है। | '''लीड-लैग कम्पेसाटर''' [[नियंत्रण प्रणाली]] में घटक है। जो प्रतिक्रिया और नियंत्रण प्रणाली में अवांछनीय [[आवृत्ति प्रतिक्रिया]] में सुधार करता है। इस प्रकार मौलिक [[नियंत्रण सिद्धांत]] में यह मौलिक बिल्डिंग ब्लॉक है। | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
लीड-लैग कम्पेसाटर [[रोबोटिक]], [[उपग्रह]] नियंत्रण, ऑटोमोबाइल डायग्नोस्टिक्स, | लीड-लैग कम्पेसाटर [[रोबोटिक]], [[उपग्रह]] नियंत्रण, ऑटोमोबाइल डायग्नोस्टिक्स, [[ लिक्विड क्रिस्टल डिस्प्ले |लिक्विड क्रिस्टल डिस्प्ले]] और [[लेज़र]] आवृत्ति स्थिरीकरण जैसे विविध विषयों को प्रभावित करते हैं। इस प्रकार वह एनालॉग कंट्रोल प्रणाली में महत्वपूर्ण बिल्डिंग ब्लॉक हैं और इन्हें डिजिटल कंट्रोल में भी उपयोग किया जा सकता है। | ||
नियंत्रण संयंत्र को देखते हुए कम्पेसाटरों का उपयोग करके वांछित विशिष्टताओं को प्राप्त किया जा सकता है। I, D, PI, PD और PID नियंत्रकों का अनुकूलन कर रहे हैं। जिनका उपयोग प्रणाली मापदंडों में सुधार के लिए किया जाता है। (जैसे कि स्थिर स्थिति त्रुटि को कम करना, गुंजयमान शिखर को कम करना, उदय समय को कम करके प्रणाली प्रतिक्रिया में सुधार किया जाता है।) यह सभी ऑपरेशन कम्पेसाटर द्वारा भी किए जा सकते हैं। जिनका उपयोग कैस्केड क्षतिपूर्ति विधि में उपयोग किया जाता है। | नियंत्रण संयंत्र को देखते हुए कम्पेसाटरों का उपयोग करके वांछित विशिष्टताओं को प्राप्त किया जा सकता है। I, D, PI, PD और PID नियंत्रकों का अनुकूलन कर रहे हैं। जिनका उपयोग प्रणाली मापदंडों में सुधार के लिए किया जाता है। (जैसे कि स्थिर स्थिति त्रुटि को कम करना, गुंजयमान शिखर को कम करना, उदय समय को कम करके प्रणाली प्रतिक्रिया में सुधार किया जाता है।) यह सभी ऑपरेशन कम्पेसाटर द्वारा भी किए जा सकते हैं। जिनका उपयोग कैस्केड क्षतिपूर्ति विधि में उपयोग किया जाता है। | ||
== सिद्धांत == | == सिद्धांत == | ||
सामान्यतः दोनों लीड कम्पेसाटर और लैग कम्पेसाटर ओपन लूप [[ स्थानांतरण प्रकार्य |स्थानांतरण प्रकार्य]] में | सामान्यतः दोनों लीड कम्पेसाटर और लैग कम्पेसाटर ओपन लूप [[ स्थानांतरण प्रकार्य |स्थानांतरण प्रकार्य]] में ध्रुव-जीरो जोड़ी प्रस्तुत करते हैं। इस प्रकार [[ स्थानांतरण प्रकार्य |स्थानांतरण प्रकार्य]] को लाप्लास डोमेन में लिखा जा सकता है। | ||
:<math>\frac{Y}{X} = \frac{s-z}{s-p} </math> | :<math>\frac{Y}{X} = \frac{s-z}{s-p} </math> | ||
जहाँ X कम्पेसाटर का इनपुट है।, Y आउटपुट | जहाँ X कम्पेसाटर का इनपुट है।, Y आउटपुट है, s कॉम्प्लेक्स [[लाप्लास रूपांतरण]] चर है, z शून्य आवृत्ति है और p ध्रुव आवृत्ति है। चूँकि ध्रुव और शून्य दोनों सामान्यतः नकारात्मक होते हैं या जटिल विमान में उत्पत्ति के बाएं होते हैं। एक लीड कम्पेसाटर में <math>|z| < |p|</math> जबकि लैग कम्पेसाटर में <math> |z| > |p| </math> | ||
लीड-लैग कम्पेसाटर में लैग कम्पेसाटर के साथ कैस्केड किया हुआ लीड कम्पेसाटर होता है। अतः समग्र स्थानांतरण फंक्शन के रूप में लिखा जा सकता है। | इस प्रकार लीड-लैग कम्पेसाटर में लैग कम्पेसाटर के साथ कैस्केड किया हुआ लीड कम्पेसाटर होता है। अतः समग्र स्थानांतरण फंक्शन के रूप में लिखा जा सकता है। | ||
:<math> \frac{Y}{X} = \frac{(s-z_1)(s-z_2)}{(s-p_1)(s-p_2)}. </math> | :<math> \frac{Y}{X} = \frac{(s-z_1)(s-z_2)}{(s-p_1)(s-p_2)}. </math> | ||
सामान्यतः <math> |p_1| > |z_1| > |z_2| > |p_2| </math>, जहां | सामान्यतः <math> |p_1| > |z_1| > |z_2| > |p_2| </math>, जहां ''z''<sub>1</sub> और ''p''<sub>1</sub> लीड कम्पेसाटर के शून्य और ध्रुव हैं और ''z''<sub>2</sub> और ''p''<sub>2</sub> लैग कम्पेसाटर के शून्य और ध्रुव हैं। लीड कम्पेसाटर उच्च आवृत्तियों पर चरण लीड प्रदान करता है। यह रूट लोकस को बाईं ओर शिफ्ट करता है। जो प्रणाली को संवेदनशीलता और स्थिरता को बढ़ाता है। जिस प्रकार लैग कम्पेसाटर कम आवृत्तियों पर फेज लैग प्रदान करता है। जो स्थिर स्थिति त्रुटि कम करता है। | ||
स्थिर स्थिति त्रुटि | |||
ध्रुवों और शून्यों के त्रुटिहीन स्थान बंद लूप प्रतिक्रिया की वांछित विशेषताओं और नियंत्रित की जा रही प्रणाली की विशेषताओं दोनों पर निर्भर करते हैं। चूँकि | ध्रुवों और शून्यों के त्रुटिहीन स्थान बंद लूप प्रतिक्रिया की वांछित विशेषताओं और नियंत्रित की जा रही प्रणाली की विशेषताओं दोनों पर निर्भर करते हैं। चूँकि लैग कम्पेसाटर का ध्रुव और शून्य के साथ पास होना चाहिए। जिससे कि ध्रुव सही शिफ्ट नही होता है। जिससे अस्थिरता या धीमा अभिसरण हो सकता है। चूंकि उनका उद्देश्य निम्न आवृत्ति व्यवहार को प्रभावित करना है। इसलिए उन्हें उत्पत्ति के निकट होना चाहिए। | ||
चूंकि उनका उद्देश्य निम्न आवृत्ति व्यवहार को प्रभावित करना | |||
== कार्यान्वयन == | == कार्यान्वयन == | ||
दोनों एनालॉग और डिजिटल कंट्रोल प्रणाली लीड-लैग कम्पेसाटर का उपयोग करते हैं। कार्यान्वयन के लिए उपयोग की जाने वाली विधि प्रत्येक स्थिति में भिन्न होती | दोनों एनालॉग और डिजिटल कंट्रोल प्रणाली लीड-लैग कम्पेसाटर का उपयोग करते हैं। इस प्रकार कार्यान्वयन के लिए उपयोग की जाने वाली विधि की प्रत्येक स्थिति में भिन्न होती है। किन्तु अंतर्निहित सिद्धांत समान होते हैं। स्थानांतरण फ़ंक्शन को पुनर्व्यवस्थित किया जाता है। जिससे कि आउटपुट को इनपुट और इनपुट और आउटपुट के इंटीग्रल से जुड़े शब्दों के रूप में व्यक्त किया जा सकता है। उदाहरण के लिए, | ||
:<math> | :<math> | ||
Y = X - (z_1 + z_2) \frac{X}{s} + z_1 z_2 \frac{X}{s^2}+ (p_1+p_2)\frac{Y}{s} - p_1 p_2 \frac{Y}{s^2}. | Y = X - (z_1 + z_2) \frac{X}{s} + z_1 z_2 \frac{X}{s^2}+ (p_1+p_2)\frac{Y}{s} - p_1 p_2 \frac{Y}{s^2}. | ||
</math> | </math> | ||
एनालॉग कंट्रोल प्रणाली में | एनालॉग कंट्रोल प्रणाली में जहां इंटीग्रेटर्स महंगे होते हैं। जिस प्रकार आवश्यक इंटीग्रेटर्स की संख्या को कम करने के लिए शब्दों के लिए यह सामान्य है। | ||
:<math> | :<math> | ||
Line 35: | Line 31: | ||
+ \frac{1}{s}(z_1 z_2 X - p_1 p_2 Y)\right). | + \frac{1}{s}(z_1 z_2 X - p_1 p_2 Y)\right). | ||
</math> | </math> | ||
एनालॉग नियंत्रण में, नियंत्रण संकेत सामान्यतः विद्युत [[वोल्टेज]] या [[विद्युत प्रवाह]] होता | एनालॉग नियंत्रण में, नियंत्रण संकेत सामान्यतः विद्युत [[वोल्टेज]] या [[विद्युत प्रवाह]] होता है। (चूँकि अन्य संकेतों जैसे [[हाइड्रोलिक]] दबाव का उपयोग किया जा सकता है।) इस स्थिति में लीड-लैग कम्पेसाटर में इंटीग्रेटर्स और भारित योजक के रूप में जुड़े परिचालन एम्पलीफायरों (op-amps) का नेटवर्क सम्मिलित होता है। सामान्यतः लीड-लैग कम्पेसाटर का संभावित भौतिक अहसास नीचे दिखाया गया है। (ध्यान दीजिए कि नेटवर्क को भिन्न करने के लिए ऑप-एम्प का उपयोग किया जाता है।) | ||
(चूँकि अन्य संकेतों जैसे [[हाइड्रोलिक]] दबाव का उपयोग किया जा सकता | |||
इस स्थिति में लीड-लैग कम्पेसाटर | |||
[[File:Lag-lead.svg|लैग-लीड]]डिजिटल नियंत्रण में | [[File:Lag-lead.svg|लैग-लीड]]डिजिटल नियंत्रण में संचालन संख्यात्मक रूप से डेरिवेटिव और इंटीग्रल के विवेक द्वारा किया जाता है। | ||
स्थानांतरण फ़ंक्शन को [[अभिन्न समीकरण]] के रूप में व्यक्त करने का कारण यह है कि भिन्न-भिन्न सिग्नल पर शोर को बढ़ाते हैं। क्योंकि बहुत कम आयाम वाले शोर में उच्च आवृत्ति होती है। जबकि सिग्नल को एकीकृत करने से शोर का औसत होता है। यह इंटीग्रेटर्स के संदर्भ में कार्यान्वयन को संख्यात्मक रूप से सबसे अधिक स्थिर बनाता है। | |||
आयाम शोर | |||
== स्थितियों का प्रयोग करें == | == स्थितियों का प्रयोग करें == | ||
लीड-लैग कम्पेसाटर डिजाइन करना प्रारंभ करने के लिए | लीड-लैग कम्पेसाटर डिजाइन करना प्रारंभ करने के लिए इंजीनियर को यह विचार करना चाहिए कि क्या सुधार की आवश्यकता वाले प्रणाली को लीड-नेटवर्क, लैग-नेटवर्क या दो के संयोजन के रूप में वर्गीकृत किया जा सकता है। इस प्रकार लीड-लैग नेटवर्क (इसलिए नाम लीड- लैग कम्पेसाटर) इनपुट सिग्नल के लिए इस नेटवर्क की विद्युत प्रतिक्रिया नेटवर्क के लाप्लास-डोमेन स्थानांतरण फ़ंक्शन द्वारा व्यक्त की जाती है। [[जटिल संख्या]] गणितीय फ़ंक्शन जिसे स्वयं दो विधियों के रूप में व्यक्त किया जा सकता है। वर्तमान-लाभ अनुपात स्थानांतरण फ़ंक्शन या वोल्टेज-लाभ के रूप में अनुपात हस्तांतरण फंक्शन किया जाता है। याद रखें कि जटिल कार्य सामान्य रूप में लिखा जा सकता है। <math>F(x) = A(x) + i B(x)</math> जहाँ <math>A(x)</math> वास्तविक भाग है। और <math>B(x)</math> एकल-चर फ़ंक्शन का काल्पनिक भाग है। <math>F(x)</math>. | ||
<math>F(x) = A(x) + i B(x)</math> | |||
नेटवर्क का चरण कोण | नेटवर्क का चरण कोण का तर्क है। <math>F(x)</math> बाएँ आधे तल में यह है। <math>atan(B(x)/A(x))</math> यदि नेटवर्क में सभी सिग्नल आवृत्तियों के लिए चरण कोण ऋणात्मक है। तब नेटवर्क को अंतराल नेटवर्क के रूप में वर्गीकृत किया जाता है। यदि नेटवर्क में सभी सिग्नल आवृत्तियों के लिए चरण कोण सकारात्मक होता है। इस प्रकार तब नेटवर्क को लीड नेटवर्क के रूप में वर्गीकृत किया जाता है। यदि कुल नेटवर्क चरण कोण में आवृत्ति के कार्य के रूप में सकारात्मक और नकारात्मक चरण का संयोजन होता है। तब यह लीड-लैग नेटवर्क होता है। | ||
नेटवर्क में सभी सिग्नल | |||
सक्रिय प्रतिक्रिया नियंत्रण के अनुसार प्रणाली के | यह सक्रिय प्रतिक्रिया नियंत्रण के अनुसार प्रणाली के नाम मात्र संचालन डिजाइन मापदंडों के आधार पर अंतराल या लीड नेटवर्क [[स्थिरता सिद्धांत]] और खराब गति और प्रतिक्रिया समय का कारण बन सकता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 71: | Line 54: | ||
* पीआईडी नियंत्रक | * पीआईडी नियंत्रक | ||
* [[आनुपातिक नियंत्रण]] | * [[आनुपातिक नियंत्रण]] | ||
* [[प्रतिक्रिया समय | * [[प्रतिक्रिया समय संवेदनशीलता]] | ||
* [[वृद्धि समय]] | * [[वृद्धि समय]] | ||
* [[निपटान समय]] | * [[निपटान समय]] | ||
* [[स्थिर अवस्था]] | * [[स्थिर अवस्था]] | ||
* [[कदम की प्रतिक्रिया]] | * [[कदम की प्रतिक्रिया]] | ||
* [[ | * [[प्रणाली सिद्धांत]] | ||
* [[स्थिर समय]] | * [[स्थिर समय]] | ||
* [[क्षणिक मॉडलिंग]] | * [[क्षणिक मॉडलिंग]] |
Revision as of 23:47, 12 April 2023
लीड-लैग कम्पेसाटर नियंत्रण प्रणाली में घटक है। जो प्रतिक्रिया और नियंत्रण प्रणाली में अवांछनीय आवृत्ति प्रतिक्रिया में सुधार करता है। इस प्रकार मौलिक नियंत्रण सिद्धांत में यह मौलिक बिल्डिंग ब्लॉक है।
अनुप्रयोग
लीड-लैग कम्पेसाटर रोबोटिक, उपग्रह नियंत्रण, ऑटोमोबाइल डायग्नोस्टिक्स, लिक्विड क्रिस्टल डिस्प्ले और लेज़र आवृत्ति स्थिरीकरण जैसे विविध विषयों को प्रभावित करते हैं। इस प्रकार वह एनालॉग कंट्रोल प्रणाली में महत्वपूर्ण बिल्डिंग ब्लॉक हैं और इन्हें डिजिटल कंट्रोल में भी उपयोग किया जा सकता है।
नियंत्रण संयंत्र को देखते हुए कम्पेसाटरों का उपयोग करके वांछित विशिष्टताओं को प्राप्त किया जा सकता है। I, D, PI, PD और PID नियंत्रकों का अनुकूलन कर रहे हैं। जिनका उपयोग प्रणाली मापदंडों में सुधार के लिए किया जाता है। (जैसे कि स्थिर स्थिति त्रुटि को कम करना, गुंजयमान शिखर को कम करना, उदय समय को कम करके प्रणाली प्रतिक्रिया में सुधार किया जाता है।) यह सभी ऑपरेशन कम्पेसाटर द्वारा भी किए जा सकते हैं। जिनका उपयोग कैस्केड क्षतिपूर्ति विधि में उपयोग किया जाता है।
सिद्धांत
सामान्यतः दोनों लीड कम्पेसाटर और लैग कम्पेसाटर ओपन लूप स्थानांतरण प्रकार्य में ध्रुव-जीरो जोड़ी प्रस्तुत करते हैं। इस प्रकार स्थानांतरण प्रकार्य को लाप्लास डोमेन में लिखा जा सकता है।
जहाँ X कम्पेसाटर का इनपुट है।, Y आउटपुट है, s कॉम्प्लेक्स लाप्लास रूपांतरण चर है, z शून्य आवृत्ति है और p ध्रुव आवृत्ति है। चूँकि ध्रुव और शून्य दोनों सामान्यतः नकारात्मक होते हैं या जटिल विमान में उत्पत्ति के बाएं होते हैं। एक लीड कम्पेसाटर में जबकि लैग कम्पेसाटर में
इस प्रकार लीड-लैग कम्पेसाटर में लैग कम्पेसाटर के साथ कैस्केड किया हुआ लीड कम्पेसाटर होता है। अतः समग्र स्थानांतरण फंक्शन के रूप में लिखा जा सकता है।
सामान्यतः , जहां z1 और p1 लीड कम्पेसाटर के शून्य और ध्रुव हैं और z2 और p2 लैग कम्पेसाटर के शून्य और ध्रुव हैं। लीड कम्पेसाटर उच्च आवृत्तियों पर चरण लीड प्रदान करता है। यह रूट लोकस को बाईं ओर शिफ्ट करता है। जो प्रणाली को संवेदनशीलता और स्थिरता को बढ़ाता है। जिस प्रकार लैग कम्पेसाटर कम आवृत्तियों पर फेज लैग प्रदान करता है। जो स्थिर स्थिति त्रुटि कम करता है।
ध्रुवों और शून्यों के त्रुटिहीन स्थान बंद लूप प्रतिक्रिया की वांछित विशेषताओं और नियंत्रित की जा रही प्रणाली की विशेषताओं दोनों पर निर्भर करते हैं। चूँकि लैग कम्पेसाटर का ध्रुव और शून्य के साथ पास होना चाहिए। जिससे कि ध्रुव सही शिफ्ट नही होता है। जिससे अस्थिरता या धीमा अभिसरण हो सकता है। चूंकि उनका उद्देश्य निम्न आवृत्ति व्यवहार को प्रभावित करना है। इसलिए उन्हें उत्पत्ति के निकट होना चाहिए।
कार्यान्वयन
दोनों एनालॉग और डिजिटल कंट्रोल प्रणाली लीड-लैग कम्पेसाटर का उपयोग करते हैं। इस प्रकार कार्यान्वयन के लिए उपयोग की जाने वाली विधि की प्रत्येक स्थिति में भिन्न होती है। किन्तु अंतर्निहित सिद्धांत समान होते हैं। स्थानांतरण फ़ंक्शन को पुनर्व्यवस्थित किया जाता है। जिससे कि आउटपुट को इनपुट और इनपुट और आउटपुट के इंटीग्रल से जुड़े शब्दों के रूप में व्यक्त किया जा सकता है। उदाहरण के लिए,
एनालॉग कंट्रोल प्रणाली में जहां इंटीग्रेटर्स महंगे होते हैं। जिस प्रकार आवश्यक इंटीग्रेटर्स की संख्या को कम करने के लिए शब्दों के लिए यह सामान्य है।
एनालॉग नियंत्रण में, नियंत्रण संकेत सामान्यतः विद्युत वोल्टेज या विद्युत प्रवाह होता है। (चूँकि अन्य संकेतों जैसे हाइड्रोलिक दबाव का उपयोग किया जा सकता है।) इस स्थिति में लीड-लैग कम्पेसाटर में इंटीग्रेटर्स और भारित योजक के रूप में जुड़े परिचालन एम्पलीफायरों (op-amps) का नेटवर्क सम्मिलित होता है। सामान्यतः लीड-लैग कम्पेसाटर का संभावित भौतिक अहसास नीचे दिखाया गया है। (ध्यान दीजिए कि नेटवर्क को भिन्न करने के लिए ऑप-एम्प का उपयोग किया जाता है।)
डिजिटल नियंत्रण में संचालन संख्यात्मक रूप से डेरिवेटिव और इंटीग्रल के विवेक द्वारा किया जाता है।
स्थानांतरण फ़ंक्शन को अभिन्न समीकरण के रूप में व्यक्त करने का कारण यह है कि भिन्न-भिन्न सिग्नल पर शोर को बढ़ाते हैं। क्योंकि बहुत कम आयाम वाले शोर में उच्च आवृत्ति होती है। जबकि सिग्नल को एकीकृत करने से शोर का औसत होता है। यह इंटीग्रेटर्स के संदर्भ में कार्यान्वयन को संख्यात्मक रूप से सबसे अधिक स्थिर बनाता है।
स्थितियों का प्रयोग करें
लीड-लैग कम्पेसाटर डिजाइन करना प्रारंभ करने के लिए इंजीनियर को यह विचार करना चाहिए कि क्या सुधार की आवश्यकता वाले प्रणाली को लीड-नेटवर्क, लैग-नेटवर्क या दो के संयोजन के रूप में वर्गीकृत किया जा सकता है। इस प्रकार लीड-लैग नेटवर्क (इसलिए नाम लीड- लैग कम्पेसाटर) इनपुट सिग्नल के लिए इस नेटवर्क की विद्युत प्रतिक्रिया नेटवर्क के लाप्लास-डोमेन स्थानांतरण फ़ंक्शन द्वारा व्यक्त की जाती है। जटिल संख्या गणितीय फ़ंक्शन जिसे स्वयं दो विधियों के रूप में व्यक्त किया जा सकता है। वर्तमान-लाभ अनुपात स्थानांतरण फ़ंक्शन या वोल्टेज-लाभ के रूप में अनुपात हस्तांतरण फंक्शन किया जाता है। याद रखें कि जटिल कार्य सामान्य रूप में लिखा जा सकता है। जहाँ वास्तविक भाग है। और एकल-चर फ़ंक्शन का काल्पनिक भाग है। .
नेटवर्क का चरण कोण का तर्क है। बाएँ आधे तल में यह है। यदि नेटवर्क में सभी सिग्नल आवृत्तियों के लिए चरण कोण ऋणात्मक है। तब नेटवर्क को अंतराल नेटवर्क के रूप में वर्गीकृत किया जाता है। यदि नेटवर्क में सभी सिग्नल आवृत्तियों के लिए चरण कोण सकारात्मक होता है। इस प्रकार तब नेटवर्क को लीड नेटवर्क के रूप में वर्गीकृत किया जाता है। यदि कुल नेटवर्क चरण कोण में आवृत्ति के कार्य के रूप में सकारात्मक और नकारात्मक चरण का संयोजन होता है। तब यह लीड-लैग नेटवर्क होता है।
यह सक्रिय प्रतिक्रिया नियंत्रण के अनुसार प्रणाली के नाम मात्र संचालन डिजाइन मापदंडों के आधार पर अंतराल या लीड नेटवर्क स्थिरता सिद्धांत और खराब गति और प्रतिक्रिया समय का कारण बन सकता है।
यह भी देखें
- कम्पेसाटर (नियंत्रण सिद्धांत)
- नियंत्रण इंजीनियरिंग
- नियंत्रण सिद्धांत
- अवमंदन अनुपात
- पतझड़ का समय
- पीआईडी नियंत्रक
- आनुपातिक नियंत्रण
- प्रतिक्रिया समय संवेदनशीलता
- वृद्धि समय
- निपटान समय
- स्थिर अवस्था
- कदम की प्रतिक्रिया
- प्रणाली सिद्धांत
- स्थिर समय
- क्षणिक मॉडलिंग
- अस्थायी प्रतिसाद
- क्षणिक अवस्था
- संक्रमण का समय
संदर्भ
- Nise, Norman S. (2004); Control Systems Engineering (4 ed.); Wiley & Sons; ISBN 0-471-44577-0
- Horowitz, P. & Hill, W. (2001); The Art of Electronics (2 ed.); Cambridge University Press; ISBN 0-521-37095-7
- Cathey, J.J. (1988); Electronic Devices and Circuits (Schaum's Outlines Series); McGraw-Hill ISBN 0-07-010274-0