गीर की नली: Difference between revisions

From Vigyanwiki
No edit summary
Line 12: Line 12:


===गीयर का उपाय===
===गीयर का उपाय===
चार्ल्स विलार्ड गीयर, तब {{when|date=December 2017}} [[दक्षिणी कैलिफोर्निया विश्वविद्यालय]] में एक सहायक प्रोफेसर, रंगीन चित्रपटल बनाने के यांत्रिक तरीकों पर व्याख्यान दे रहे थे, जिनका प्रयोग 1940 के दशक में किया जा रहा था, और उन्होंने निश्चय किया कि इलेक्ट्रॉनिक रूप से स्कैन की गई प्रणाली बेहतर होगी, यदि कोई केवल एक का आविष्कार करेगा। बाद में अपनी पत्नी से इसका उल्लेख करते हुए, उन्होंने उत्तर दिया कि "बेहतर होगा कि आप व्यस्त हो जाएं और स्वयं इसका आविष्कार करें"।<ref name=teach>''Teacher's''</ref>
चार्ल्स विलार्ड गीयर, तब {{when|date=December 2017}} [[दक्षिणी कैलिफोर्निया विश्वविद्यालय]] में एक सहायक प्रोफेसर, रंगीन चित्रपटल बनाने के यांत्रिक तरीकों पर व्याख्यान दे रहे थे, जिनका प्रयोग 1940 के दशक में किया जा रहा था, और उन्होंने निश्चय किया कि इलेक्ट्रॉनिक रूप से क्रमवीक्षित की गई प्रणाली बेहतर होगी, यदि कोई केवल एक का आविष्कार करेगा। बाद में अपनी पत्नी से इसका उल्लेख करते हुए, उन्होंने उत्तर दिया कि "बेहतर होगा कि आप व्यस्त हो जाएं और स्वयं इसका आविष्कार करें"।<ref name=teach>''Teacher's''</ref>


गीयर ने प्रकाशिकी के नए प्रयोग के साथ प्रदर्शक समस्या का समाधान किया। इलेक्ट्रॉन किरणपुंज को छोटे स्थानों पर केंद्रित करने की कोशिश करने के बजाय, उन्होंने उन्हें बड़े क्षेत्रों पर केंद्रित किया और प्रत्येक प्राथमिक रंग को चित्रपट पर कहीं भी एक [[चित्रांश]] में पुनर्संयोजित करने के लिए सरल प्रकाशिकी का उपयोग किया। नली को तीन अलग-अलग इलेकट्रॉन युक्ति के साथ व्यवस्थित किया गया था, प्रत्येक लाल, हरे और नीले रंग (RGB) के लिए, चित्र क्षेत्र के बाहर व्यवस्थित किया गया था। इसने गीयर नली को काफी बड़ा बना दिया; नली की "गर्दन" सामान्य रूप से प्रदर्शक क्षेत्र के पीछे स्थित होती है और TV को इसकी गहराई देती है, जबकि गीयर नली में गर्दनें प्रदर्शन क्षेत्र के बाहर चारों ओर प्रस्तावित होती हैं, जिससे यह बहुत बड़ा दिखाई देता है।<ref name="p1">''Color Television Device''</ref>
गीयर ने प्रकाशिकी के नए प्रयोग के साथ प्रदर्शक समस्या का समाधान किया। इलेक्ट्रॉन किरणपुंज को छोटे स्थानों पर केंद्रित करने की कोशिश करने के बजाय, उन्होंने उन्हें बड़े क्षेत्रों पर केंद्रित किया और प्रत्येक प्राथमिक रंग को चित्रपट पर कहीं भी एक [[चित्रांश]] में पुनर्संयोजित करने के लिए सरल प्रकाशिकी का उपयोग किया। नली को तीन अलग-अलग इलेकट्रॉन युक्ति के साथ व्यवस्थित किया गया था, प्रत्येक लाल, हरे और नीले रंग (RGB) के लिए, चित्र क्षेत्र के बाहर व्यवस्थित किया गया था। इसने गीयर नली को काफी बड़ा बना दिया; नली की "गर्दन" सामान्य रूप से प्रदर्शक क्षेत्र के पीछे स्थित होती है और TV को इसकी गहराई देती है, जबकि गीयर नली में गर्दनें प्रदर्शन क्षेत्र के बाहर चारों ओर चलायमान होती हैं, जिससे यह बहुत बड़ा दिखाई देता है।<ref name="p1">''Color Television Device''</ref>


चित्रपट के पीछे एक एल्यूमीनियम परत पर अंकित छोटे त्रिकोणीय पिरामिडों की एक श्रृंखला के साथ आवृत किया गया था, प्रत्येक पृष्ठ को रंगीन फॉसफर के साथ लेपित किया गया था। उचित रूप से संरेखित, एक दिया गया इलेक्ट्रॉन किरणपुंज केवल पिरामिड के एक पृष्ठ तक पहुंच सकता है, इसे असाधारण और पतली धातु के माध्यम से अंदर की मोटी संदीपक परत में गमन कर सकता है। जब तीनों गन अपने-अपने पृष्ठों से टकराती हैं, तो पिरामिड के अंदर रंगीन प्रकाश उत्पन्न होता है, जहां यह मिश्रित होता है, खुले आधार पर एक उपयुक्त रंग का प्रकाशन होता है, जो उपयोगकर्ता का सामना करता है।<ref name="p1" />
चित्रपट के पीछे एक एल्यूमीनियम परत पर अंकित छोटे त्रिकोणीय पिरामिडों की एक श्रृंखला के साथ आवृत किया गया था, प्रत्येक पृष्ठ को रंगीन स्फुर के साथ लेपित किया गया था। उचित रूप से संरेखित, एक दिया गया इलेक्ट्रॉन किरणपुंज केवल पिरामिड के एक पृष्ठ तक पहुंच सकता है, इसे असाधारण और पतली धातु के माध्यम से अंदर की मोटी संदीपक परत में गमन कर सकता है। जब तीनों गन अपने-अपने पृष्ठों से टकराती हैं, तो पिरामिड के अंदर रंगीन प्रकाश उत्पन्न होता है, जहां यह मिला हुआ होता है, खुले आधार पर एक उपयुक्त रंग का प्रकाशन होता है, जो उपयोगकर्ता का सामना करता है।<ref name="p1" />


गीयर प्रणाली का एक बड़ा लाभ यह है कि इसका उपयोग किसी भी प्रस्तावित रंगीन चित्रपटल प्रसारण प्रणाली के साथ किया जा सकता है। [[सीबीएस|CBS]] 144 फ्रेम प्रति सेकंड की दर से एक "[[क्षेत्र अनुक्रमिक]]" प्रणाली को बढ़ावा दे रहा था जिसे वे एक यांत्रिक रंग निस्यंदक चक्र के साथ प्रदर्शित करना चाहते थे। बारी-बारी से प्रत्येक क्रमिक ढांचा को एक अलग त्वरित्र में भेजकर एक ही संकेत को एक गीयर नलिका पर प्रदर्शित किया जा सकता है। [[RCA's]] की "बिन्दु अनुक्रमिक" प्रणाली के संकेतों को विबहुसंकेतन करके और एक ही समय में प्रत्येक उपयुक्त गन में सभी तीन रंग संकेतों को भेजकर भी प्रदर्शित किया जा सकता है। B&W संकेतों को एक ही समय में सभी तीन गन को 1/3 द्वारा मन्दित किया गया, एकल संकेत भेजकर प्रदर्शित किया जा सकता है।<ref name=popsic/>
गीयर प्रणाली का एक बड़ा लाभ यह है कि इसका उपयोग किसी भी चलायमान रंगीन चित्रपटल प्रसारण प्रणाली के साथ किया जा सकता है। [[सीबीएस|CBS]] 144 फ्रेम प्रति सेकंड की दर से एक "[[क्षेत्र अनुक्रमिक]]" प्रणाली को बढ़ावा दे रहा था जिसे वे एक यांत्रिक रंग निस्यंदक चक्र के साथ प्रदर्शित करना चाहते थे। बारी-बारी से प्रत्येक क्रमिक ढांचा को एक अलग त्वरित्र में भेजकर एक ही संकेत को एक गीयर नलिका पर प्रदर्शित किया जा सकता है। [[RCA's]] की "बिन्दु अनुक्रमिक" प्रणाली के संकेतों को विबहुसंकेतन करके और एक ही समय में प्रत्येक उपयुक्त संसूचक में सभी तीन रंग संकेतों को भेजकर भी प्रदर्शित किया जा सकता है। B&W संकेतों को एक ही समय में सभी तीन गन को 1/3 द्वारा मन्दित किया गया, एकल संकेत भेजकर प्रदर्शित किया जा सकता है।<ref name=popsic/>


सही पिरामिड से टकराने के लिए इलेक्ट्रॉन किरण पुंज प्राप्त करना, और आस-पास के नहीं, एक प्रमुख प्रारुप समस्या थी। एक इलेक्ट्रॉन संसूचक से किरण सामान्य रूप से गोलाकार होती है, इसलिए जब इसे त्रिकोणीय लक्ष्य पर लक्षित किया जाता है, तो किरण पुंज का कुछ हिस्सा सामान्य रूप से लक्ष्य पिरामिड से आगे निकल जाता है और चित्रपट पर दूसरों को आघात करता है। इसके परिणामस्वरूप अधिक्रमवीक्षण होता है, जिससे छवि धुंधली और धुल जाती है। समस्या को हल करना विशेष रूप से कठिन था क्योंकि किरण पुंज और फलक के बीच का कोण बदल गया क्योंकि किरण पुंज ने नली को स्कैन किया - संसूचक के पास के पिरामिड एक समकोण के करीब से टकराएंगे, लेकिन नली के विपरीत दिशा में एक न्यून कोण पर थे कोण।<ref name=p2>''Television Color Screen''</ref> यह देखते हुए कि प्रत्येक संसूचक CRT's की मुख्य अक्ष से अनुचित्रण थी, अवलोकन के दौरान रेखापुंज ज्यामिति में प्रमुख ज्यामितीय सुधार करना आवश्यक था।
सही पिरामिड से टकराने के लिए इलेक्ट्रॉन किरण पुंज प्राप्त करना, और आस-पास के नहीं, एक प्रमुख प्रारुप समस्या थी। एक इलेक्ट्रॉन संसूचक से किरण सामान्य रूप से गोलाकार होती है, इसलिए जब इसे त्रिकोणीय लक्ष्य पर लक्षित किया जाता है, तो किरण पुंज का कुछ हिस्सा सामान्य रूप से लक्ष्य पिरामिड से आगे निकल जाता है और चित्रपट पर दूसरों को आघात करता है। इसके परिणामस्वरूप अधिक्रमवीक्षण होता है, जिससे छवि धुंधली और धुल जाती है। समस्या को हल करना विशेष रूप से कठिन था क्योंकि किरण पुंज और फलक के बीच का कोण बदल गया क्योंकि किरण पुंज ने नली को स्कैन किया - संसूचक के पास के पिरामिड एक समकोण के करीब से टकराएंगे, लेकिन नली के विपरीत दिशा में एक न्यून कोण पर कोण थे।<ref name=p2>''Television Color Screen''</ref> यह देखते हुए कि प्रत्येक संसूचक CRT's के मुख्य अक्ष से अनुचित्रण थी, अवलोकन के दौरान रेखापुंज ज्यामिति में प्रमुख ज्यामितीय सुधार करना आवश्यक था।


===प्रतिस्पर्धी प्रणाली ===
===प्रतिस्पर्धी प्रणाली ===


गीयर ने 11 जुलाई, 1944 को अपने प्रारुप पर सुविधा के लिए आवेदन किया।<ref name=p1/>[[टेक्नीकलर]] (रंगीन चलचित्र बनाने की विधि) ने एकस्व अधिकार खरीदे और [[ स्टैनफोर्ड अनुसंधान संस्थान ]] के साथ मिलकर मूल इकाइयों का विकास शुरू किया, कथित रूप से विकास पर 1950 में कथित रूप से $500,000 (2005 में लगभग $4 मिलियन के बराबर) खर्च किया।<ref>"The Patent, Trade-mark, and Copyright Journal of Research and Education", George Washington University, spring 1960</ref> उस समय प्रणाली पर व्यापक रूप से सूचित किया गया था।<ref name=teach/> जिसमें ''अवधि'',[[लोकप्रिय यांत्रिकी|''लोकप्रिय विज्ञान ,'']]<ref name=popsic>"Tube Shows TV in Color", ''Popular Science'', March 1949, pg. 118</ref> [[लोकप्रिय यांत्रिकी|''लोकप्रिय यांत्रिकी,'']]''<ref>"Rainbow on the TV Screen", ''Popular Mechanics'', January 1950, pp. 97–103</ref> <ref>Fred Shunaman, "Color Television Systems", ''Radio-electronics'', Volume 22, 1950, pg. 20</ref> [[लोकप्रिय यांत्रिकी|रेडियो इलेक्ट्रॉनिक्स]]'' और अन्य सम्मिलित हैं।
गीयर ने 11 जुलाई, 1944 को अपने प्रारुप पर सुविधा के लिए आवेदन किया।<ref name=p1/>[[टेक्नीकलर]] (रंगीन चलचित्र बनाने की विधि) ने एकस्व अधिकार खरीदे और [[ स्टैनफोर्ड अनुसंधान संस्थान ]]के साथ मिलकर मूल इकाइयों का विकास शुरू किया, कथित रूप से विकास पर 1950 में कथित रूप से $500,000 (2005 में लगभग $4 मिलियन के बराबर) खर्च किया।<ref>"The Patent, Trade-mark, and Copyright Journal of Research and Education", George Washington University, spring 1960</ref> उस समय प्रणाली पर व्यापक रूप से सूचित किया गया था।<ref name=teach/> जिसमें ''अवधि'',[[लोकप्रिय यांत्रिकी|''लोकप्रिय विज्ञान ,'']]<ref name=popsic>"Tube Shows TV in Color", ''Popular Science'', March 1949, pg. 118</ref> [[लोकप्रिय यांत्रिकी|''लोकप्रिय यांत्रिकी,'']]''<ref>"Rainbow on the TV Screen", ''Popular Mechanics'', January 1950, pp. 97–103</ref> <ref>Fred Shunaman, "Color Television Systems", ''Radio-electronics'', Volume 22, 1950, pg. 20</ref> [[लोकप्रिय यांत्रिकी|रेडियो इलेक्ट्रॉनिक्स]]'' और अन्य सम्मिलित हैं।


कई अन्य कंपनियाँ भी रंगीन चित्रपटल प्रणाली पर काम कर रही थीं, विशेष रूप से [[RCA]]। उन्होंने गीर के कुछ सप्ताह बाद ही अपने [[छाया आवरण]] प्रणाली पर प्रारुप प्रस्तुत किया था। जब गीयर , और टेक्नीकलर ने RCA को उनके प्रारुप की सूचना दी, तो RCA ने लाइसेंस ले लिया और "आग में दूसरा लोहा" के रूप में परियोजना के लिए धन जोड़ने की स्थिति में उनके आन्तरिक विकासों में से कोई भी काम नहीं किया।
कई अन्य कंपनियाँ भी रंगीन चित्रपटल प्रणाली पर काम कर रही थीं, विशेष रूप से [[RCA]]। उन्होंने गीर के कुछ सप्ताह बाद ही अपने [[छाया आवरण]] प्रणाली पर एकस्वीकृत प्रस्तुत किया था। जब गीयर , और टेक्नीकलर ने RCA को उनके एकस्वीकृत की सूचना दी, तो RCA ने लाइसेंस ले लिया और "आग में दूसरा लोहा" के रूप में परियोजना के लिए धन जोड़ने की स्थिति में उनके आन्तरिक विकासों में से कोई भी काम नहीं किया।


नवंबर 1949 में शुरू हुए [[एनटीएससी|NTSC]] रंग मानकीकरण प्रयासों के लिए अन्य रंगीन चित्रपटल प्रणालियों के खिलाफ आमने-सामने परीक्षण में, गीयर की नली ने विशेष रूप से अच्छा प्रदर्शन नहीं किया। अधिक्रमवीक्षण ने रंगों को निकटस्थ पिक्सल (इलेक्ट्रोनिक माध्यम के चित्र या दृश्य का मूल भाग) में उड़ा दिया , कोमल रंग और खराब रंग पंजीकरण और वैषम्य का नेतृत्व किया। यह समस्या किसी भी तरह से गीर नली तक सीमित नहीं थी; दर्श में कई अलग-अलग तकनीकों का प्रदर्शन किया गया था, और केवल CBS यांत्रिक प्रणाली ही न्यायाधीशों को संतुष्ट करने वाली तस्वीर बनाने में सक्षम प्रमाणित हुआ। 1950 में, सीबीएस प्रणाली को एनटीएससी मानक के रूप में अपनाया गया था।<ref name=seq/>
नवंबर 1949 में शुरू हुए [[एनटीएससी|NTSC]] रंग मानकीकरण प्रयासों के लिए अन्य रंगीन चित्रपटल प्रणालियों के खिलाफ आमने-सामने परीक्षण में, गीयर की नली ने विशेष रूप से अच्छा प्रदर्शन नहीं किया। अधिक्रमवीक्षण ने रंगों को निकटस्थ पिक्सल (इलेक्ट्रोनिक माध्यम के चित्र या दृश्य का मूल भाग) में उड़ा दिया , कोमल रंग और खराब रंग पंजीकरण और वैषम्य का नेतृत्व किया। यह समस्या किसी भी तरह से गीर नली तक सीमित नहीं थी; दर्श में कई अलग-अलग तकनीकों का प्रदर्शन किया गया था, और केवल CBS यांत्रिक प्रणाली ही न्यायाधीशों को संतुष्ट करने वाली तस्वीर बनाने में सक्षम प्रमाणित हुआ। 1950 में, सीबीएस प्रणाली को एनटीएससी मानक के रूप में अपनाया गया था।<ref name=seq/>


गीयर ने 1940 के दशक के अंत और 1950 के दशक में अधिक्रमवीक्षण समस्याओं पर काम करना जारी रखा, प्रणाली में विभिन्न सुधारों पर अतिरिक्त एकस्व स्वीकृत किया।<ref name=p2/>अन्य विक्रेता अपनी स्वयं की तकनीकों के साथ समान प्रगति कर रहे थे, और 1953 में NTSC ने रंग के मुद्दे पर विचार करने के लिए एक स्टाफ़ का पुनर्गठन किया। इस बार [[RCA]] के [[छाया आवरण]] प्रणाली ने तेजी से स्वयं को अन्य सभी प्रणाली से बेहतर सिद्ध कर दिया, जिसमें Geer's भी सम्मिलित है। 2000 के दशक की शुरुआत तक, जब [[ लिक्विड क्रिस्टल डिस्प्ले |एलसीडी]] तकनीक ने CRTs को बदल दिया, तब तक Sony [[Trinitron]] के साथ छाया आवरण रंगीन टीवी बनाने की प्राथमिक विधि बनी रही। उसी समय, उपस्थित B&W सेट के साथ संगत संकेतों में RCA के रंग संकेतीकरण के संस्करण को भी आशोधन के साथ अपनाया गया था और 2009 तक प्राथमिक यू.एस. जब [[सादृश्य चित्रपटल बंद कर दिया गया]] तो चित्रपटल मानक बना रहा।
गीयर ने 1940 के दशक के अंत और 1950 के दशक में अधिक्रमवीक्षण समस्याओं पर काम करना जारी रखा, प्रणाली में विभिन्न सुधारों पर अतिरिक्त एकस्वीकृत किया।<ref name=p2/>अन्य विक्रेता अपनी स्वयं की तकनीकों के साथ समान प्रगति कर रहे थे, और 1953 में NTSC ने रंग के मुद्दे पर विचार करने के लिए एक स्टाफ़ का पुनर्गठन किया। इस बार [[RCA]] के [[छाया आवरण]] प्रणाली ने तेजी से स्वयं को अन्य सभी प्रणाली से बेहतर सिद्ध कर दिया, जिसमें Geer's भी सम्मिलित है। 2000 के दशक की शुरुआत तक, जब [[ लिक्विड क्रिस्टल डिस्प्ले |एलसीडी]] तकनीक ने CRTs को बदल दिया, तब तक Sony [[Trinitron]] के साथ छाया आवरण रंगीन टीवी बनाने की प्राथमिक विधि बनी रही। उसी समय, उपस्थित B&W सेट के साथ संगत संकेतों में RCA के रंग संकेतीकरण के संस्करण को भी आशोधन के साथ अपनाया गया था और 2009 तक प्राथमिक यू.एस. जब [[सादृश्य चित्रपटल बंद कर दिया गया]] तो चित्रपटल मानक बना रहा।


=== एनटीएससी के बाद ===
=== एनटीएससी के बाद ===

Revision as of 10:36, 12 April 2023

गीर की नली एक प्रारंभिक एकल-नली रंगीन चित्रपटल कैथोड किरण नलिका थी, जिसे विलार्ड गीर द्वारा विकसित किया गया था। गीयर की नली ने तीन इलेक्ट्रॉन संसूचक से अलग लाल, हरे और नीले संकेतों को संयोजित करने के लिए CRT फेसप्लेट के अंदर छोटे संदीपक से ढके तीन पक्षीय पिरामिड का एक प्रतिरूप उपयोग किया। गीयर की नली के कई नुकसान थे, और RCA's की छाया आवरण प्रणाली द्वारा उत्पन्न बेहतर छवियों के कारण व्यावसायिक रूप से कभी भी इसका उपयोग नहीं किया गया था। फिर भी, गीयर का एकस्वीकृत पहले प्रदान किया गया था, और RCA's ने इस पर एक विकल्प खरीदा था, यदि उनके स्वयं के विकास सफल नहीं हुए थे।

इतिहास

रंगीन चित्रपटल

व्यावसायिक प्रसारण के सामान्य होने से पहले रंगीन चित्रपटल का अध्ययन किया गया था, लेकिन 1940 के दशक के अंत तक इस समस्या पर गंभीरता से विचार किया गया। उस समय, कई प्रणालियाँ प्रस्तावित की जा रही थीं जो अनुक्रम में प्रसारित अलग-अलग लाल, हरे और नीले संकेतों (RGB) का उपयोग करती थीं। अधिकांश प्रायोगिक प्रणालियां एक रंगीन निष्यंतक (या "जेल") के साथ अनुक्रम में प्रसारित करती हैं, जो एक अन्यथा पारंपरिक काले और सफेद चित्रपटल नली के सामने घूमती है। प्रत्येक क्षणचित्र चित्र के एक रंग को कूटबद्ध करता है, और चक्र सिग्नल के साथ समकालन में घूमता है इसलिए सही जेल चित्रपट के सामने होता है जब वह रंगीन क्षणचित्र को प्रदर्शित किया जा रहा हो। क्योंकि वे अलग-अलग रंगों के लिए अलग-अलग संकेत प्रसारित करते हैं, ये सभी प्रणालियां उपस्थित काले और सफ़ेद संग्रह के साथ असंगत थी। एक अन्य समस्या यह थी कि जब तक बहुत अधिक पुनश्चर्या श्रेणी का उपयोग नहीं किया जाता तब तक यांत्रिक निस्यंदक ने उन्हें आशा की किरण बना दिया।[1]

RCA ने दीप्त -वर्णकत्व प्रणाली का उपयोग करते हुए पूरी तरह से अलग-अलग रेखाओं के साथ काम किया। यह प्रणाली सीधे RGB संकेत को कोडन या संचारित नहीं करती थी; इसके बजाय इसने इन रंगों को एक समग्र चमक आकृति, "दीप्ति" में जोड़ दिया। दीप्ति मौजूदा प्रसारणों के काले और सफेद संकेतों के निकटता से मेल खाता है, जिससे इसे काले और सफेद टीवी पर प्रदर्शित किया जा सकता है। अन्य समूहों द्वारा प्रस्तावित यांत्रिक प्रणालियों पर यह एक प्रमुख लाभ था। रंगीन जानकारी को अलग से कोडन किया गया था और एक समग्र वीडियो सिग्नल बनाने के लिए उच्च आवृत्ति परिवर्धन के रूप में सिग्नल में जोड़ दिया गया था - एक काले और सफेद चित्रपटल पर यह अतिरिक्त जानकारी छवि तीव्रता के सामान्य यादृच्छिककरण के रूप में देखी जाएगी, लेकिन इसका सीमित समाधान उपस्थित सेटों ने व्यवहार में इसे अदृश्य बना दिया। रंग सेट पर संकेत को निस्यंदन (फिल्टर) किया जाएगा और प्रकाशन के लिए मूल RGB को फिर से बनाने के लिए दीप्ति में जोड़ा जाएगा।

हालांकि RCA's की प्रणाली के अत्यधिक उपयोग थे, इसे सफलतापूर्वक विकसित नहीं किया गया था क्योंकि प्रदर्श नलिका का उत्पादन करना कठिन था। काले और सफेद TVs एक सतत संकेत का उपयोग करते थे और नली को संदीपक के एक समान संचय समूह के साथ विलेपित किया जा सकता था। चमक की अवधारणा के साथ, रेखा के साथ रंग निरंतर बदल रहा था, जो कि किसी भी प्रकार के यांत्रिक निस्यंदक का पालन करने के लिए बहुत तीव्र था। इसके बजाय, संदीपक को रंगीन धब्बों के असतत प्रतिरूप में तोड़ा जाना था। इनमें से प्रत्येक छोटे धब्बे पर सही संकेत केंद्रित करना संवत की इलेक्ट्रॉन युक्ति की क्षमता से परे था।[2]


गीयर का उपाय

चार्ल्स विलार्ड गीयर, तब[when?] दक्षिणी कैलिफोर्निया विश्वविद्यालय में एक सहायक प्रोफेसर, रंगीन चित्रपटल बनाने के यांत्रिक तरीकों पर व्याख्यान दे रहे थे, जिनका प्रयोग 1940 के दशक में किया जा रहा था, और उन्होंने निश्चय किया कि इलेक्ट्रॉनिक रूप से क्रमवीक्षित की गई प्रणाली बेहतर होगी, यदि कोई केवल एक का आविष्कार करेगा। बाद में अपनी पत्नी से इसका उल्लेख करते हुए, उन्होंने उत्तर दिया कि "बेहतर होगा कि आप व्यस्त हो जाएं और स्वयं इसका आविष्कार करें"।[3]

गीयर ने प्रकाशिकी के नए प्रयोग के साथ प्रदर्शक समस्या का समाधान किया। इलेक्ट्रॉन किरणपुंज को छोटे स्थानों पर केंद्रित करने की कोशिश करने के बजाय, उन्होंने उन्हें बड़े क्षेत्रों पर केंद्रित किया और प्रत्येक प्राथमिक रंग को चित्रपट पर कहीं भी एक चित्रांश में पुनर्संयोजित करने के लिए सरल प्रकाशिकी का उपयोग किया। नली को तीन अलग-अलग इलेकट्रॉन युक्ति के साथ व्यवस्थित किया गया था, प्रत्येक लाल, हरे और नीले रंग (RGB) के लिए, चित्र क्षेत्र के बाहर व्यवस्थित किया गया था। इसने गीयर नली को काफी बड़ा बना दिया; नली की "गर्दन" सामान्य रूप से प्रदर्शक क्षेत्र के पीछे स्थित होती है और TV को इसकी गहराई देती है, जबकि गीयर नली में गर्दनें प्रदर्शन क्षेत्र के बाहर चारों ओर चलायमान होती हैं, जिससे यह बहुत बड़ा दिखाई देता है।[4]

चित्रपट के पीछे एक एल्यूमीनियम परत पर अंकित छोटे त्रिकोणीय पिरामिडों की एक श्रृंखला के साथ आवृत किया गया था, प्रत्येक पृष्ठ को रंगीन स्फुर के साथ लेपित किया गया था। उचित रूप से संरेखित, एक दिया गया इलेक्ट्रॉन किरणपुंज केवल पिरामिड के एक पृष्ठ तक पहुंच सकता है, इसे असाधारण और पतली धातु के माध्यम से अंदर की मोटी संदीपक परत में गमन कर सकता है। जब तीनों गन अपने-अपने पृष्ठों से टकराती हैं, तो पिरामिड के अंदर रंगीन प्रकाश उत्पन्न होता है, जहां यह मिला हुआ होता है, खुले आधार पर एक उपयुक्त रंग का प्रकाशन होता है, जो उपयोगकर्ता का सामना करता है।[4]

गीयर प्रणाली का एक बड़ा लाभ यह है कि इसका उपयोग किसी भी चलायमान रंगीन चित्रपटल प्रसारण प्रणाली के साथ किया जा सकता है। CBS 144 फ्रेम प्रति सेकंड की दर से एक "क्षेत्र अनुक्रमिक" प्रणाली को बढ़ावा दे रहा था जिसे वे एक यांत्रिक रंग निस्यंदक चक्र के साथ प्रदर्शित करना चाहते थे। बारी-बारी से प्रत्येक क्रमिक ढांचा को एक अलग त्वरित्र में भेजकर एक ही संकेत को एक गीयर नलिका पर प्रदर्शित किया जा सकता है। RCA's की "बिन्दु अनुक्रमिक" प्रणाली के संकेतों को विबहुसंकेतन करके और एक ही समय में प्रत्येक उपयुक्त संसूचक में सभी तीन रंग संकेतों को भेजकर भी प्रदर्शित किया जा सकता है। B&W संकेतों को एक ही समय में सभी तीन गन को 1/3 द्वारा मन्दित किया गया, एकल संकेत भेजकर प्रदर्शित किया जा सकता है।[5]

सही पिरामिड से टकराने के लिए इलेक्ट्रॉन किरण पुंज प्राप्त करना, और आस-पास के नहीं, एक प्रमुख प्रारुप समस्या थी। एक इलेक्ट्रॉन संसूचक से किरण सामान्य रूप से गोलाकार होती है, इसलिए जब इसे त्रिकोणीय लक्ष्य पर लक्षित किया जाता है, तो किरण पुंज का कुछ हिस्सा सामान्य रूप से लक्ष्य पिरामिड से आगे निकल जाता है और चित्रपट पर दूसरों को आघात करता है। इसके परिणामस्वरूप अधिक्रमवीक्षण होता है, जिससे छवि धुंधली और धुल जाती है। समस्या को हल करना विशेष रूप से कठिन था क्योंकि किरण पुंज और फलक के बीच का कोण बदल गया क्योंकि किरण पुंज ने नली को स्कैन किया - संसूचक के पास के पिरामिड एक समकोण के करीब से टकराएंगे, लेकिन नली के विपरीत दिशा में एक न्यून कोण पर कोण थे।[6] यह देखते हुए कि प्रत्येक संसूचक CRT's के मुख्य अक्ष से अनुचित्रण थी, अवलोकन के दौरान रेखापुंज ज्यामिति में प्रमुख ज्यामितीय सुधार करना आवश्यक था।

प्रतिस्पर्धी प्रणाली

गीयर ने 11 जुलाई, 1944 को अपने प्रारुप पर सुविधा के लिए आवेदन किया।[4]टेक्नीकलर (रंगीन चलचित्र बनाने की विधि) ने एकस्व अधिकार खरीदे और स्टैनफोर्ड अनुसंधान संस्थान के साथ मिलकर मूल इकाइयों का विकास शुरू किया, कथित रूप से विकास पर 1950 में कथित रूप से $500,000 (2005 में लगभग $4 मिलियन के बराबर) खर्च किया।[7] उस समय प्रणाली पर व्यापक रूप से सूचित किया गया था।[3] जिसमें अवधि,लोकप्रिय विज्ञान ,[5] लोकप्रिय यांत्रिकी,[8] [9] रेडियो इलेक्ट्रॉनिक्स और अन्य सम्मिलित हैं।

कई अन्य कंपनियाँ भी रंगीन चित्रपटल प्रणाली पर काम कर रही थीं, विशेष रूप से RCA। उन्होंने गीर के कुछ सप्ताह बाद ही अपने छाया आवरण प्रणाली पर एकस्वीकृत प्रस्तुत किया था। जब गीयर , और टेक्नीकलर ने RCA को उनके एकस्वीकृत की सूचना दी, तो RCA ने लाइसेंस ले लिया और "आग में दूसरा लोहा" के रूप में परियोजना के लिए धन जोड़ने की स्थिति में उनके आन्तरिक विकासों में से कोई भी काम नहीं किया।

नवंबर 1949 में शुरू हुए NTSC रंग मानकीकरण प्रयासों के लिए अन्य रंगीन चित्रपटल प्रणालियों के खिलाफ आमने-सामने परीक्षण में, गीयर की नली ने विशेष रूप से अच्छा प्रदर्शन नहीं किया। अधिक्रमवीक्षण ने रंगों को निकटस्थ पिक्सल (इलेक्ट्रोनिक माध्यम के चित्र या दृश्य का मूल भाग) में उड़ा दिया , कोमल रंग और खराब रंग पंजीकरण और वैषम्य का नेतृत्व किया। यह समस्या किसी भी तरह से गीर नली तक सीमित नहीं थी; दर्श में कई अलग-अलग तकनीकों का प्रदर्शन किया गया था, और केवल CBS यांत्रिक प्रणाली ही न्यायाधीशों को संतुष्ट करने वाली तस्वीर बनाने में सक्षम प्रमाणित हुआ। 1950 में, सीबीएस प्रणाली को एनटीएससी मानक के रूप में अपनाया गया था।[1]

गीयर ने 1940 के दशक के अंत और 1950 के दशक में अधिक्रमवीक्षण समस्याओं पर काम करना जारी रखा, प्रणाली में विभिन्न सुधारों पर अतिरिक्त एकस्वीकृत किया।[6]अन्य विक्रेता अपनी स्वयं की तकनीकों के साथ समान प्रगति कर रहे थे, और 1953 में NTSC ने रंग के मुद्दे पर विचार करने के लिए एक स्टाफ़ का पुनर्गठन किया। इस बार RCA के छाया आवरण प्रणाली ने तेजी से स्वयं को अन्य सभी प्रणाली से बेहतर सिद्ध कर दिया, जिसमें Geer's भी सम्मिलित है। 2000 के दशक की शुरुआत तक, जब एलसीडी तकनीक ने CRTs को बदल दिया, तब तक Sony Trinitron के साथ छाया आवरण रंगीन टीवी बनाने की प्राथमिक विधि बनी रही। उसी समय, उपस्थित B&W सेट के साथ संगत संकेतों में RCA के रंग संकेतीकरण के संस्करण को भी आशोधन के साथ अपनाया गया था और 2009 तक प्राथमिक यू.एस. जब सादृश्य चित्रपटल बंद कर दिया गया तो चित्रपटल मानक बना रहा।

एनटीएससी के बाद

गीर ने कुछ समय के लिए अपनी मूल अवधारणा के साथ-साथ चित्रपटल से संबंधित अन्य अवधारणाओं पर काम करना जारी रखा। 1955 में उन्होंने एक सपाट टीवी नलिका पर एक एकस्वीकृत दर्ज किया, जिसमें छवि क्षेत्र के आगामी में स्थित एक संसूचक का उपयोग किया गया था जो ऊपर की ओर निकाली गई थी। आवेशित तारों की एक श्रृंखला द्वारा किरण को 90 डिग्री के माध्यम से विक्षेपित किया गया था, इसलिए किरण अब चित्र क्षेत्र के पीछे क्षैतिज रूप से गमन कर रही थी। एक दूसरा ग्रिड (विद्युत् वितरण तंत्र), पहले के आगामी में स्थित है, फिर किरण को एक छोटे कोण से मोड़ता है ताकि वे चित्रपट के पीछे से टकराएं।[10]

ऐसा नहीं लगता कि इस उपकरण का कभी निर्माण किया गया था, और संधान तत्वों की व्यवस्था से पता चलता है कि छवि पर ध्यान केंद्रित करना एक गंभीर समस्या होगी। दो अन्य आविष्कारक अच्छी तरह से काम कर रहे थे, इंग्लैंड में डेनिस गैबोर (होलोग्राम के विकास के लिए बेहतर जाने जाते हैं) और अमेरिका में विलियम ऐकेन। उनके दोनों एकस्व गेयर के समक्ष दायर किए गए थे, और एकेन नली को कम संख्या में सफलतापूर्वक निर्मित किया गया था। हाल ही में, इसी तरह की अवधारणाओं का उपयोग कंप्यूटर नियंत्रित अभिसरण प्रणालियों के साथ मिलकर, "फ़्लैटनिंग" प्रणाली बनाने के लिए किया गया था,आमतौर पर कंप्यूटर मॉनिटर उपयोग के लिए। सोनी ने मूल रूप से समान लगभग-सपाट CRT का उपयोग करके छोटे चित्रपट वाले एकवर्णी टीवी बेचे; उनका उपयोग बाहरी-प्रसारण अनुस्रोता के लिए भी किया जाता था। हालाँकि इन्हें LCD-आधारित प्रणाली द्वारा जल्दी से विस्थापित कर दिया गया था।

1960 में उन्होंने त्रि-आयामी चित्रपटल प्रणाली पर एकस्व के लिए आवेदन किया जिसमें दो रंगीन नली और उनके पिरामिड के 2-आयामी संस्करण का उपयोग किया गया था।[clarification needed] उदग्र चैनल दो दिशाओं में प्रकाश को प्रतिबिंबित करते हैं, प्रत्येक आंख के लिए अलग-अलग छवियां प्रदान करते हैं।[11]


एकस्वीकृत

  • यूएस एकस्वीकृत 2,480,848, "रंगीन चित्रपटल उपकरण", चार्ल्स विलार्ड गीयर/रंगीन चलचित्र बनाने की विधि (टेक्नीकलर) चलचित्र संस्था, 11 जुलाई, 1944 को दायर, 6 सितंबर, 1949 को जारी किया गया
  • यूएस एकस्वीकृत 2,622,220, "चित्रपटल रंगीन चित्रपट", चार्ल्स विलार्ड गीयर/टेक्नीकलर चलचित्र संस्था, 22 मार्च, 1949 को दायर, 16 दिसंबर, 1952 को जारी
  • यूएस एकस्वीकृत 2,850,669, "चित्रपटल चलचित्र नली या जैसे" , चार्ल्स विलार्ड गीयर, 26 अप्रैल, 1955 को दायर, 2 सितंबर, 1958 को जारी
  • यूएस एकस्वीकृत 3,184,630, "त्रि-आयामी प्रदर्शन उपकरण" , चार्ल्स विलार्ड गीयर, 12 जुलाई, 1960 को दायर, 18 मई, 1960 को जारी किया गया

यह भी देखें

संदर्भ

उद्धरण

  1. 1.0 1.1 Ed Reitan, "CBS Field Sequential Color System" Archived January 5, 2010, at the Wayback Machine, August 24, 1997
  2. Ed Reitan, "RCA Dot Sequential Color System" Archived January 7, 2010, at the Wayback Machine, August 28, 1997
  3. 3.0 3.1 Teacher's
  4. 4.0 4.1 4.2 Color Television Device
  5. 5.0 5.1 "Tube Shows TV in Color", Popular Science, March 1949, pg. 118
  6. 6.0 6.1 Television Color Screen
  7. "The Patent, Trade-mark, and Copyright Journal of Research and Education", George Washington University, spring 1960
  8. "Rainbow on the TV Screen", Popular Mechanics, January 1950, pp. 97–103
  9. Fred Shunaman, "Color Television Systems", Radio-electronics, Volume 22, 1950, pg. 20
  10. Television Picture
  11. Three-Dimensional


ग्रन्थसूची

  • Edward W. Herold, "History and development of the color picture tube", Proceedings of the Society of Information Display, Volume 15 Issue 4 (August 1974), pp. 141–149.
  • "Teacher's Tube", Time, March 20, 1950.


अग्रिम पठन