टोडा दोलक: Difference between revisions

From Vigyanwiki
No edit summary
Line 24: Line 24:
[[लेजर भौतिकी]]  के अनुप्रयोग में,<math>~x~</math>[[लेजर गुहा|लेजर कैविटी]] में फोटॉनों की संख्या के लघुगणक का बोध हो सकता है, जो इसके स्थिर-अवस्था मूल्य से संबंधित है। फिर, ऐसे लेसर की उत्पादन शक्ति के समानुपाती होती है<math>~\exp(x)~</math>और के दोलन पर स्पंदन दिखा सकता है <math>~x~</math>.
[[लेजर भौतिकी]]  के अनुप्रयोग में,<math>~x~</math>[[लेजर गुहा|लेजर कैविटी]] में फोटॉनों की संख्या के लघुगणक का बोध हो सकता है, जो इसके स्थिर-अवस्था मूल्य से संबंधित है। फिर, ऐसे लेसर की उत्पादन शक्ति के समानुपाती होती है<math>~\exp(x)~</math>और के दोलन पर स्पंदन दिखा सकता है <math>~x~</math>.


टोडा थरथरानवाला के व्यवहार के विश्लेषण में एकता द्रव्यमान कण और फोटॉन की संख्या के लघुगणक के साथ दोनों समानताएं उपयोगी हैं।
टोडा दोलक के व्यवहार के विश्लेषण में एकता द्रव्यमान कण और फोटॉन की संख्या के लघुगणक के साथ दोनों समानताएं उपयोगी हैं।


== ऊर्जा ==
== ऊर्जा ==
बहुत काम ही, दोलन केवल <math>~u=v=0~</math>समय-समय पर होता है| वास्तव में, स्व-स्पंदन करने वाले लेजर के रूप में टोडा दोलक की प्राप्ति में, इन<math>~10^{-4}~</math>मापदंडों के क्रम के मूल्य हो सकते हैं; कई स्पंदों के समय, स्पंदन का आयाम अत्यधिक परिवर्तित नहीं होता है। इस कथन में, हम कार्य के बाद से स्पंदन की [[आवृत्ति]] के बारे में बात कर सकते हैं <math>~x=x(t)~</math>लगभग आवधिक है।
बहुत काम ही, दोलन केवल <math>~u=v=0~</math>समय-समय पर होता है| वास्तव में, स्व-स्पंदन करने वाले लेजर के रूप में टोडा दोलक की प्राप्ति में, इन<math>~10^{-4}~</math>मापदंडों के क्रम के मूल्य हो सकते हैं; कई स्पंदों के समय, स्पंदन का आयाम अत्यधिक परिवर्तित नहीं होता है। इस कथन में, हम कार्य के बाद से स्पंदन की [[आवृत्ति]] के बारे में बात कर सकते हैं <math>~x=x(t)~</math>लगभग आवधिक है।


यदि <math>~u=v=0~</math>,दोलन<math>~z~</math>की ऊर्जा <math>~E=\frac 12 \left(\frac{{\rm d}x}{{\rm d}z}\right)^{2}+\Phi(x)~</math> पर निर्भर नहीं है, और गति के स्थिरांक के रूप में माना जा सकता है। फिर, स्पंदन की  अंतराल के समय, <math>~x~</math>और<math>~z~</math>के बीच संबंध विश्लेषणात्मक रूप से व्यक्त किया जा सकता है:
यदि <math>~u=v=0~</math>,दोलन<math>~z~</math>की ऊर्जा <math>~E=\frac 12 \left(\frac{{\rm d}x}{{\rm d}z}\right)^{2}+\Phi(x)~</math> पर निर्भर नहीं है, और गति के स्थिरांक के रूप में माना जा सकता है। फिर, स्पंदन की  अंतराल के समय, <math>~x~</math>और<math>~z~</math>के बीच संबंध विश्लेषणात्मक रूप से व्यक्त किया जा सकता है: <ref name="oppo">{{cite journal |last1=Oppo |first1=G.L. |last2=Politi |first2=A. |title=लेजर समीकरणों में टोडा क्षमता|journal=[[Zeitschrift für Physik B]] |volume=59 |issue=1 |pages=111–115 |year=1985 |doi=10.1007/BF01325388 |bibcode = 1985ZPhyB..59..111O |s2cid=119657810 }}</ref><ref name="kouz">{{cite journal |last1=Kouznetsov |first1=D. |last2=Bisson |first2=J.-F. |last3=Li |first3=J. |last4=Ueda |first4=K. |title=Self-pulsing laser as Toda oscillator: Approximation through elementary functions |journal=[[Journal of Physics A]] |volume=40 |issue=9 |pages=1–18 |year=2007 |doi=10.1088/1751-8113/40/9/016 |bibcode = 2007JPhA...40.2107K  |s2cid=53330023 }}</ref>
<ref name="oppo">{{cite journal |last1=Oppo |first1=G.L. |last2=Politi |first2=A. |title=लेजर समीकरणों में टोडा क्षमता|journal=[[Zeitschrift für Physik B]] |volume=59 |issue=1 |pages=111–115 |year=1985 |doi=10.1007/BF01325388 |bibcode = 1985ZPhyB..59..111O |s2cid=119657810 }}</ref><ref name="kouz">{{cite journal |last1=Kouznetsov |first1=D. |last2=Bisson |first2=J.-F. |last3=Li |first3=J. |last4=Ueda |first4=K. |title=Self-pulsing laser as Toda oscillator: Approximation through elementary functions |journal=[[Journal of Physics A]] |volume=40 |issue=9 |pages=1–18 |year=2007 |doi=10.1088/1751-8113/40/9/016 |bibcode = 2007JPhA...40.2107K  |s2cid=53330023 }}</ref>
:<math>
:<math>
z=\pm\int_{x_\min}^{x_\max}\!\!\frac{{\rm d}a}
z=\pm\int_{x_\min}^{x_\max}\!\!\frac{{\rm d}a}
Line 42: Line 41:
<math>
<math>
\delta=\frac{x_\max -x_\min}{1}
\delta=\frac{x_\max -x_\min}{1}
</math>
</math> जैसा <math>
जैसा
<math>
\delta=
\delta=
\ln\frac{\sin(\gamma)}{\gamma}
\ln\frac{\sin(\gamma)}{\gamma}
</math>;
</math>; और ऊर्जा<math>
और ऊर्जा
<math>
  E=E(\gamma)=\frac{\gamma}{\tanh(\gamma)}+\ln\frac{\sinh \gamma}{\gamma}-1
  E=E(\gamma)=\frac{\gamma}{\tanh(\gamma)}+\ln\frac{\sinh \gamma}{\gamma}-1
</math>
</math><math>~\gamma~</math>का प्राथमिक कार्य भी है |
<math>~\gamma~</math>का प्राथमिक कार्य भी है |


अनुप्रयोग में, मात्रा <math>E</math> प्रणाली की भौतिक ऊर्जा होने की आवश्यकता नहीं है; इन प्रकरण में, इस आयामहीन मात्रा को अर्ध-ऊर्जा कहा जा सकता है।
अनुप्रयोग में, मात्रा <math>E</math> प्रणाली की भौतिक ऊर्जा होने की आवश्यकता नहीं है; इन प्रकरण में, इस आयामहीन मात्रा को अर्ध-ऊर्जा कहा जा सकता है।
Line 96: Line 90:
==स्पंदन का क्षय==
==स्पंदन का क्षय==
<math>~u~</math>और<math>~v~</math>(परन्तु अभी भी धनात्मक) सूक्ष्म मान पर स्पंदन का क्षय धीरे-धीरे होता है, और इस क्षय को विश्लेषणात्मक रूप से वर्णित किया जा सकता है। पहले  लगभग, पैरामीटर<math>~u~</math>और<math>~v~</math>क्षय में योगात्मक योगदान देता है; क्षय दर, साथ ही अरैखिक दोलन के आयाम और चरण, ऊपर की अवधि के समान प्रकार से प्राथमिक कार्यों के साथ अनुमानित किए जा सकते हैं। आदर्शित टोडा दोलन के व्यवहार का वर्णन करने में, इस तरह के लगभग त्रुटि प्रकाशीय [[ऑप्टिकल बेंच|बेंच]] पर स्व-स्पंदन लेजर के रूप में आदर्श और इसकी प्रायोगिक प्राप्ति के बीच के अंतर से छोटी है। चूँकि, स्व-स्पंदन लेजर गुणात्मक रूप से बहुत समान व्यवहार दिखाता है।<ref name="kouz" />
<math>~u~</math>और<math>~v~</math>(परन्तु अभी भी धनात्मक) सूक्ष्म मान पर स्पंदन का क्षय धीरे-धीरे होता है, और इस क्षय को विश्लेषणात्मक रूप से वर्णित किया जा सकता है। पहले  लगभग, पैरामीटर<math>~u~</math>और<math>~v~</math>क्षय में योगात्मक योगदान देता है; क्षय दर, साथ ही अरैखिक दोलन के आयाम और चरण, ऊपर की अवधि के समान प्रकार से प्राथमिक कार्यों के साथ अनुमानित किए जा सकते हैं। आदर्शित टोडा दोलन के व्यवहार का वर्णन करने में, इस तरह के लगभग त्रुटि प्रकाशीय [[ऑप्टिकल बेंच|बेंच]] पर स्व-स्पंदन लेजर के रूप में आदर्श और इसकी प्रायोगिक प्राप्ति के बीच के अंतर से छोटी है। चूँकि, स्व-स्पंदन लेजर गुणात्मक रूप से बहुत समान व्यवहार दिखाता है।<ref name="kouz" />
== निरंतर सीमा ==
== निरंतर सीमा ==
गति के टोडा श्रंखला समीकरण, निरंतर सीमा में जिसमें निकटवर्ती के बीच की दूरी शून्य हो जाती है, कोर्तवेग-डी व्रीस समीकरण (केडीवी) का निर्माण होता है।<ref name="toda" />यहाँ श्रृंखला में कण को ​​​​लेबल करने वाला सूचकांक नया स्थानिक समन्वय बन जाता है।
गति के टोडा श्रंखला समीकरण, निरंतर सीमा में जिसमें निकटवर्ती के बीच की दूरी शून्य हो जाती है, कोर्तवेग-डी व्रीस समीकरण (केडीवी) का निर्माण होता है।<ref name="toda" />यहाँ श्रृंखला में कण को ​​​​लेबल करने वाला सूचकांक नया स्थानिक समन्वय बन जाता है।

Revision as of 15:17, 19 April 2023

भौतिकी में, दोलक एक विशेष प्रकार का अरैखिक दोलक है। यह आस-पास के घातीय संभावित संपर्क वाले कणों के बीच की एक श्रृंखला का निर्माण करता हैं ।[1] इन अवधारणाओं का नामकरण मोरिकाज़ु टोडा ने किया हैं। टोडा दोलक का उपयोग स्व-स्पंदन की घटना को समझने के लिए एक सरल प्रणाली के रूप में किया जाता है, जो क्षणिक शासन में एक ठोस-अवस्था वाले लेजर की बाहरी तीव्रता का अर्ध-आवधिक स्पंदन है।

परिभाषा

टोडा दोलक किसी भी मूल की एक गतिशील प्रणाली है, जिसे आश्रित समन्वयऔर स्वतंत्र समन्वय के साथ वर्णित किया जाता हैं, विशेष रूप से स्वतंत्र समन्वय के साथ विकास समीकरण से आकलन किया जाता हैं

जहाँ

, , तथा अभाज्य, व्युत्पन्न को दर्शाता है।

भौतिक अर्थ

स्वतंत्र समन्वय समय का बोध है। वास्तव में, यह समयके साथ अनुक्रमानुपाती होता हैं, जैसे सम्बन्ध, जहाँ निश्चित होता हैं।

अवकलन निर्देशांक x के साथ कण के वेग का बोध होता हैं; तब का त्वरण के रूप में व्याख्या की जा सकती है; और ऐसे कण का द्रव्यमान 1 के बराबर होता है।

विघटनकारी फलन गति-आनुपातिक घर्षण के गुणांक का बोध होता हैं।

सामान्यतया, दोनों प्राचलोऔरधनात्मक होता हैं; तो यह गति-आनुपातिक घर्षण गुणांक समन्वयका वृहद् धनात्मक मान लगातार बढ़ता जाता हैं।

संभाव्यता निश्चित फंक्शन है, जो समकक्षके बड़े धनात्मक मूल्यों पर घातीय वृद्धि भी दर्शाता है .

लेजर भौतिकी के अनुप्रयोग में,लेजर कैविटी में फोटॉनों की संख्या के लघुगणक का बोध हो सकता है, जो इसके स्थिर-अवस्था मूल्य से संबंधित है। फिर, ऐसे लेसर की उत्पादन शक्ति के समानुपाती होती हैऔर के दोलन पर स्पंदन दिखा सकता है .

टोडा दोलक के व्यवहार के विश्लेषण में एकता द्रव्यमान कण और फोटॉन की संख्या के लघुगणक के साथ दोनों समानताएं उपयोगी हैं।

ऊर्जा

बहुत काम ही, दोलन केवल समय-समय पर होता है| वास्तव में, स्व-स्पंदन करने वाले लेजर के रूप में टोडा दोलक की प्राप्ति में, इनमापदंडों के क्रम के मूल्य हो सकते हैं; कई स्पंदों के समय, स्पंदन का आयाम अत्यधिक परिवर्तित नहीं होता है। इस कथन में, हम कार्य के बाद से स्पंदन की आवृत्ति के बारे में बात कर सकते हैं लगभग आवधिक है।

यदि ,दोलनकी ऊर्जा पर निर्भर नहीं है, और गति के स्थिरांक के रूप में माना जा सकता है। फिर, स्पंदन की अंतराल के समय, औरके बीच संबंध विश्लेषणात्मक रूप से व्यक्त किया जा सकता है: [2][3]

जहाँ और के न्यूनतम और अधिकतम मान हैं ; यह समाधान उस प्रकरण के लिए लिखा गया है |

चूँकि, अनुवाद संबंधी समरूपता के सिद्धांत का उपयोग करके अन्य समाधान प्राप्त किए जा सकते हैं।

अनुपात स्पंदन के आयाम की विशेषता के लिए सुविधाजनक पैरामीटर है। इसके प्रयोग से हम माध्यिका मान को व्यक्त कर सकते हैं जैसा ; और ऊर्जाका प्राथमिक कार्य भी है |

अनुप्रयोग में, मात्रा प्रणाली की भौतिक ऊर्जा होने की आवश्यकता नहीं है; इन प्रकरण में, इस आयामहीन मात्रा को अर्ध-ऊर्जा कहा जा सकता है।

स्पंदन की अवधि

स्पंदन की अवधिआयाम का बढ़ता हुआ कार्य है |

जब, अवधि


जब, अवधि


पूरे परास में , अवधि और आवृत्ति द्वारा अनुमानित किया जा सकता है

कम से कम 8 महत्वपूर्ण आंकड़े। इस लगभग त्रुटि से अत्यधिक नहीं है |

स्पंदन का क्षय

और(परन्तु अभी भी धनात्मक) सूक्ष्म मान पर स्पंदन का क्षय धीरे-धीरे होता है, और इस क्षय को विश्लेषणात्मक रूप से वर्णित किया जा सकता है। पहले लगभग, पैरामीटरऔरक्षय में योगात्मक योगदान देता है; क्षय दर, साथ ही अरैखिक दोलन के आयाम और चरण, ऊपर की अवधि के समान प्रकार से प्राथमिक कार्यों के साथ अनुमानित किए जा सकते हैं। आदर्शित टोडा दोलन के व्यवहार का वर्णन करने में, इस तरह के लगभग त्रुटि प्रकाशीय बेंच पर स्व-स्पंदन लेजर के रूप में आदर्श और इसकी प्रायोगिक प्राप्ति के बीच के अंतर से छोटी है। चूँकि, स्व-स्पंदन लेजर गुणात्मक रूप से बहुत समान व्यवहार दिखाता है।[3]

निरंतर सीमा

गति के टोडा श्रंखला समीकरण, निरंतर सीमा में जिसमें निकटवर्ती के बीच की दूरी शून्य हो जाती है, कोर्तवेग-डी व्रीस समीकरण (केडीवी) का निर्माण होता है।[1]यहाँ श्रृंखला में कण को ​​​​लेबल करने वाला सूचकांक नया स्थानिक समन्वय बन जाता है।

इसके विपरीत, टोडा क्षेत्र सिद्धांत को नए स्थानिक समन्वय की प्रारम्भ करके प्राप्त किया जाता है जो श्रृंखला सूचकांक स्तर से स्वतंत्र है। यह सापेक्षिक रूप से अपरिवर्तनीय प्रकार से किया जाता है, जिससे की समय और स्थान के आधार पर समान व्यवहार किया जाता है।[4] इसका अर्थ है कि टोडा क्षेत्र सिद्धांत टोडा श्रृंखला की निरंतर सीमा नहीं है।

संदर्भ का निर्माण होता है

  1. 1.0 1.1 Toda, M. (1975). "एक गैर रेखीय जाली का अध्ययन". Physics Reports. 18 (1): 1. Bibcode:1975PhR....18....1T. doi:10.1016/0370-1573(75)90018-6.
  2. Oppo, G.L.; Politi, A. (1985). "लेजर समीकरणों में टोडा क्षमता". Zeitschrift für Physik B. 59 (1): 111–115. Bibcode:1985ZPhyB..59..111O. doi:10.1007/BF01325388. S2CID 119657810.
  3. 3.0 3.1 Kouznetsov, D.; Bisson, J.-F.; Li, J.; Ueda, K. (2007). "Self-pulsing laser as Toda oscillator: Approximation through elementary functions". Journal of Physics A. 40 (9): 1–18. Bibcode:2007JPhA...40.2107K. doi:10.1088/1751-8113/40/9/016. S2CID 53330023.
  4. Kashaev, R.-M.; Reshetikhin, N. (1997). "Affine Toda field theory as a 3-dimensional integrable system". Communications in Mathematical Physics. 188 (2): 251–266. arXiv:hep-th/9507065. Bibcode:1997CMaPh.188..251K. doi:10.1007/s002200050164. S2CID 17196702.