पैलेडियम हाइड्राइड: Difference between revisions
m (13 revisions imported from alpha:पैलेडियम_हाइड्राइड) |
No edit summary |
||
Line 94: | Line 94: | ||
{{Hydrides by group}} | {{Hydrides by group}} | ||
{{DEFAULTSORT:Palladium Hydride}} | {{DEFAULTSORT:Palladium Hydride}} | ||
[[Category:CS1]] | |||
[[Category:Collapse templates|Palladium Hydride]] | |||
[[Category: | [[Category:Created On 27/03/2023|Palladium Hydride]] | ||
[[Category:Created On 27/03/2023]] | [[Category:Machine Translated Page|Palladium Hydride]] | ||
[[Category:Vigyan Ready]] | [[Category:Navigational boxes| ]] | ||
[[Category:Navigational boxes without horizontal lists|Palladium Hydride]] | |||
[[Category:Pages with script errors|Palladium Hydride]] | |||
[[Category:Sidebars with styles needing conversion|Palladium Hydride]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready|Palladium Hydride]] | |||
[[Category:Templates generating microformats|Palladium Hydride]] | |||
[[Category:Templates that are not mobile friendly|Palladium Hydride]] | |||
[[Category:Templates using TemplateData|Palladium Hydride]] | |||
[[Category:Webarchive template wayback links]] | |||
[[Category:Wikipedia metatemplates|Palladium Hydride]] | |||
[[Category:धातु हाइड्राइड्स|Palladium Hydride]] | |||
[[Category:पैलेडियम यौगिक|Palladium Hydride]] |
Latest revision as of 11:33, 24 April 2023
पैलेडियम हाइड्राइड धात्विक पैलेडियम है जिसमें क्रिस्टल जाली के अंदर पर्याप्त मात्रा में हाइड्रोजन होता है। इसके नाम के अतिरिक्त यह आयनिक हाइड्राइड नहीं है जोकि धात्विक हाइड्रोजन के साथ पैलेडियम का मिश्र धातु है और इसे PdHx लिखा जा सकता है। कमरे के तापमान पर पैलेडियम हाइड्राइड्स में दो क्रिस्टलीय चरण α और β (कभी-कभी α' कहा जाता है) हो सकते हैं। अतः शुद्ध α-चरण x <0.017 पर उपस्तिथ है। जबकि शुद्ध β-चरण x > 0.58 के लिए अनुभव किया जाता है। मध्यवर्ती x मान α-β मिश्रण के अनुरूप हैं।[1]
पैलेडियम द्वारा हाइड्रोजन अवशोषण प्रतिवर्ती है और हाइड्रोजन स्टोरज के लिए जांच की गई है।[2] पैलेडियम इलेक्ट्रोड का उपयोग कुछ ठंडे संलयन प्रयोगों में किया गया है। इस परिकल्पना के अनुसार कि पैलेडियम परमाणुओं के मध्य हाइड्रोजन को "निचोड़ा" जा सकता है। जिससे कि उन्हें कम तापमान पर फ़्यूज़ करने में सहायता मिल सकती है अन्यथा यह आवश्यक होता है।
इतिहास
पैलेडियम द्वारा हाइड्रोजन गैस के अवशोषण को प्रथम बार सन्न 1866 में थॉमस ग्राहम (रसायनज्ञ) द्वारा नोट किया गया था। इलेक्ट्रोलाइटिक रूप से उत्पादित हाइड्रोजन का अवशोषण जहां हाइड्रोजन को पैलेडियम कैथोड में अवशोषित किया गया था। प्रथम बार सन्न 1939 में प्रलेखित किया गया था।[2] अतः ग्राहम ने PdH0.75 संघटन के साथ मिश्र धातु का उत्पादन किया था।[3]
पैलेडियम हाइड्राइड बनाना
धातुओं को जाली में व्यवस्थित किया जाता है और धात्विक हाइड्राइड बनाने में हाइड्रोजन परमाणु स्वत: को जाली में अंतरालीय स्थलों में रखते हैं। पैलेडियम हाइड्राइड की भी यही स्थिति है। जब पैलेडियम जाली की सतह को H2 के संपर्क में लाया जाता है तब अणु दो हाइड्रोजन परमाणुओं को विभाजित करता है। प्रत्येक अंतरालीय स्थल पर अवशोषित हो जाता है। हाइड्रोजन के अंतरालीय रखने से गैर-स्टोइकियोमेट्रिक मिश्रण हो सकता है अर्थात् पैलेडियम और हाइड्रोजन के अनुपात को प्राकृतिक संख्या द्वारा प्रदर्शित नहीं किया जा सकता है।
पैलेडियम पर जिस अनुपात में H अवशोषित होता है। उसे निम्न द्वारा परिभाषित किया जाता है। जब पैलेडियम को 1 एटीएम के दबाव के साथ H2 वातावरण में लाया जाता है तब H की परिणामी सांद्रता x ~ 0.7 तक पहुंच जाती है। चूंकि अतिचालकता प्राप्त करने के लिए H की एकाग्रता अधिक होती है। अतः H की सांद्रता को x > 0.75 तक बढ़ाया जाना चाहिए।[4] यह तीन भिन्न-भिन्न मार्गों से किया जाता है। यह ज्ञात है कि पैलेडियम से हाइड्रोजन सरलता से उतर जाता है। अतः पैलेडियम से H अवशोषण को रोकने के लिए अतिरिक्त देखभाल की जाती है।
प्रथम मार्ग गैस चरण से लोड हो रहा है। पैलेडियम नमूना कमरे के तापमान पर H2 के उच्च दबाव वाले सेल में रखा जाता है। इस प्रकार H2 केशिका के माध्यम से जोड़ा जाता है। परिणामस्वरूप H को पैलेडियम पर लोड किया जाता है। इस बंधन को बनाए रखने के लिए दबाव सेल को तरल N2 तापमान (77 K) तक ठंडा किया जाता है। परिणामी सघनता [H]/[Pd] = 0.97 पाई गई है।[4]
दूसरा मार्ग इलेक्ट्रोकेमिकल बंधन है। यह ऐसी विधि है जहां अतिचालकता के लिए महत्वपूर्ण एकाग्रता को उच्च दबाव वाले वातावरण का उपयोग किए बिना सरलता से पार किया जा सकता है। इलेक्ट्रोकेमिकल चरण में H और ठोस चरण में H के मध्य संतुलन के रूप में प्रतिक्रिया के माध्यम से ~ 0.95 की H सांद्रता द्वारा पैलेडियम और Pd-Ni मिश्र धातुओं में हाइड्रोजन जोड़ा जाता है।[4] इसके पश्चात् इसे 50 से 150 एमए / सेमी के वर्तमान घनत्व के साथ 0.1n-H2SO4 के विद्युतपघटन में लोड किया गया है। अंत में लोडिंग तापमान को ~ 190 K तक कम करने के पश्चात्, x ~ 1 की H सांद्रता तक पहुँच गया है।[4]
तीसरे मार्ग को आयन आरोपण के रूप में जाना जाता है। अतः पीडी में H आयनों के आरोपण से पहले पैलेडियम पन्नी को H से पूर्व-चार्ज किया गया था। यह H2 उच्च तापमान वाली गैस में किया जाता है। यह आरोपण समय को कम करता है। जो बाद में होता है। प्राप्त की गई सांद्रता लगभग x ~ 0.7 है।[4] अंत में आरोपण होने से पहले H की हानि को रोकने के लिए पन्नी को 77 K के तापमान तक ठंडा किया जाता है। PdHx में H का आरोपण 4K के तापमान पर होता है। अतः H आयन H2+-बीम में प्रवेश करते हैं। इसका परिणाम पैलेडियम पन्नी में H की उच्च सांद्रता परत में होता है।[4]
रासायनिक संरचना और गुण
पैलेडियम को कभी-कभी लाक्षणिक रूप से "धातु स्पंज" कहा जाता है। (अधिक शाब्दिक धातु स्पंज के साथ भ्रमित नहीं होना चाहिए।) जिससे कि यह हाइड्रोजन को सोख लेता है। जैसे स्पंज जल को सोख लेता है।
कमरे के तापमान और वायुमंडलीय दबाव (मानक परिवेश तापमान और दबाव) पर पैलेडियम हाइड्रोजन की अपनी मात्रा से 900 गुना तक अवशोषित कर सकता है।[5]
हाइड्रोजन को धातु-हाइड्राइड में अवशोषित किया जा सकता है और फिर हजारों चक्रों के लिए वापस उजाड़ दिया जाता है। शोधकर्ता पैलेडियम भंडारण के उपयोगी जीवन को बढ़ाने की विधियों की खोज करते हैं।[6]
आकार प्रभाव
हाइड्रोजन का अवशोषण दो भिन्न-भिन्न चरणों का उत्पादन करता है। दोनों में पैलेडियम धातु के परमाणु फलक-केंद्रित क्यूबिक (एफसीसी, खनिज नमक) जाली में होते हैं। जो शुद्ध पैलेडियम धातु के समान संरचना है। PdH0.02 तक कम सांद्रता पर पैलेडियम जालक 388.9 अपराह्न से 389.5 अपराह्न तक थोड़ा विस्तार करता है। इस सघनता के ऊपर दूसरा चरण 402.5 बजे के जाली स्थिरांक के साथ प्रकट होता है। अल्फा चरण विलुप्त होने पर PdH0.58 की संरचना तक दोनों चरण सह-अस्तित्व में रहते हैं।[1] न्यूट्रॉन विवर्तन अध्ययनों से पता चला है। कि हाइड्रोजन परमाणु धातु की जाली में ऑक्टाहेड्रल अंतराल पर अनियमित रूप से कब्जा कर लेते हैं। (एफसीसी जाली में प्रति धातु परमाणु अष्टफलक छिद्र होता है) सामान्य दबावों पर अवशोषण की सीमा PdH0.7 है। यह दर्शाता है। कि लगभग 70% ऑक्टाहेड्रल छिद्र भरे हुए हैं। जब x = 1 तक पहुँच जाता है। तब अष्टफलकीय इंटरस्टिस पूर्ण प्रकार से भर जाते हैं।[7] हाइड्रोजन का अवशोषण उत्क्रमणीय होता है और धातु की जाली के माध्यम से हाइड्रोजन तेजी से फैलता है। हाइड्रोजन के अवशोषित होने से धात्विक चालकता कम हो जाती है। जब तक की लगभग PdH0.5 पर ठोस अर्धचालक नहीं बन जाता है।[3]
सामान्यतः थोक हाइड्राइड का यह गठन उत्प्रेरक पैलेडियम के आकार पर निर्भर करता है। जब पैलेडियम 2.6nm से छोटा हो जाता है। तब हाइड्राइड नहीं बनते है।[7]
थोक में घुला हाइड्रोजन सतह पर घुले हाइड्रोजन से भिन्न होता है। जब पैलेडियम के कणों का आकार घटता है। तब इन छोटे पैलेडियम कणों में कम हाइड्रोजन घुलती है। अतः अपेक्षाकृत अधिक हाइड्रोजन छोटे कणों की सतह पर अधिशोषित होती है। कणों पर अधिशोषित यह हाइड्रोजन हाइड्राइड नहीं बनाता है। अतः बड़े कणों में हाइड्राइड्स के निर्माण के लिए अधिक स्थान उपलब्ध होते है।[7]
इलेक्ट्रॉन और फोनन बैंड
PdH (oct) की बैंड संरचना की सबसे महत्वपूर्ण संपत्ति यह है कि भरे हुए पैलेडियम राज्यों को हाइड्रोजन की उपस्थिति से कम किया जाता है। साथ ही निम्नतम ऊर्जा स्तर, जो PdH की आबंध अवस्थाएं हैं। पैलेडियम की तुलना में कम हैं।[8]
इसके अतिरिक्त रिक्त पैलेडियम अवस्थाएँ जो फर्मी ऊर्जा से नीचे हैं। यह भी H की उपस्थिति के साथ कम हो जाती है।[8]
पैलेडियम हाइड्रोजन की स्थिति और पैलेडियम की पी अवस्थाओं के मध्य परस्पर क्रिया के कारण हाइड्रोजन के साथ रहना पसंद करता है। स्वतंत्र H परमाणु की ऊर्जा पैलेडियम बैंड के प्रमुख पी-राज्यों की ऊर्जा श्रेणी में निहित है।[8]
अतः फर्मी-ऊर्जा के अनुसार ये रिक्त राज्य और डी-बैंड में छिद्र भर जाते हैं।[8]
इसके अतिरिक्त, हाइड्राइड गठन फर्मी स्तर को डी बैंड से ऊपर उठाता है। अतः डी-बैंड के ऊपर की रिक्त अवस्थाएँ भी भरी जाती हैं। इसका परिणाम भरे हुए पी-स्टेट्स में होता है और 'एज' को उच्च ऊर्जा स्तर पर स्थानांतरित कर देता है।[9]
अतिचालकता
PdHx x = 1 के लिए लगभग 9 K के संक्रमण तापमान Tc के साथ सुपरकंडक्टर है। (शुद्ध पैलेडियम अतिचालक नहीं है) उच्च तापमान (273 K तक) पर उच्च तापमान (273 K तक) में हाइड्रोजन-समृद्ध (x ~ 1), नॉनस्टोइकियोमेट्रिक पैलेडियम हाइड्राइड में प्रतिरोधकता बनाम तापमान वक्रों में गिरावट देखी गई है और अतिचालक संक्रमण के रूप में व्याख्या की गई है।[10][11][12] इन परिणामों पर सवाल उठाया गया है[13] और अभी तक इसकी पुष्टि नहीं की गई है।
प्रत्येक अन्य हाइड्राइड-प्रणालियों की तुलना में पैलेडियम-हाइड्राइड का बड़ा लाभ यह है कि पैलेडियम-हाइड्राइड को अतिचालक बनने के लिए अत्यधिक दबाव डालने की आवश्यकता नहीं होती है।[4] यह माप को सरल बनाता है और विभिन्न प्रकार के मापन के लिए अधिक अवसर देता है। (कई अतिचालक सामग्रियों को 102 जीपीए (GPa) के क्रम में सुपरकंडक्ट करने में सक्षम होने के लिए अत्यधिक दबाव की आवश्यकता होती है।[4] अतः पैलेडियम-हाइड्राइड का उपयोग उस भूमिका का पता लगाने के लिए भी किया जा सकता है। जो इन हाइड्राइड-सिस्टम में अतिचालक होने के कारण हाइड्रोजन निभाता है।
संवेदनशीलता
पैलेडियम हाइड्राइड के चुंबकीय गुणों में से संवेदनशीलता है। PdHx की संवेदनशीलता अधिक सीमा तक परिवर्तित होती है। जब H की एकाग्रता परिवर्तित होती है।[4] यह PdHx के 𝛽-चरण के कारण है। पीडीएच का 𝛼-चरण फर्मी सतह की पैलेडियम के समान ही है। अतः 𝛼-चरण संवेदनशीलता को प्रभावित नहीं करता है।[4] चूँकि PdHx का 𝛽-चरण की विशेषता डी-बैंड को भरने वाले एस-इलेक्ट्रॉनों द्वारा होती है। अतः H की बढ़ती एकाग्रता के साथ कमरे के तापमान पर 𝛼-𝛽 मिश्रण की संवेदनशीलता कम हो जाती है।[4] अंत में, जब शुद्ध पैलेडियम के चक्रण उतार-चढ़ाव कम हो जाते हैं। तब अतिचालकता घटित होती है।[4]
विशिष्ट ताप क्षमता
अन्य धात्विक गुण इलेक्ट्रॉनिक ताप गुणांक 𝛾 है। यह गुणांक राज्यों के घनत्व पर निर्भर करता है। शुद्ध पैलेडियम के लिए ऊष्मा गुणांक 9.5 mJ(mol∙K^2) है।[4] जब H को शुद्ध पैलेडियम में जोड़ा जाता है। तब इलेक्ट्रॉनिक ताप गुणांक कम हो जाता है। अतः x = 0.83 से x = 0.88 की श्रेणी के लिए 𝛾 केवल पैलेडियम की स्थिति की तुलना में छह गुना छोटा देखा गया है।[4] यह क्षेत्र अतिचालक क्षेत्र है। चूँकि ज़िम्मरमैन एट अल ने x = 0.96 की सांद्रता के लिए ताप गुणांक 𝛾 को भी मापा जाता है।[4] इस सघनता पर अतिचालक संक्रमण का विस्तार देखा गया है। इसका कारण PdH की स्थूल संरचना की विषमता द्वारा समझाया जा सकता है।[4] अतः 𝛾 इस मूल्य पर x का बड़ा उतार-चढ़ाव है और इसलिए अनिश्चित होता है।
अतिचालकता होने के लिए महत्वपूर्ण एकाग्रता x ~ 0.72 होने का अनुमान है।[4] महत्वपूर्ण तापमान या अतिचालक संक्रमण तापमान 9 K होने का अनुमान है। यह x = 1 के स्टोइकोमेट्रिक एकाग्रता पर प्राप्त किया गया था।
इसके अतिरिक्त दबाव महत्वपूर्ण तापमान को भी प्रभावित करता है। यह दिखाया गया है। कि PdHx पर दबाव बढ़ने से Tc कम हो जाता है। इसे फोनन वर्णक्रम के सख्त होने से समझाया जा सकता है। जिसमें इलेक्ट्रॉन-फोनन स्थिरांक 𝜆 में कमी सम्मिलित है।[4]
सतह अवशोषण प्रक्रिया
हाइड्रोजन अणु के पृथक्करण को बढ़ावा देने के लिए क्रिस्टल की सतह पर कम से कम तीन रिक्तियों के समुच्चय की आवश्यकता के लिए स्कैनिंग टनलिंग माइक्रोस्कोपी द्वारा हाइड्रोजन के अवशोषण की प्रक्रिया को दिखाया गया है।[14] इस प्रकार के व्यवहार का कारण और ट्रिमर्स की विशेष संरचना का विश्लेषण किया गया है।[15]
उपयोग
हाइड्रोजन का अवशोषण प्रतिवर्ती है और अत्यधिक चयनात्मक है। औद्योगिक रूप से पैलेडियम-आधारित विभाजक का उपयोग किया जाता है। अशुद्ध गैस को पतली दीवार वाली सिल्वर-पैलेडियम मिश्र धातु की नलियों से गुजारा जाता है। जिससे कि हाइड्रोजन परमाणु और ड्यूटेरियम सरलता से मिश्र धातु झिल्ली के माध्यम से विसरित हो जाती हैं। इससे निकलने वाली गैस शुद्ध और उपयोग के लिए तैयार होती है। पैलेडियम को अपनी शक्ति और भंगुरता के प्रतिरोध में सुधार करने के लिए चांदी के साथ मिश्रित किया जाता है। यह सुनिश्चित करने के लिए की β-चरण के गठन से बचा जा सकता है। जैसा कि पहले उल्लेख किया गया है। कि जाली विस्तार झिल्ली के विकृतियों और विभाजन का कारण होता है। अतः तापमान 300 डिग्री सेल्सियस से ऊपर बनाए रखा जाता है।[3]
पैलेडियम-हाइड्राइड का अन्य उपयोग शुद्ध पैलेडियम के संबंध में H2-अणुओं का अधिशोषण है। सन्न 2009 में अध्ययन किया गया था। जिसने इस तथ्य का परीक्षण किया था।[16] प्रथम बार के दबाव में पैलेडियम-हाइड्राइड की सतह से चिपके रहने की संभावना बनाम पैलेडियम की सतह पर चिपके हाइड्रोजन अणुओं की संभावना को मापा गया था। पैलेडियम के चिपके रहने की संभावना उन तापमानों पर अधिक पाई गई है। जहां उपयोग किए गए पैलेडियम और हाइड्रोजन मिश्रण का चरण शुद्ध β-चरण था। जो इस संदर्भ में पैलेडियम-हाइड्राइड से मेल खाता है। (इसका तात्पर्य तापमान लगभग 160 डिग्री सेल्सियस से अधिक है), तापमान के विपरीत जहां β- और α-चरण सह-अस्तित्व में रहते हैं और यहां तक कि कम तापमान जहां शुद्ध α-चरण होता है। (यहां α-चरण पैलेडियम में हाइड्रोजन परमाणुओं के ठोस समाधान से मेल खाता है) इन चिपकी संभावनाओं को जानने से सोखने की दर की गणना करने में मदद मिलती है। अतः समीकरण के आधार पर,
जहाँ पूर्वोक्त संपर्क में रहने का अनुमान है और पैलेडियम / पैलेडियम-हाइड्राइड की सतह की ओर हाइड्रोजन अणुओं का प्रवाह है।
जब सिस्टम स्थिर स्थिति में होता है, तब हमारे समीप अधिशोषण की दर और इसके विपरीत विशोषण की दर होनी चाहिए () समान्तर हैं, यह देता है
अवशोषण की दर बोल्ट्जमान्नियन वितरण द्वारा दी गई मानी जाती है। अर्थात्,
(*)
जहाँ कुछ अज्ञात स्थिरांक है। विशोषण ऊर्जा है। बोल्ट्जमैन का स्थिरांक है और तापमान है।
संबंध (*) का मान ज्ञात करने के लिए फिट किया जा सकता है। यह पाया गया कि उनके प्रयोग की अनिश्चितता के अंदर क्रमशः पैलेडियम और पैलेडियम-हाइड्राइड के मान मोटे तौर पर समान्तर थे। इस प्रकार पैलेडियम-हाइड्राइड में पैलेडियम की तुलना में उच्च औसत में ग्रहण करने की दर होती है। जबकि अवशोषण के लिए आवश्यक ऊर्जा समान होती है।
इस तथ्य के लिए स्पष्टीकरण खोजने के लिए घनत्व कार्यात्मक सिद्धांत का प्रदर्शन किया गया है। यह पाया गया है कि पैलेडियम-हाइड्राइड सतह के साथ हाइड्रोजन का बंधन पैलेडियम सतह के साथ बंधन से निर्बल है और पैलेडियम की तुलना में पैलेडियम-हाइड्राइड के लिए अवशोषण सक्रियण बाधा थोड़ी मात्रा में कम है। चूंकि सोखना बाधाओं में आकार तुलनीय है। इसके अतिरिक्त, पैलेडियम की तुलना में पैलेडियम-हाइड्राइड के लिए ग्रहण की गयी ऊष्मा कम होती है। जो H के कम संतुलन सतह कवरेज की ओर जाता है। इसका तात्पर्य है कि पैलेडियम-हाइड्राइड की सतह कम संतृप्त होती है। जिससे चिपके रहने का अधिक अवसर मिलता है। अर्थात् ए उच्च चिपकाने की संभावना होती है।
पैलेडियम का प्रतिवर्ती अवशोषण हाइड्रोजन को संग्रहीत करने का साधन है और उपरोक्त निष्कर्ष बताते हैं। कि पैलेडियम के हाइड्रोजन-अवशोषित अवस्था में भी हाइड्रोजन भंडारण के लिए और अवसर हैं।
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 Manchester, F. D.; San-Martin, A.; Pitre, J. M. (February 1994). "एच-पीडी (हाइड्रोजन-पैलेडियम) प्रणाली". Journal of Phase Equilibria. 15 (1): 62–83. doi:10.1007/BF02667685. S2CID 95343702.
- ↑ 2.0 2.1 Grochala, Wojciech; Edwards, Peter P. (March 2004). "हाइड्रोजन के भंडारण और उत्पादन के लिए गैर-अंतरालीय हाइड्राइड्स का थर्मल अपघटन". Chemical Reviews. 104 (3): 1283–1316. doi:10.1021/cr030691s. PMID 15008624.
- ↑ 3.0 3.1 3.2 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 1150–151. ISBN 978-0-08-037941-8.
- ↑ 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 Kawae, Tatsuya; Inagaki, Yuji; Wen, Si; Hirota, Souhei; Itou, Daiki; Kimura, Takashi (15 May 2020). "पैलेडियम हाइड्राइड सिस्टम में सुपरकंडक्टिविटी". Journal of the Physical Society of Japan. 89 (5): 051004. Bibcode:2020JPSJ...89e1004K. doi:10.7566/JPSJ.89.051004.
- ↑ Ralph Wolf; Khalid Mansour. "The Amazing Metal Sponge: Soaking Up Hydrogen" Archived 2015-11-16 at the Wayback Machine. 1995.
- ↑ "Extending the Life of Palladium Beds" Archived 2015-10-31 at the Wayback Machine.
- ↑ 7.0 7.1 7.2 Tew, Min Wei; Miller, Jeffrey T.; van Bokhoven, Jeroen A. (27 August 2009). "Particle Size Effect of Hydride Formation and Surface Hydrogen Adsorption of Nanosized Palladium Catalysts: L 3 Edge vs K Edge X-ray Absorption Spectroscopy". The Journal of Physical Chemistry C. 113 (34): 15140–15147. doi:10.1021/jp902542f.
- ↑ 8.0 8.1 8.2 8.3 Setayandeh, S. S.; Webb, C. J.; Gray, E. MacA. (1 December 2020). "Electron and phonon band structures of palladium and palladium hydride: A review". Progress in Solid State Chemistry. 60: 100285. doi:10.1016/j.progsolidstchem.2020.100285. S2CID 225592643.
- ↑ Davis, R. J.; Landry, S. M.; Horsley, J. A.; Boudart, M. (15 May 1989). "समर्थित पैलेडियम के समूहों के साथ हाइड्रोजन की परस्पर क्रिया का एक्स-रे-अवशोषण अध्ययन". Physical Review B. 39 (15): 10580–10583. Bibcode:1989PhRvB..3910580D. doi:10.1103/PhysRevB.39.10580. PMID 9947864.
- ↑ Tripodi, Paolo; Di Gioacchino, Daniele; Borelli, Rodolfo; Vinko, Jenny Darja (May 2003). "पीडीएच में उच्च तापमान सुपरकंडक्टिंग चरणों की संभावना". Physica C: Superconductivity. 388–389: 571–572. Bibcode:2003PhyC..388..571T. doi:10.1016/S0921-4534(02)02745-4.
- ↑ Tripodi, Paolo; Di Gioacchino, Daniele; Vinko, Jenny Darja (August 2004). "Superconductivity in PdH: phenomenological explanation". Physica C: Superconductivity. 408–410: 350–352. Bibcode:2004PhyC..408..350T. doi:10.1016/j.physc.2004.02.099.
- ↑ Tripodi, Paolo; Di Gioacchino, Daniele; Vinko, Jenny Darja (2007). "PdH प्रणाली के उच्च तापमान अतिचालक गुण की समीक्षा". International Journal of Modern Physics B. 21 (18&19): 3343–3347. Bibcode:2007IJMPB..21.3343T. doi:10.1142/S0217979207044524.
- ↑ Baranowski, B.; Dębowska, L. (June 2007). "PdH में अतिचालकता पर टिप्पणी". Journal of Alloys and Compounds. 437 (1–2): L4–L5. doi:10.1016/j.jallcom.2006.07.082.
- ↑ Mitsui, T.; Rose, M. K.; Fomin, E.; Ogletree, D. F.; Salmeron, M. (April 2003). "पैलेडियम पर विघटनकारी हाइड्रोजन सोखने के लिए तीन या अधिक रिक्तियों के समुच्चय की आवश्यकता होती है". Nature. 422 (6933): 705–707. Bibcode:2003Natur.422..705M. doi:10.1038/nature01557. PMID 12700757. S2CID 4392775.
- ↑ Lopez, Nuria; Łodziana, Zbigniew; Illas, Francesc; Salmeron, Miquel (29 September 2004). "When Langmuir Is Too Simple: H 2 Dissociation on Pd(111) at High Coverage". Physical Review Letters. 93 (14): 146103. Bibcode:2004PhRvL..93n6103L. doi:10.1103/PhysRevLett.93.146103. hdl:2445/13263. PMID 15524815.
- ↑ Johansson, M.; Skúlason, E.; Nielsen, G.; Murphy, S.; Nielsen, R.M.; Chorkendorff, I. (April 2010). "1bar पर पैलेडियम और पैलेडियम हाइड्राइड पर हाइड्रोजन सोखना". Surface Science. 604 (7–8): 718–729. Bibcode:2010SurSc.604..718J. doi:10.1016/j.susc.2010.01.023.
बाहरी संबंध
- Grashoff, G. J.; Pilkington, C. E.; Corti, C. W. (1 October 1983). "The Purification of Hydrogen" (PDF). Platinum Metals Review. 27 (4): 157–169.
- Altunoglu, Abdulkadir (1994). Hydrogen Permeation Through Nickel And Nickel Alloys: Surface Reactions And Trapping (Thesis). doi:10.21954/ou.ro.00004d82.
- Breger, V.; Gileadi, E. (1 February 1971). "Adsorption and absorption of hydrogen in palladium". Electrochimica Acta. 16 (2): 177–190. doi:10.1016/0013-4686(71)80001-4.