ऑन शेल और ऑफ शेल: Difference between revisions

From Vigyanwiki
Line 23: Line 23:


:<math>\partial_\mu \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi)} = \frac{\partial \mathcal{L}}{\partial \phi}</math>
:<math>\partial_\mu \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi)} = \frac{\partial \mathcal{L}}{\partial \phi}</math>
अब, एक अतिसूक्ष्म स्पेसटाइम [[अनुवाद (गणित)]] पर विचार करें <math>x^\mu \rightarrow x^\mu +\alpha^\mu</math>. लैग्रैन्जियन घनत्व <math>\mathcal{L}</math> एक अदिश राशि है, और इसलिए यह असीम रूप से रूपांतरित होगा <math>\delta \mathcal{L} = \alpha^\mu \partial_\mu \mathcal{L}</math> असीम परिवर्तन के तहत। दूसरी ओर, टेलर के विस्तार से, हमारे पास सामान्य रूप से है
अब, अतिसूक्ष्म स्पेसटाइम [[अनुवाद (गणित)|अंतरण (गणित)]] पर विचार करें <math>x^\mu \rightarrow x^\mu +\alpha^\mu</math>, लैग्रैन्जियन घनत्व <math>\mathcal{L}</math> एक अदिश राशि है, और इसलिए यह असीम रूप से रूपांतरित होगा <math>\delta \mathcal{L} = \alpha^\mu \partial_\mu \mathcal{L}</math> असीम परिवर्तन के तहत। दूसरी ओर, टेलर के विस्तार से, हमारे पास सामान्य रूप से है


:<math>\delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \phi} \delta \phi + \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi)} \delta( \partial_\mu \phi) </math>
:<math>\delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \phi} \delta \phi + \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi)} \delta( \partial_\mu \phi) </math>

Revision as of 11:02, 14 April 2023

भौतिक विज्ञान में, विशेष रूप से क्वांटम क्षेत्र सिद्धांत में, भौतिक प्रणाली के विन्यास जो गति के चिरसम्मत समीकरणों को आपूर्ति करते हैं, उन्हें "ऑन द द्रव्यमान कोश" या "सिम्पली मोर ओफ्तें ऑन शेल" कहा जाता है; जबकि जो नहीं होते हैं उन्हें "ऑफ द द्रव्यमान कोश", या ऑफ शेल कहा जाता है।

क्वांटम क्षेत्र सिद्धांत में, आभासी कण को ऑफ शेल कहा जाता है क्योंकि वे ऊर्जा-संवेग संबंध को आपूर्ति नहीं करते हैं; वास्तविक विनिमय कण इस संबंध को आपूर्ति करते हैं और उन्हें शेल ( द्रव्यमान कोश) कहा जाता है।[1][2][3] उदाहरण के लिए चिरसम्मत यांत्रिकी में, गति (भौतिकी) के सूत्रीकरण में, विचरणी नियम के चरम विलयन ऑन शेल होते हैं और यूलर-लग्रेंज समीकरण ऑन-शेल समीकरण देते हैं। भौतिक गति और संरक्षण नियम की अलग-अलग समरूपता के बारे में नोएदर का प्रमेय अन्य ऑन-शेल प्रमेय है।

द्रव्यमान कोश

हाइपरबोलॉइड सतह (शेल) पर बिंदु समीकरण के विलयन हैं।

द्रव्यमान कोश, द्रव्यमान अतिपरवलयज(हाइपरबोलॉइड) का पर्याय है, जिसका अर्थ है ऊर्जा-संवेग समष्टि में हाइपरबोलॉइड समीकरण के विलयन का वर्णन करता है:

,
र्द्रव्यमान-ऊर्जा तुल्यता सूत्र जो ऊर्जा देता है गति के संदर्भ में और शेष द्रव्यमान एक कण का है। द्रव्यमान कोश के लिए समीकरण भी अक्सर चार-संवेग (गति–ऊर्जा) के संदर्भ में लिखा जाता है; आइंस्टीन संकेतन में मीट्रिक सिग्नेचर (+,−,−,−) और इकाइयों के साथ जहां प्रकाश की गति , जैसा है, साहित्य में भी सामना हो सकता है यदि प्रयुक्त मीट्रिक सिग्नेचर (−,+,+,+) है।

बदले हुए आभासी कण का चार-संवेग , द्रव्यमान के साथ है चार गति आभासी कण आने वाले और बाहर जाने वाले कणों के चार-संवेगों के बीच का अंतर है।

फेनमैन आरेख में आंतरिक प्रवर्धक के अनुरूप आभासी कणों को आम तौर पर शेल से बाहर होने की अनुमति दी जाती है, लेकिन प्रक्रिया के लिए आयाम कम हो जाएगा, यह इस बात पर निर्भर करता है कि वे कितनी दूर हैं।[4] ऐसा इसलिए है क्योंकि -प्रवर्धक की निर्भरता आने वाले और बाहर जाने वाले कणों के चार-संवेग द्वारा निर्धारित की जाती है। प्रवर्धक के पास आम तौर पर द्रव्यमान कोश पर विचित्रता होती है।[5]

प्रवर्धक के लिए ऋणात्मक मान जो समीकरण को आपूर्ति करते हैं उन्हें ऑन शेल माना जाता है, हालांकि चिरसम्मत सिद्धांत कण की ऊर्जा के लिए ऋणात्मक मान की अनुमति नहीं देता है। ऐसा इसलिए है क्योंकि प्रवर्धक अभिव्यक्ति में उन मामलों को शामिल करता है जिनमें कण एक दिशा में ऊर्जा वहन करता है, और जिसमें उसका प्रतिकण दूसरी दिशा में ऊर्जा वहन करता है; ऋणात्मक और घनात्मक ऑन-शेल तो बस घनात्मक ऊर्जा के विपरीत प्रवाह का प्रतिनिधित्व करते हैं।

अदिश क्षेत्र

एक उदाहरण D-डायमेंशनल मिंकोव्स्की समष्टि में अदिश क्षेत्र सिद्धांत पर विचार करने से आता है। लैग्रैन्जियन घनत्व द्वारा दिए गए पर विचार करें, गति (कार्यात्मक)

इस क्रिया के लिए यूलर-लैग्रेंज समीकरण क्षेत्र और इसके व्युत्पन्न को अलग करके और भिन्नता को शून्य पर सेट करके पाया जा सकता है, और यह है:

अब, अतिसूक्ष्म स्पेसटाइम अंतरण (गणित) पर विचार करें , लैग्रैन्जियन घनत्व एक अदिश राशि है, और इसलिए यह असीम रूप से रूपांतरित होगा असीम परिवर्तन के तहत। दूसरी ओर, टेलर के विस्तार से, हमारे पास सामान्य रूप से है

के लिए प्रतिस्थापन और यह ध्यान में रखते हुए (चूंकि स्पेसटाइम में प्रत्येक बिंदु पर विविधताएं स्वतंत्र हैं):

चूंकि इसे स्वतंत्र अनुवादों के लिए धारण करना है , हम द्वारा विभाजित कर सकते हैं और लिखा:

यह समीकरण का एक उदाहरण है जो शेल को बंद रखता है, क्योंकि यह किसी भी फ़ील्ड कॉन्फ़िगरेशन के लिए सही है, भले ही यह गति के समीकरणों का सम्मान करता हो (इस मामले में, ऊपर दिए गए यूलर-लैग्रेंज समीकरण)। हालाँकि, हम केवल यूलर-लैग्रेंज समीकरण को प्रतिस्थापित करके शेल समीकरण पर प्राप्त कर सकते हैं:

हम इसे इस प्रकार लिख सकते हैं:

और अगर हम मात्रा को कोष्ठक में परिभाषित करते हैं , अपने पास:

यह नोथेर के प्रमेय का एक उदाहरण है। यहां, संरक्षित मात्रा तनाव-ऊर्जा टेंसर है, जो केवल ऑन शेल संरक्षित होती है, यानी गति के समीकरण आपूर्ति होते हैं।

संदर्भ

  1. Thomson, M. (2013). Modern particle physics. Cambridge University Press, ISBN 978-1107034266, pp. 117–119.
  2. Cachazo, Freddy (Dec 21, 2012). "A Deeper Dive: On-Shell and Off-Shell". Perimeter Institute for Theoretical Physics.
  3. Arkani-Hamed, N. (Dec 21, 2012). "बिखरने वाले आयाम और सकारात्मक ग्रासमानियन". arXiv:1212.5605 [hep-th].
  4. Jaeger, Gregg (2019). "Are virtual particles less real?" (PDF). Entropy. 21 (2): 141. Bibcode:2019Entrp..21..141J. doi:10.3390/e21020141. PMC 7514619. PMID 33266857.
  5. Thomson, M. (2013). Modern particle physics. Cambridge University Press, ISBN 978-1107034266, p.119.