मैनिफोल्ड वैक्यूम: Difference between revisions

From Vigyanwiki
No edit summary
Line 2: Line 2:
''निर्वात नलिका के साथ भ्रमित नहीं होना चाहिए।''
''निर्वात नलिका के साथ भ्रमित नहीं होना चाहिए।''


बहुमुख निर्वात, या आंतरिक दहन इंजन में इंजन वैक्यूम, इंजन के अंतर्ग्राही नलिका और पृथ्वी के वायुमंडल के बीच हवा के दबाव में अंतर है।
बहुमुख निर्वात, या आंतरिक दहन इंजन में इंजन निर्वात, इंजन के अंतर्ग्राही नलिका और पृथ्वी के वायुमंडल के बीच वायु के दबाव में अंतर है।


बहुमुख निर्वात आघात (इंजन)  प्रवर्तन आघात (स्ट्रोक) पर [[पिस्टन]] की गति का प्रभाव है और इंजन के अंतर्ग्राही नलिका में [[ गला घोंटना | उपरोधक]]  के माध्यम से [[अवरुद्ध प्रवाह]] है। यह इंजन के माध्यम से वायुप्रवाह के प्रतिबंध की मात्रा का एक उपाय है, और इसलिए इंजन में अप्रयुक्त बिजली क्षमता है। कुछ इंजनों में, बहुमुख निर्वात का उपयोग इंजन सहायक उपकरण के संचालन के लिए और [[क्रैंककेस वेंटिलेशन सिस्टम|क्रैंककेस संवातन प्रणाली]] के लिए [[ऑटोमोबाइल सहायक शक्ति|सहायक शक्ति]] स्त्रोत के रूप में भी किया जाता है।
बहुमुख निर्वात आघात (इंजन)  प्रवर्तन आघात (स्ट्रोक) पर [[पिस्टन]] की गति का प्रभाव है और इंजन के अंतर्ग्राही नलिका में [[ गला घोंटना | उपरोधक]]  के माध्यम से [[अवरुद्ध प्रवाह]] है। यह इंजन के माध्यम से वायुप्रवाह के प्रतिबंध की मात्रा का एक उपाय है, और इसलिए इंजन में अप्रयुक्त बिजली क्षमता है। कुछ इंजनों में, बहुमुख निर्वात का उपयोग इंजन सहायक उपकरण के संचालन के लिए और [[क्रैंककेस वेंटिलेशन सिस्टम|क्रैंककेस संवातन प्रणाली]] के लिए [[ऑटोमोबाइल सहायक शक्ति|सहायक शक्ति]] स्त्रोत के रूप में भी किया जाता है।
Line 11: Line 11:
आंतरिक दहन इंजन के माध्यम से वायु प्रवाह की दर एक महत्वपूर्ण कारक है जो इंजन द्वारा उत्पन्न शक्ति की मात्रा को निर्धारित करता है। अधिकांश [[पेट्रोल इंजन]] को उस प्रवाह को एक उपरोधक के साथ सीमित करके नियंत्रित किया जाता है जो अंतर्ग्राही वायुप्रवाह को प्रतिबंधित करता है, जबकि एक [[डीजल इंजन]] सिलेंडर को आपूर्ति की जाने वाली ईंधन की मात्रा से नियंत्रित होता है, और इसलिए इसमें कोई उपरोधक नहीं होता है। बहुमुख निर्वात सभी स्वाभाविक रूप से वायुचूषी इंजन में सम्मिलित होता है जो उपरोधक का उपयोग करते हैं ऑटो चक्र या [[दो स्ट्रोक इंजन|दो आघात चक्र]]  का उपयोग करने वाले कार्बोरेटर और [[ईंधन इंजेक्शन|ईंधन अंत:क्षिप्‍त]]  गैसोलीन इंजन सहित डीजल इंजनों में उपरोधक प्लेट नहीं होते हैं।
आंतरिक दहन इंजन के माध्यम से वायु प्रवाह की दर एक महत्वपूर्ण कारक है जो इंजन द्वारा उत्पन्न शक्ति की मात्रा को निर्धारित करता है। अधिकांश [[पेट्रोल इंजन]] को उस प्रवाह को एक उपरोधक के साथ सीमित करके नियंत्रित किया जाता है जो अंतर्ग्राही वायुप्रवाह को प्रतिबंधित करता है, जबकि एक [[डीजल इंजन]] सिलेंडर को आपूर्ति की जाने वाली ईंधन की मात्रा से नियंत्रित होता है, और इसलिए इसमें कोई उपरोधक नहीं होता है। बहुमुख निर्वात सभी स्वाभाविक रूप से वायुचूषी इंजन में सम्मिलित होता है जो उपरोधक का उपयोग करते हैं ऑटो चक्र या [[दो स्ट्रोक इंजन|दो आघात चक्र]]  का उपयोग करने वाले कार्बोरेटर और [[ईंधन इंजेक्शन|ईंधन अंत:क्षिप्‍त]]  गैसोलीन इंजन सहित डीजल इंजनों में उपरोधक प्लेट नहीं होते हैं।


इंजन के माध्यम से द्रव्यमान प्रवाह इंजन की घूर्णन दर, इंजन के [[इंजन विस्थापन]] और अंतर्ग्राही नलिका में अंतर्ग्राही प्रवाहके घनत्व का [[उत्पाद (गणित)]] है। अधिकांश अनुप्रयोगों में घूर्णन दर अनुप्रयोग [[वाहन]] में इंजन की गति या अन्य अनुप्रयोगों में मशीनरी की गति द्वारा निर्धारित की जाती है। विस्थापन इंजन ज्यामिति पर निर्भर है, जो सामान्य रूप से इंजन के उपयोग में होने पर समायोज्य नहीं होता है हालांकि अल्पसंख्या मॉडल में यह सुविधा होती है, चर विस्थापन देखें। निविष्टप्रवाह को प्रतिबंधित करने से अंतर्ग्राही नलिका में घनत्व (और इसलिए दबाव) कम हो जाता है, जिससे उत्पादित बिजली की मात्रा कम हो जाती है। यह इंजन अवरोध ([[इंजन ब्रेक लगाना|इंजन]] विभंजन देखें) का एक प्रमुख स्रोत भी है, क्योंकि अंतर्ग्राही नलिका में कम दबाव वाली हवा प्रवर्तन आघात के समयपिस्टन पर कम दबाव प्रदान करती है।
इंजन के माध्यम से द्रव्यमान प्रवाह इंजन की घूर्णन दर, इंजन के [[इंजन विस्थापन]] और अंतर्ग्राही नलिका में अंतर्ग्राही प्रवाहके घनत्व का [[उत्पाद (गणित)]] है। अधिकांश अनुप्रयोगों में घूर्णन दर अनुप्रयोग [[वाहन]] में इंजन की गति या अन्य अनुप्रयोगों में मशीनरी की गति द्वारा निर्धारित की जाती है। विस्थापन इंजन ज्यामिति पर निर्भर है, जो सामान्य रूप से इंजन के उपयोग में होने पर समायोज्य नहीं होता है हालांकि अल्पसंख्या मॉडल में यह सुविधा होती है, चर विस्थापन देखें। निविष्टप्रवाह को प्रतिबंधित करने से अंतर्ग्राही नलिका में घनत्व (और इसलिए दबाव) कम हो जाता है, जिससे उत्पादित बिजली की मात्रा कम हो जाती है। यह इंजन अवरोध ([[इंजन ब्रेक लगाना|इंजन]] अवरोधन देखें) का एक प्रमुख स्रोत भी है, क्योंकि अंतर्ग्राही नलिका में कम दबाव वाली वायु प्रवर्तन आघात के समयपिस्टन पर कम दबाव प्रदान करती है।


जब उपरोधक  (एक कार में, कार त्वरक पेडल अवनमित हो  जाता है) खोला जाता है, परिवेशी वायु अंतर्ग्राही को नलिका संभरण  के लिए स्वतंत्र होती है, जिससे दबाव (निर्वात भरना)  बढ़ जाता है। एक कार्बोरेटर या ईंधन अंत:क्षिप्‍त  प्रणाली इंजन को ऊर्जा प्रदान करते हुए, सही अनुपात में वायुप्रवाह में ईंधन जोड़ती है। जब उपरोधक को पूरी तरह से खोल दिया जाता है, तो इंजन का वायु प्रवर्तन प्रणाली पूर्ण वायुमंडलीय दबाव के संपर्क में आ जाता है, और इंजन के माध्यम से अधिकतम वायु प्रवाह प्राप्त होता है। स्वाभाविक रूप से वायुचूषी इंजन में, निर्गम  विद्युत परिवेश बैरोमीटर के दबाव से सीमित होती है।  [[सुपरचार्जर|अतिभरक]] और [[टर्बोचार्जर]] वायुमंडलीय दबाव के ऊपर दबाव से  बहुमुख दाब बढ़ाते हैं।।
जब उपरोधक  (एक कार में, कार त्वरक पेडल अवनमित हो  जाता है) खोला जाता है, परिवेशी वायु अंतर्ग्राही को नलिका संभरण  के लिए स्वतंत्र होती है, जिससे दबाव (निर्वात भरना)  बढ़ जाता है। एक कार्बोरेटर या ईंधन अंत:क्षिप्‍त  प्रणाली इंजन को ऊर्जा प्रदान करते हुए, सही अनुपात में वायुप्रवाह में ईंधन जोड़ती है। जब उपरोधक को पूरी तरह से खोल दिया जाता है, तो इंजन का वायु प्रवर्तन प्रणाली पूर्ण वायुमंडलीय दबाव के संपर्क में आ जाता है, और इंजन के माध्यम से अधिकतम वायु प्रवाह प्राप्त होता है। स्वाभाविक रूप से वायुचूषी इंजन में, निर्गम  विद्युत परिवेश बैरोमीटर के दबाव से सीमित होती है।  [[सुपरचार्जर|अतिभरक]] और [[टर्बोचार्जर]] वायुमंडलीय दबाव के ऊपर दबाव से  बहुमुख दाब बढ़ाते हैं।।


== EDIT आधुनिक विकास ==
== आधुनिक विकास ==
आधुनिक इंजन अंतर्ग्राही नलिका में हवा के दबाव को मापने के लिए नलिका पूर्ण दबाव (एमएपी के रूप में संक्षिप्त) सेंसर का उपयोग करते हैं। नलिका एब्सोल्यूट प्रेशर इंजन के संचालन को अनुकूलित करने के लिए [[इंजन नियंत्रण इकाई]] (ECU) द्वारा उपयोग किए जाने वाले कई मापदंडों में से एक है। कुछ अनुप्रयोगों से निपटने के समयपूर्ण और गेज दबाव के बीच अंतर करना महत्वपूर्ण है, विशेष रूप से वे जो सामान्य ऑपरेशन के समयऊंचाई में परिवर्तन का अनुभव करते हैं।
आधुनिक इंजन अंतर्ग्राही नलिका में वायु के दबाव को मापने के लिए नलिका पूर्ण दबाव (एमएपी के रूप में संक्षिप्त) संवेदक का उपयोग करते हैं। बहुमुख निरपेक्ष दाब इंजन के संचालन को अनुकूलित करने के लिए [[इंजन नियंत्रण इकाई]] (ईसीयू) द्वारा उपयोग किए जाने वाले कई मापदंडों में से एक है। कुछ अनुप्रयोगों से संपर्क के समय पूर्ण और गेज दबाव के बीच अंतर करना महत्वपूर्ण है, विशेष रूप से वे जो सामान्य संचालन के समय ऊंचाई में परिवर्तन का अनुभव करते हैं।


ईंधन की खपत में कमी (संयुक्त राज्य अमेरिका में) [[कार्बन डाईऑक्साइड उत्सर्जन]] उत्सर्जन में कमी (यूरोप में) को अनिवार्य करने वाले सरकारी नियमों से प्रेरित होकर, यात्री कारों और हल्के ट्रकों को विभिन्न प्रकार की तकनीकों (डाउनसाइज़्ड इंजन; लॉकअप, मल्टी-रेशियो और ओवरड्राइव) के साथ फिट किया गया है। यांत्रिकी); परिवर्तनीय वाल्व समय, मजबूर प्रेरण, डीजल इंजन, आदि) जो बहुमुख निर्वात अपर्याप्त या अनुपलब्ध प्रदान करते हैं। इलेक्ट्रिक वैक्यूम पंप अब आमतौर पर वायवीय सामान को शक्ति देने के लिए उपयोग किए जाते हैं।
ईंधन के उपभोग में कमी (संयुक्त राज्य अमेरिका में) [[कार्बन डाईऑक्साइड उत्सर्जन]] में कमी (यूरोप में) को अनिवार्य करने वाले सरकारी नियमों से प्रेरित होकर, यात्री कारों और हल्के ट्रकों को विभिन्न प्रकार की तकनीकों (छोटे आकार के इंजन; ताला बक्स, बहु-अनुपात और अत्यधिक संचारण परिवर्ती  वाल्व समयन, प्रणोदित प्रेरण, डीजल इंजन, आदि) के साथ निर्धारित किया गया है। जो बहुमुख निर्वात अपर्याप्त या अनुपलब्ध प्रदान करते हैं। विद्युत निर्वात पंप सामान्य रूप से वायुचालित सहायक उपकरण को शक्ति देने के लिए उपयोग किए जाते हैं।


== बहुमुख निर्वात बनाम वेंटुरी वैक्यूम ==
== बहुमुख निर्वात बनाम वेंटुरी निर्वात ==
बहुमुख निर्वात वेंटुरी प्रभाव की तुलना में एक अलग घटना के कारण होता है, जो कार्बोरेटर के अंदर सम्मिलित होता है। वेंटुरी वैक्यूम वेंटुरी प्रभाव के कारण होता है, जो निश्चित परिवेश स्थितियों (वायु घनत्व और तापमान) के लिए कार्बोरेटर के माध्यम से कुल द्रव्यमान प्रवाह पर निर्भर करता है। कार्बोरेटर का उपयोग करने वाले इंजनों में, वेंचुरी वैक्यूम इंजन के माध्यम से कुल द्रव्यमान प्रवाह (और इसलिए कुल बिजली उत्पादन) के लगभग आनुपातिक होता है। परिवेश के दबाव (ऊंचाई, मौसम) या तापमान परिवर्तन के रूप में, इस संबंध को बनाए रखने के लिए कार्बोरेटर को समायोजित करने की आवश्यकता हो सकती है।
बहुमुख निर्वात वेंटुरी प्रभाव की तुलना में एक अलग घटना के कारण होता है, जो कार्बोरेटर के अंदर सम्मिलित होता है। वेंटुरी निर्वात वेंटुरी प्रभाव के कारण होता है, जो निश्चित परिवेश स्थितियों (वायु घनत्व और तापमान) के लिए कार्बोरेटर के माध्यम से कुल द्रव्यमान प्रवाह पर निर्भर करता है। कार्बोरेटर का उपयोग करने वाले इंजनों में, वेंचुरी निर्वात इंजन के माध्यम से कुल द्रव्यमान प्रवाह (और इसलिए कुल बिजली उत्पादन) के लगभग आनुपातिक होता है। परिवेश के दबाव (ऊंचाई, मौसम) या तापमान परिवर्तन के रूप में, इस संबंध को बनाए रखने के लिए कार्बोरेटर को समायोजित करने की आवश्यकता हो सकती है।


नलिका दबाव भी पोर्ट किया जा सकता है। पोर्टिंग उपरोधक प्लेट की गति की सीमा के भीतर दबाव नल के लिए एक स्थान का चयन कर रहा है। उपरोधक की स्थिति के आधार पर, एक पोर्टेड प्रेशर टैप या तो उपरोधक के ऊपर या नीचे की ओर हो सकता है। जैसे ही उपरोधक की स्थिति बदलती है, एक पोर्टेड प्रेशर टैप नलिका दबाव या परिवेश दबाव से चुनिंदा रूप से जुड़ा होता है। एंटीक (प्री-ओबीडी II#OBD-II) इंजन अक्सर [[वितरक]] और वाहन उत्सर्जन नियंत्रण#उत्सर्जन नियंत्रण|उत्सर्जन-नियंत्रण घटकों के लिए पोर्टेड बहुमुख प्रेशर टैप्स का उपयोग करते थे।
बहुमुख दाब भी पोर्ट किया जा सकता है। पोर्टिंग उपरोधक प्लेट की गति की सीमा के अंदर दबाव निष्कासन के लिए एक स्थान का चयन कर रहा है। उपरोधक की स्थिति के आधार पर, एक पोर्ट किए गए दबाव निष्कासन या तो उपरोधक के ऊपर या नीचे की ओर हो सकता है। जैसे ही उपरोधक की स्थिति बदलती है, एक पोर्ट किए गए दाब वेध बहुमुख दाब या परिवेश दबाव से चयनात्मक रूप से जुड़ा होता है। अद्वितीय (प्री-ओबीडी-II) इंजन प्रायः प्रज्वलन [[वितरक]] और वाहन उत्सर्जन-नियंत्रण घटकों के लिए पोर्टेड बहुमुख दाब निष्कासन का उपयोग करते थे।


== कारों में बहुमुख निर्वात ==
== कारों में बहुमुख निर्वात ==
अधिकांश [[ऑटोमोबाइल]] चार-आघात ओटो साइकिल इंजन का उपयोग करते हैं जिसमें कई [[सिलेंडर (इंजन)]] एक ही इनलेट नलिका से जुड़े होते हैं। [[ प्रेरण स्ट्रोक | प्रेरण आघात]] के दौरान, पिस्टन सिलेंडर में उतरता है और [[इनटेक वॉल्व|अंतर्ग्राही वॉल्व]] खुला रहता है। जैसे ही पिस्टन उतरता है, यह प्रभावी रूप से इसके ऊपर के सिलेंडर में आयतन बढ़ाता है, जिससे कम दबाव बनता है। वायुमंडलीय दबाव नलिका और कार्बोरेटर या ईंधन अंत:क्षिप्‍त  के माध्यम से हवा को धक्का देता है, जहां इसे ईंधन के साथ मिलाया जाता है। क्योंकि इंजन चक्र में कई सिलेंडर अलग-अलग समय पर काम करते हैं, कार्बोरेटर से इंजन तक इनलेट नलिका के माध्यम से लगभग निरंतर दबाव अंतर होता है।
अधिकांश [[ऑटोमोबाइल|वाहन]] चार-आघात ओटो चक्र इंजन का उपयोग करते हैं जिसमें कई [[सिलेंडर (इंजन)]] समान प्रवेशिका नलिका से जुड़े होते हैं। [[ प्रेरण स्ट्रोक | प्रेरण आघात]] के समय, पिस्टन सिलेंडर में उतरता है और [[इनटेक वॉल्व|अंतर्ग्राही वॉल्व]] खुला रहता है। जैसे ही पिस्टन उतरता है, यह प्रभावी रूप से इसके ऊपर के सिलेंडर में आयतन बढ़ाता है, जिससे कम दबाव बनता है। वायुमंडलीय दबाव नलिका और कार्बोरेटर या ईंधन अंत:क्षिप्‍त  के माध्यम से वायु को आघात करता है, जहां इसे ईंधन के साथ मिलाया जाता है। क्योंकि इंजन चक्र में कई सिलेंडर अलग-अलग समय पर कार्य करते हैं, कार्बोरेटर से इंजन तक प्रवेशिका नलिका के माध्यम से लगभग निरंतर दबाव अंतर होता है।


इंजन में प्रवेश करने वाले ईंधन/वायु मिश्रण की मात्रा को नियंत्रित करने के लिए, एक साधारण तितली वाल्व (उपरोधक प्लेट) आमतौर पर अंतर्ग्राही नलिका (कार्बोरेटेड इंजनों में कार्बोरेटर के ठीक नीचे) की शुरुआत में लगाया जाता है। तितली वाल्व केवल एक गोलाकार डिस्क है जो धुरी पर फिट होती है, जो पाइप के काम के अंदर फिट होती है। यह कार के त्वरक पेडल से जुड़ा होता है, और जब पेडल पूरी तरह से दबाया जाता है और पेडल जारी होने पर पूरी तरह से बंद हो जाता है तो यह पूरी तरह से खुला रहता है। तितली वाल्व में अक्सर एक छोटा निष्क्रिय कटआउट होता है, एक छेद जो वाल्व के पूरी तरह से बंद होने पर भी इंजन में थोड़ी मात्रा में ईंधन/वायु मिश्रण की अनुमति देता है, या कार्बोरेटर के पास अपने स्वयं के निष्क्रिय जेट के साथ एक अलग वायु बाईपास होता है।
इंजन में प्रवेश करने वाले ईंधन/वायु मिश्रण की मात्रा को नियंत्रित करने के लिए, एक साधारण तितलीनुमा वाल्ब (उपरोधक प्लेट) सामान्य रूप से अंतर्ग्राही नलिका (कार्बोरेटेड इंजनों में कार्बोरेटर के नीचे) के प्रारंभ में लगाया जाता है। तितलीनुमा वाल्ब केवल एक गोलाकार चक्र है जो धुरी पर निर्धारित होती है, जो पाइप के काम के अंदर निर्धारित होती है। यह कार के त्वरक पेडल से जुड़ा होता है, और जब पेडल पूरी तरह से दबाया जाता है और पेडल जारी होने पर पूरी तरह से बंद हो जाता है तो यह पूरी तरह से खुला रहता है। तितलीनुमा वाल्ब में प्रायः एक छोटा निष्क्रिय कटआउट होता है, एक छेद जो वाल्व के पूरी तरह से बंद होने पर भी इंजन में अल्प मात्रा में ईंधन/वायु मिश्रण की स्वीकृति देता है, या कार्बोरेटर के पास अपने स्वयं के निष्क्रिय जेट के साथ एक अलग वायु उपमार्ग होता है।


अगर इंजन लाइट या नो लोड और लो या क्लोज्ड उपरोधक के तहत काम कर रहा है, तो हाई बहुमुख निर्वात होता है। जैसे ही उपरोधक खोला जाता है, इंजन की गति तेजी से बढ़ जाती है। इंजन की गति केवल ईंधन/हवा के मिश्रण की मात्रा से सीमित होती है जो नलिका उपलब्ध है। फुल उपरोधक और लाइट लोड के तहत, अन्य प्रभाव (जैसे [[वाल्व फ्लोट]], सिलेंडरों में [[अशांति]], या [[ प्रज्वलन समय ]]) इंजन की गति को सीमित करते हैं ताकि नलिका दबाव बढ़ सके - लेकिन व्यवहार में, नलिका की आंतरिक दीवारों पर परजीवी अवरोध, प्लस कार्बोरेटर के केंद्र में वेंटुरी की प्रतिबंधात्मक प्रकृति का मतलब है कि एक कम दबाव हमेशा स्थापित किया जाएगा क्योंकि इंजन की आंतरिक मात्रा हवा की मात्रा से अधिक होती है जो नलिका अधिक देने में सक्षम होती है।
यदि इंजन लाइट या भारहीन और कम या संवृत उपरोधक के अंतर्गत काम कर रहा है, तो हाई बहुमुख निर्वात होता है। जैसे ही उपरोधक खोला जाता है, इंजन की गति तेजी से बढ़ जाती है। इंजन की गति केवल ईंधन/वायु के मिश्रण की मात्रा से सीमित होती है जो नलिका उपलब्ध है। पूर्ण उपरोधक और कम भार के अंतर्गत, अन्य प्रभाव (जैसे [[वाल्व फ्लोट]], सिलेंडरों में निष्कीय, या [[ प्रज्वलन समय ]]) इंजन की गति को सीमित करते हैं ताकि बहुमुख दाब बढ़ सके - लेकिन व्यवहार में, नलिका की आंतरिक परतों पर परप्रेरित अवरोध, ऋणात्मक कार्बोरेटर के केंद्र में वेंटुरी की प्रतिबंधात्मक प्रकृति का तात्पर्य है कि एक कम दबाव सदैव स्थापित किया जाएगा क्योंकि इंजन की आंतरिक मात्रा वायु की मात्रा से अधिक होती है जो नलिका अधिक देने में सक्षम होती है।


यदि इंजन व्यापक थ्रोटल ओपनिंग पर भारी भार के तहत काम कर रहा है (जैसे स्टॉप से ​​​​त्वरित करना या कार को पहाड़ी पर खींचना) तो इंजन की गति भार से सीमित होती है और न्यूनतम वैक्यूम बनाया जाएगा। इंजन की गति कम है लेकिन तितली वाल्व पूरी तरह से खुला है। चूँकि पिस्टन बिना किसी भार की तुलना में अधिक धीरे-धीरे उतर रहे हैं, दबाव अंतर कम चिह्नित हैं और प्रेरण प्रणाली में परजीवी अवरोध नगण्य है। इंजन पूरे परिवेश के दबाव में हवा को सिलेंडर में खींचता है।
यदि इंजन व्यापक उपरोधक के प्रारंभ पर भारी भार के अंतर्गत काम कर रहा है जैसे विराम से ​​​​त्वरित करना या कार को पहाड़ी पर कर्षण तो इंजन की गति भार से सीमित होती है और न्यूनतम निर्वात बनाया जाएगा। इंजन की गति कम है लेकिन तितलीनुमा वाल्ब पूरी तरह से खुला है। चूँकि पिस्टन बिना किसी भार की तुलना में अधिक धीरे-धीरे उतर रहे हैं, दबाव अंतर कम चिह्नित हैं और प्रेरण प्रणाली में परप्रेरित अवरोध नगण्य है। इंजन पूरे परिवेश के दबाव में वायु को सिलेंडर में खींचता है।


कुछ स्थितियों में अधिक निर्वात निर्मित होता है। मंदी पर या पहाड़ी से उतरते समय, उपरोधक बंद हो जाएगा और गति को नियंत्रित करने के लिए एक निम्न गियर का चयन किया जाएगा। इंजन तेजी से घूम रहा होगा क्योंकि सड़क के पहिए और ट्रांसमिशन तेजी से चल रहे हैं, लेकिन तितली वाल्व पूरी तरह से बंद हो जाएगा। इंजन के माध्यम से हवा का प्रवाह उपरोधक द्वारा दृढ़ता से प्रतिबंधित है, तितली वाल्व के इंजन की तरफ एक मजबूत वैक्यूम पैदा करता है जो इंजन की गति को सीमित करता है। इंजन ब्रेकिंग के रूप में जानी जाने वाली इस घटना का उपयोग त्वरण को रोकने या यहां तक ​​​​कि न्यूनतम या बिना ब्रेक के उपयोग को धीमा करने के लिए किया जाता है (जैसे कि लंबी या खड़ी पहाड़ी से उतरते समय)इस वैक्यूम ब्रेकिंग को [[संपीड़न रिलीज इंजन ब्रेक]] (उर्फ [[जेक ब्रेक]]), या [[एग्ज़हॉस्ट ब्रेक]] के साथ भ्रमित नहीं होना चाहिए, जो अक्सर बड़े डीजल ट्रकों पर उपयोग किया जाता है। डीजल के साथ इंजन ब्रेकिंग के लिए ऐसे उपकरण आवश्यक हैं क्योंकि वाहन को ब्रेक करने के लिए पर्याप्त वैक्यूम बनाने के लिए हवा के प्रवाह को प्रतिबंधित करने के लिए उनमें उपरोधक की कमी होती है।
कुछ स्थितियों में अधिक निर्वात निर्मित होता है। अवमंदन पर या पहाड़ी से उतरते समय, उपरोधक बंद हो जाएगा और गति को नियंत्रित करने के लिए एक निम्न गियर का चयन किया जाएगा। इंजन तेजी से घूम रहा होगा क्योंकि सड़क के पहिए और प्रेषक तेजी से चल रहे हैं, लेकिन तितलीनुमा वाल्ब पूरी तरह से बंद हो जाएगा। इंजन के माध्यम से वायु का प्रवाह उपरोधक द्वारा दृढ़ता से प्रतिबंधित है, तितलीनुमा वाल्ब के इंजन की तरफ एक मजबूत निर्वात पैदा करता है जो इंजन की गति को सीमित करता है। इंजन ब्रेकिंग के रूप में जानी जाने वाली इस घटना का उपयोग त्वरण को रोकने या यहां तक ​​​​कि न्यूनतम या बिना अवरोध के उपयोग को मंद  (जैसे कि लंबी या खड़ी पहाड़ी से उतरते समय) करने के लिए किया जाता है। इस निर्वात अवरोधन को [[संपीड़न रिलीज इंजन ब्रेक|संपीड़न अवरोधन]] (उर्फ [[जेक ब्रेक]]), या [[एग्ज़हॉस्ट ब्रेक|निर्वातक ब्रेक]] (अवरोध) के साथ भ्रमित नहीं होना चाहिए, जो प्रायः बड़े डीजल ट्रकों पर उपयोग किया जाता है। डीजल के साथ इंजन अवरोधन के लिए ऐसे उपकरण आवश्यक हैं क्योंकि वाहन को अवरोध करने के लिए पर्याप्त निर्वात बनाने के लिए वायु के प्रवाह को प्रतिबंधित करने के लिए उनमें उपरोधक की कमी होती है।


=== बहुमुख निर्वात का उपयोग ===
=== बहुमुख निर्वात का उपयोग ===
[[File:1929-AEC-Regal-UU6646.jpg|thumb|Autovac ईंधन भारोत्तोलक। दोनों बसों में लाल रंग का ऑटोवैक टैंक बाएँ अगले पहिये के ऊपर और पीछे देखा जा सकता है।]]यह कम (या नकारात्मक) दबाव उपयोग में लाया जा सकता है। ड्राइवर को यह संकेत देने के लिए नलिका दबाव मापने वाला एक दबाव गेज लगाया जा सकता है कि इंजन कितनी मेहनत कर रहा है और इसका उपयोग ड्राइविंग आदतों को समायोजित करके अधिकतम क्षणिक [[ईंधन दक्षता]] प्राप्त करने के लिए किया जा सकता है: बहुमुख निर्वात को कम करने से क्षणिक दक्षता बढ़ जाती है{{citation needed|reason=Reliable source needed; source with implementation preferred. Low manifold vacuum may indicate wide open throttle, not high efficiency|date=February 2016}}. बंद-उपरोधक स्थितियों के तहत एक कमजोर बहुमुख निर्वात से पता चलता है कि तितली वाल्व या इंजन के आंतरिक घटक ([[पॉपट वॉल्व]] या [[पिस्टन रिंग]]) घिसे हुए हैं, इंजन द्वारा अच्छी पंपिंग कार्रवाई को रोकते हैं और समग्र दक्षता को कम करते हैं।
[[File:1929-AEC-Regal-UU6646.jpg|thumb|ऑटोवैक ईंधन भारोत्तोलक दोनों बसों में लाल रंग का ऑटोवैक टैंक बाएँ अगले पहिये के ऊपर और पीछे देखा जा सकता है।]]यह कम (या ऋणात्मक) दबाव उपयोग में लाया जा सकता है। चालक को यह संकेत देने के लिए बहुमुख दाब मापने वाला एक दबाव गेज लगाया जा सकता है कि इंजन कार्य कर रहा है और इसका उपयोग चालन आदतों को समायोजित करके अधिकतम क्षणिक [[ईंधन दक्षता]] प्राप्त करने के लिए किया जा सकता है: बहुमुख निर्वात को कम करने से स्थायी दक्षता बढ़ जाती है{{citation needed|reason=Reliable source needed; source with implementation preferred. Low manifold vacuum may indicate wide open throttle, not high efficiency|date=February 2016}}. बंद-उपरोधक स्थितियों के अंतर्गत एक दुर्बल बहुमुख निर्वात से पता चलता है कि तितलीनुमा वाल्ब या इंजन के आंतरिक घटक ( [[पॉपट वॉल्व|वॉल्व]] या [[पिस्टन रिंग|पिस्टन वलय]]) जीर्ण हुए हैं, इंजन द्वारा अच्छी पंपिंग प्रक्रिया को रोकते हैं और समग्र दक्षता को कम करते हैं।


वैक्यूम वाहन पर [[ ऑटोमोबाइल सहायक शक्ति ]] का एक सामान्य तरीका हुआ करता था। वैक्यूम प्रणाली उम्र के साथ अविश्वसनीय होते जाते हैं क्योंकि वैक्यूम ट्यूबिंग भंगुर हो जाती है और लीक के लिए अतिसंवेदनशील हो जाती है।
निर्वात वाहन पर [[ ऑटोमोबाइल सहायक शक्ति |  सहायक शक्ति]] का एक सामान्य तरीका हुआ करता था। निर्वात प्रणाली अवधि के साथ अविश्वसनीय होते जाते हैं क्योंकि निर्वात  नलिका भंगुर हो जाती है और रिसाव के लिए अतिसंवेदनशील हो जाती है।


==== 1960 से पहले ====
==== 1960 से पहले ====


*विंडशील्ड वाइपर मोटर्स - [[राष्ट्रीय यातायात और मोटर वाहन सुरक्षा अधिनियम]] 1966 द्वारा संयुक्त राज्य अमेरिका में [[संघीय मोटर वाहन सुरक्षा मानक]]ों की शुरुआत से पहले, वायवीय मोटर के साथ [[विंडस्क्रीन वाइपर]] चलाने के लिए बहुमुख निर्वात का उपयोग करना आम था। यह प्रणाली सस्ती और सरल थी, लेकिन इसके परिणामस्वरूप वाइपर का हास्यपूर्ण लेकिन असुरक्षित प्रभाव हुआ, जो इंजन के निष्क्रिय होने पर पूरी गति से काम करता है, क्रूजिंग के समयलगभग आधी गति से काम करता है, और जब चालक पूरी तरह से पैडल दबाता है तो पूरी तरह से रुक जाता है।
*वायुरोधी परिरक्षी  मोटर - [[राष्ट्रीय यातायात और मोटर वाहन सुरक्षा अधिनियम]] 1966 द्वारा संयुक्त राज्य अमेरिका में [[संघीय मोटर वाहन सुरक्षा मानक]] के प्रारंभ से पहले, वायवीय मोटर के साथ [[विंडस्क्रीन वाइपर|वायुरोधक वाइपर]] चलाने के लिए बहुमुख निर्वात का उपयोग करना सामान्य था। यह प्रणाली सस्ती और सरल थी, लेकिन इसके परिणामस्वरूप वाइपर का अद्वितीय लेकिन असुरक्षित प्रभाव हुआ, जो इंजन के निष्क्रिय होने पर पूरी गति से काम करता है, परिभ्रमण के समय लगभग आधी गति से काम करता है, और जब चालक पूरी तरह से पैडल दबाता है तो पूरी तरह से रुक जाता है।
* पावर लॉक मोटर्स
* विद्युत अवरोध मोटर
* Autovac ईंधन चोर,<ref>[http://www.autovac.co.uk/ autovac.co.uk]</ref> जो मुख्य टैंक से ईंधन को एक छोटे सहायक टैंक तक उठाने के लिए वैक्यूम का उपयोग करता है, जहां से यह गुरुत्वाकर्षण द्वारा कार्बोरेटर में प्रवाहित होता है। इसने ईंधन पंप को समाप्त कर दिया, जो शुरुआती कारों में एक अविश्वसनीय वस्तु थी।
* ऑटोवैक ईंधन भारोत्तोलक,<ref>[http://www.autovac.co.uk/ autovac.co.uk]</ref> जो मुख्य टैंक से ईंधन को एक छोटे सहायक टैंक तक उठाने के लिए निर्वात का उपयोग करता है, जहां से यह गुरुत्वाकर्षण द्वारा कार्बोरेटर में प्रवाहित होता है। इसने ईंधन पंप को समाप्त कर दिया, जो प्रारम्भिक कारों में एक अविश्वसनीय वस्तु थी।


==== 1960–1990 ====
==== 1960–1990 EDIT ====
ऑटोमोटिव वैक्यूम प्रणाली 1960 और 1980 के दशक के बीच अपने उपयोग की ऊंचाई पर पहुंच गए। इस समय के समय[[वैक्यूम स्विच]], [[वैक्यूम देरी वाल्व]] और सहायक उपकरणों की एक विशाल विविधता बनाई गई। एक उदाहरण के रूप में, 1967 के [[फोर्ड थंडरबर्ड]] ने वैक्यूम का उपयोग किया:
वाहन निर्वात प्रणाली 1960 और 1980 के दशक के बीच अपने उपयोग की ऊंचाई पर पहुंच गए। इस समय के समय [[वैक्यूम स्विच|निर्वात स्विच]], [[वैक्यूम देरी वाल्व|निर्वात देरी वाल्व]] और सहायक उपकरणों की एक विशाल विविधता बनाई गई। एक उदाहरण के रूप में, 1967 के [[फोर्ड थंडरबर्ड]] ने निर्वात का उपयोग किया:


* [[ इसे खाली रखें ]] | वैक्यूम-असिस्ट ब्रेक सर्वो (पावर ब्रेक) वायुमंडलीय दबाव का उपयोग ब्रेक पर दबाव बढ़ाने के लिए इंजन के बहुमुख निर्वात के खिलाफ दबाते हैं। चूंकि ब्रेक लगाना लगभग हमेशा उपरोधक के बंद होने और जुड़े उच्च बहुमुख निर्वात के साथ होता है, यह प्रणाली सरल और लगभग [[ बेवकूफी भरा सबूत ]] है। उनके एकीकृत ब्रेकिंग प्रणाली को नियंत्रित करने के लिए ट्रेलरों पर वैक्यूम टैंक स्थापित किए गए थे।
* [[ इसे खाली रखें ]] निर्वात-असिस्ट ब्रेक सर्वो (पावर ब्रेक) वायुमंडलीय दबाव का उपयोग ब्रेक पर दबाव बढ़ाने के लिए इंजन के बहुमुख निर्वात के खिलाफ दबाते हैं। चूंकि ब्रेक लगाना लगभग सदैव उपरोधक के बंद होने और जुड़े उच्च बहुमुख निर्वात के साथ होता है, यह प्रणाली सरल और लगभग [[ बेवकूफी भरा सबूत ]] है। उनके एकीकृत ब्रेकिंग प्रणाली को नियंत्रित करने के लिए ट्रेलरों पर निर्वात टैंक स्थापित किए गए थे।
* [[ट्रांसमिशन (यांत्रिकी)]] शिफ्ट नियंत्रण
* [[ट्रांसमिशन (यांत्रिकी)|प्रेषक (यांत्रिकी)]] शिफ्ट नियंत्रण
* छिपे हुए हेडलैंप के लिए दरवाजे
* छिपे हुए हेडलैंप के लिए दरवाजे
* रिमोट ट्रंक कुंडी रिलीज
* रिमोट ट्रंक कुंडी रिलीज
Line 60: Line 60:
* टिल्ट-अवे स्टीयरिंग व्हील रिलीज़
* टिल्ट-अवे स्टीयरिंग व्हील रिलीज़


अन्य आइटम जिन्हें वैक्यूम द्वारा संचालित किया जा सकता है उनमें सम्मिलित हैं:
अन्य आइटम जिन्हें निर्वात द्वारा संचालित किया जा सकता है उनमें सम्मिलित हैं:


* [[निष्कासित वायु पुनर्संचरण]] सोलनॉइड
* [[निष्कासित वायु पुनर्संचरण]] सोलनॉइड
* पावर स्टीयरिंग पंप
* पावर स्टीयरिंग पंप
*फ़्यूल प्रेशर रेगुलेटर
*फ़्यूल दाब रेगुलेटर


==== आधुनिक प्रयोग ====
==== आधुनिक प्रयोग ====
आधुनिक कारों में न्यूनतम मात्रा में सहायक उपकरण होते हैं जो वैक्यूम का उपयोग करते हैं। पहले निर्वात द्वारा चलाए जाने वाले कई उपसाधनों को इलेक्ट्रॉनिक उपसाधनों से बदल दिया गया है। कुछ आधुनिक सामान जो कभी-कभी वैक्यूम का उपयोग करते हैं उनमें सम्मिलित हैं:
आधुनिक कारों में न्यूनतम मात्रा में सहायक उपकरण होते हैं जो निर्वात का उपयोग करते हैं। पहले निर्वात द्वारा चलाए जाने वाले कई उपसाधनों को इलेक्ट्रॉनिक उपसाधनों से बदल दिया गया है। कुछ आधुनिक सामान जो कभी-कभी निर्वात का उपयोग करते हैं उनमें सम्मिलित हैं:


* वैक्यूम सर्वो | वैक्यूम-असिस्ट ब्रेक सर्वो
* निर्वात सर्वो | निर्वात-असिस्ट ब्रेक सर्वो
* [[सकारात्मक क्रैंककेस वेंटिलेशन]] वाल्व
* [[सकारात्मक क्रैंककेस वेंटिलेशन]] वाल्व
* [[कोयले का कनस्तर]]
* [[कोयले का कनस्तर]]
Line 75: Line 75:


=== डीजल इंजनों में बहुमुख निर्वात ===
=== डीजल इंजनों में बहुमुख निर्वात ===
कई डीजल इंजनों में तितली वाल्व उपरोधक नहीं होते हैं। नलिका सीधे हवा के अंतर्ग्राही से जुड़ा होता है और बनाया गया एकमात्र सक्शन अवरोही पिस्टन के कारण होता है, जिसे बढ़ाने के लिए कोई वेंचुरी नहीं होता है, और इंजन की शक्ति को ईंधन अंत:क्षिप्‍त  द्वारा सिलेंडर में इंजेक्ट किए जाने वाले ईंधन की मात्रा को अलग करके नियंत्रित किया जाता है। प्रणाली। यह पेट्रोल इंजन की तुलना में डीजल को अधिक कुशल बनाने में सहायता करता है।
कई डीजल इंजनों में तितलीनुमा वाल्ब उपरोधक नहीं होते हैं। नलिका सीधे वायु के अंतर्ग्राही से जुड़ा होता है और बनाया गया एकमात्र सक्शन अवरोही पिस्टन के कारण होता है, जिसे बढ़ाने के लिए कोई वेंचुरी नहीं होता है, और इंजन की शक्ति को ईंधन अंत:क्षिप्‍त  द्वारा सिलेंडर में इंजेक्ट किए जाने वाले ईंधन की मात्रा को अलग करके नियंत्रित किया जाता है। प्रणाली। यह पेट्रोल इंजन की तुलना में डीजल को अधिक कुशल बनाने में सहायता करता है।


यदि वैक्यूम की आवश्यकता होती है (ऐसे वाहन जिन्हें पेट्रोल और डीजल दोनों इंजनों के साथ लगाया जा सकता है, अक्सर प्रणाली की आवश्यकता होती है), उपरोधक से जुड़े एक तितली वाल्व को नलिका लगाया जा सकता है। यह दक्षता को कम करता है और अभी भी उतना प्रभावी नहीं है क्योंकि यह एक वेंटुरी से जुड़ा नहीं है। चूंकि कम दबाव केवल ओवररन पर बनाया जाता है (जैसे कि बंद उपरोधक के साथ पहाड़ियों से उतरते समय), पेट्रोल इंजन की तरह स्थितियों की एक विस्तृत श्रृंखला पर नहीं, एक वैक्यूम टैंक लगाया जाता है।
यदि निर्वात की आवश्यकता होती है (ऐसे वाहन जिन्हें पेट्रोल और डीजल दोनों इंजनों के साथ लगाया जा सकता है, प्रायः प्रणाली की आवश्यकता होती है), उपरोधक से जुड़े एक तितलीनुमा वाल्ब को नलिका लगाया जा सकता है। यह दक्षता को कम करता है और अभी भी उतना प्रभावी नहीं है क्योंकि यह एक वेंटुरी से जुड़ा नहीं है। चूंकि कम दबाव केवल ओवररन पर बनाया जाता है (जैसे कि बंद उपरोधक के साथ पहाड़ियों से उतरते समय), पेट्रोल इंजन की तरह स्थितियों की एक विस्तृत श्रृंखला पर नहीं, एक निर्वात टैंक लगाया जाता है।


अधिकांश डीजल इंजनों में अब एक अलग वैक्यूम पंप (एग्जॉस्टर) लगा होता है, जो हर समय, सभी इंजन गति पर वैक्यूम प्रदान करता है।
अधिकांश डीजल इंजनों में अब एक अलग निर्वात पंप (एग्जॉस्टर) लगा होता है, जो हर समय, सभी इंजन गति पर निर्वात प्रदान करता है।


कई नए [[बीएमडब्ल्यू]] पेट्रोल इंजन सामान्य चलने में उपरोधक का उपयोग नहीं करते हैं, बल्कि इंजन में प्रवेश करने वाली हवा की मात्रा को नियंत्रित करने के लिए [[वेल्वेट्रोनिक]] वेरिएबल-लिफ्ट अंतर्ग्राही वाल्व का उपयोग करते हैं। डीजल इंजन की तरह, इन इंजनों में बहुमुख निर्वात व्यावहारिक रूप से सम्मिलित नहीं है और ब्रेक सर्वो को शक्ति देने के लिए एक अलग स्रोत का उपयोग किया जाना चाहिए।
कई नए [[बीएमडब्ल्यू]] पेट्रोल इंजन सामान्य चलने में उपरोधक का उपयोग नहीं करते हैं, बल्कि इंजन में प्रवेश करने वाली वायु की मात्रा को नियंत्रित करने के लिए [[वेल्वेट्रोनिक]] वेरिएबल-लिफ्ट अंतर्ग्राही वाल्व का उपयोग करते हैं। डीजल इंजन की तरह, इन इंजनों में बहुमुख निर्वात व्यावहारिक रूप से सम्मिलित नहीं है और ब्रेक सर्वो को शक्ति देने के लिए एक अलग स्रोत का उपयोग किया जाना चाहिए।


==संदर्भ==
==संदर्भ==
Line 88: Line 88:


== यह भी देखें ==
== यह भी देखें ==
* वैक्यूम देरी वाल्व
* निर्वात देरी वाल्व


{{Automotive engine}}
{{Automotive engine}}
Line 95: Line 95:
श्रेणी:आंतरिक दहन इंजन
श्रेणी:आंतरिक दहन इंजन
श्रेणी:इंजन तकनीक
श्रेणी:इंजन तकनीक
केटेगरी: वैक्यूम
केटेगरी: निर्वात




[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 18/04/2023]]
[[Category:Created On 18/04/2023]]

Revision as of 15:51, 23 April 2023

निर्वात नलिका के साथ भ्रमित नहीं होना चाहिए।

बहुमुख निर्वात, या आंतरिक दहन इंजन में इंजन निर्वात, इंजन के अंतर्ग्राही नलिका और पृथ्वी के वायुमंडल के बीच वायु के दबाव में अंतर है।

बहुमुख निर्वात आघात (इंजन) प्रवर्तन आघात (स्ट्रोक) पर पिस्टन की गति का प्रभाव है और इंजन के अंतर्ग्राही नलिका में उपरोधक के माध्यम से अवरुद्ध प्रवाह है। यह इंजन के माध्यम से वायुप्रवाह के प्रतिबंध की मात्रा का एक उपाय है, और इसलिए इंजन में अप्रयुक्त बिजली क्षमता है। कुछ इंजनों में, बहुमुख निर्वात का उपयोग इंजन सहायक उपकरण के संचालन के लिए और क्रैंककेस संवातन प्रणाली के लिए सहायक शक्ति स्त्रोत के रूप में भी किया जाता है।

बहुमुख निर्वात को वेंचुरी प्रभाव के साथ भ्रमित नहीं होना चाहिए, जो कैब्युरटर में बड़े पैमाने पर वायु प्रवाह के अनुपात में दबाव अंतर स्थापित करने और अधिकांश सीमा तक स्थिर वायु/ईंधन अनुपात बनाए रखने के लिए उपयोग किया जाने वाला प्रभाव है। यह हल्के हवाई जहाजों में भी प्रयोग किया जाता है ताकि वायवीय घूर्णाक्षस्थापी उपकरणों के लिए वायु प्रवाह प्रदान किया जा सके।

अवलोकन

आंतरिक दहन इंजन के माध्यम से वायु प्रवाह की दर एक महत्वपूर्ण कारक है जो इंजन द्वारा उत्पन्न शक्ति की मात्रा को निर्धारित करता है। अधिकांश पेट्रोल इंजन को उस प्रवाह को एक उपरोधक के साथ सीमित करके नियंत्रित किया जाता है जो अंतर्ग्राही वायुप्रवाह को प्रतिबंधित करता है, जबकि एक डीजल इंजन सिलेंडर को आपूर्ति की जाने वाली ईंधन की मात्रा से नियंत्रित होता है, और इसलिए इसमें कोई उपरोधक नहीं होता है। बहुमुख निर्वात सभी स्वाभाविक रूप से वायुचूषी इंजन में सम्मिलित होता है जो उपरोधक का उपयोग करते हैं ऑटो चक्र या दो आघात चक्र का उपयोग करने वाले कार्बोरेटर और ईंधन अंत:क्षिप्‍त गैसोलीन इंजन सहित डीजल इंजनों में उपरोधक प्लेट नहीं होते हैं।

इंजन के माध्यम से द्रव्यमान प्रवाह इंजन की घूर्णन दर, इंजन के इंजन विस्थापन और अंतर्ग्राही नलिका में अंतर्ग्राही प्रवाहके घनत्व का उत्पाद (गणित) है। अधिकांश अनुप्रयोगों में घूर्णन दर अनुप्रयोग वाहन में इंजन की गति या अन्य अनुप्रयोगों में मशीनरी की गति द्वारा निर्धारित की जाती है। विस्थापन इंजन ज्यामिति पर निर्भर है, जो सामान्य रूप से इंजन के उपयोग में होने पर समायोज्य नहीं होता है हालांकि अल्पसंख्या मॉडल में यह सुविधा होती है, चर विस्थापन देखें। निविष्टप्रवाह को प्रतिबंधित करने से अंतर्ग्राही नलिका में घनत्व (और इसलिए दबाव) कम हो जाता है, जिससे उत्पादित बिजली की मात्रा कम हो जाती है। यह इंजन अवरोध (इंजन अवरोधन देखें) का एक प्रमुख स्रोत भी है, क्योंकि अंतर्ग्राही नलिका में कम दबाव वाली वायु प्रवर्तन आघात के समयपिस्टन पर कम दबाव प्रदान करती है।

जब उपरोधक (एक कार में, कार त्वरक पेडल अवनमित हो जाता है) खोला जाता है, परिवेशी वायु अंतर्ग्राही को नलिका संभरण के लिए स्वतंत्र होती है, जिससे दबाव (निर्वात भरना) बढ़ जाता है। एक कार्बोरेटर या ईंधन अंत:क्षिप्‍त प्रणाली इंजन को ऊर्जा प्रदान करते हुए, सही अनुपात में वायुप्रवाह में ईंधन जोड़ती है। जब उपरोधक को पूरी तरह से खोल दिया जाता है, तो इंजन का वायु प्रवर्तन प्रणाली पूर्ण वायुमंडलीय दबाव के संपर्क में आ जाता है, और इंजन के माध्यम से अधिकतम वायु प्रवाह प्राप्त होता है। स्वाभाविक रूप से वायुचूषी इंजन में, निर्गम विद्युत परिवेश बैरोमीटर के दबाव से सीमित होती है। अतिभरक और टर्बोचार्जर वायुमंडलीय दबाव के ऊपर दबाव से बहुमुख दाब बढ़ाते हैं।।

आधुनिक विकास

आधुनिक इंजन अंतर्ग्राही नलिका में वायु के दबाव को मापने के लिए नलिका पूर्ण दबाव (एमएपी के रूप में संक्षिप्त) संवेदक का उपयोग करते हैं। बहुमुख निरपेक्ष दाब इंजन के संचालन को अनुकूलित करने के लिए इंजन नियंत्रण इकाई (ईसीयू) द्वारा उपयोग किए जाने वाले कई मापदंडों में से एक है। कुछ अनुप्रयोगों से संपर्क के समय पूर्ण और गेज दबाव के बीच अंतर करना महत्वपूर्ण है, विशेष रूप से वे जो सामान्य संचालन के समय ऊंचाई में परिवर्तन का अनुभव करते हैं।

ईंधन के उपभोग में कमी (संयुक्त राज्य अमेरिका में) कार्बन डाईऑक्साइड उत्सर्जन में कमी (यूरोप में) को अनिवार्य करने वाले सरकारी नियमों से प्रेरित होकर, यात्री कारों और हल्के ट्रकों को विभिन्न प्रकार की तकनीकों (छोटे आकार के इंजन; ताला बक्स, बहु-अनुपात और अत्यधिक संचारण परिवर्ती वाल्व समयन, प्रणोदित प्रेरण, डीजल इंजन, आदि) के साथ निर्धारित किया गया है। जो बहुमुख निर्वात अपर्याप्त या अनुपलब्ध प्रदान करते हैं। विद्युत निर्वात पंप सामान्य रूप से वायुचालित सहायक उपकरण को शक्ति देने के लिए उपयोग किए जाते हैं।

बहुमुख निर्वात बनाम वेंटुरी निर्वात

बहुमुख निर्वात वेंटुरी प्रभाव की तुलना में एक अलग घटना के कारण होता है, जो कार्बोरेटर के अंदर सम्मिलित होता है। वेंटुरी निर्वात वेंटुरी प्रभाव के कारण होता है, जो निश्चित परिवेश स्थितियों (वायु घनत्व और तापमान) के लिए कार्बोरेटर के माध्यम से कुल द्रव्यमान प्रवाह पर निर्भर करता है। कार्बोरेटर का उपयोग करने वाले इंजनों में, वेंचुरी निर्वात इंजन के माध्यम से कुल द्रव्यमान प्रवाह (और इसलिए कुल बिजली उत्पादन) के लगभग आनुपातिक होता है। परिवेश के दबाव (ऊंचाई, मौसम) या तापमान परिवर्तन के रूप में, इस संबंध को बनाए रखने के लिए कार्बोरेटर को समायोजित करने की आवश्यकता हो सकती है।

बहुमुख दाब भी पोर्ट किया जा सकता है। पोर्टिंग उपरोधक प्लेट की गति की सीमा के अंदर दबाव निष्कासन के लिए एक स्थान का चयन कर रहा है। उपरोधक की स्थिति के आधार पर, एक पोर्ट किए गए दबाव निष्कासन या तो उपरोधक के ऊपर या नीचे की ओर हो सकता है। जैसे ही उपरोधक की स्थिति बदलती है, एक पोर्ट किए गए दाब वेध बहुमुख दाब या परिवेश दबाव से चयनात्मक रूप से जुड़ा होता है। अद्वितीय (प्री-ओबीडी-II) इंजन प्रायः प्रज्वलन वितरक और वाहन उत्सर्जन-नियंत्रण घटकों के लिए पोर्टेड बहुमुख दाब निष्कासन का उपयोग करते थे।

कारों में बहुमुख निर्वात

अधिकांश वाहन चार-आघात ओटो चक्र इंजन का उपयोग करते हैं जिसमें कई सिलेंडर (इंजन) समान प्रवेशिका नलिका से जुड़े होते हैं। प्रेरण आघात के समय, पिस्टन सिलेंडर में उतरता है और अंतर्ग्राही वॉल्व खुला रहता है। जैसे ही पिस्टन उतरता है, यह प्रभावी रूप से इसके ऊपर के सिलेंडर में आयतन बढ़ाता है, जिससे कम दबाव बनता है। वायुमंडलीय दबाव नलिका और कार्बोरेटर या ईंधन अंत:क्षिप्‍त के माध्यम से वायु को आघात करता है, जहां इसे ईंधन के साथ मिलाया जाता है। क्योंकि इंजन चक्र में कई सिलेंडर अलग-अलग समय पर कार्य करते हैं, कार्बोरेटर से इंजन तक प्रवेशिका नलिका के माध्यम से लगभग निरंतर दबाव अंतर होता है।

इंजन में प्रवेश करने वाले ईंधन/वायु मिश्रण की मात्रा को नियंत्रित करने के लिए, एक साधारण तितलीनुमा वाल्ब (उपरोधक प्लेट) सामान्य रूप से अंतर्ग्राही नलिका (कार्बोरेटेड इंजनों में कार्बोरेटर के नीचे) के प्रारंभ में लगाया जाता है। तितलीनुमा वाल्ब केवल एक गोलाकार चक्र है जो धुरी पर निर्धारित होती है, जो पाइप के काम के अंदर निर्धारित होती है। यह कार के त्वरक पेडल से जुड़ा होता है, और जब पेडल पूरी तरह से दबाया जाता है और पेडल जारी होने पर पूरी तरह से बंद हो जाता है तो यह पूरी तरह से खुला रहता है। तितलीनुमा वाल्ब में प्रायः एक छोटा निष्क्रिय कटआउट होता है, एक छेद जो वाल्व के पूरी तरह से बंद होने पर भी इंजन में अल्प मात्रा में ईंधन/वायु मिश्रण की स्वीकृति देता है, या कार्बोरेटर के पास अपने स्वयं के निष्क्रिय जेट के साथ एक अलग वायु उपमार्ग होता है।

यदि इंजन लाइट या भारहीन और कम या संवृत उपरोधक के अंतर्गत काम कर रहा है, तो हाई बहुमुख निर्वात होता है। जैसे ही उपरोधक खोला जाता है, इंजन की गति तेजी से बढ़ जाती है। इंजन की गति केवल ईंधन/वायु के मिश्रण की मात्रा से सीमित होती है जो नलिका उपलब्ध है। पूर्ण उपरोधक और कम भार के अंतर्गत, अन्य प्रभाव (जैसे वाल्व फ्लोट, सिलेंडरों में निष्कीय, या प्रज्वलन समय ) इंजन की गति को सीमित करते हैं ताकि बहुमुख दाब बढ़ सके - लेकिन व्यवहार में, नलिका की आंतरिक परतों पर परप्रेरित अवरोध, ऋणात्मक कार्बोरेटर के केंद्र में वेंटुरी की प्रतिबंधात्मक प्रकृति का तात्पर्य है कि एक कम दबाव सदैव स्थापित किया जाएगा क्योंकि इंजन की आंतरिक मात्रा वायु की मात्रा से अधिक होती है जो नलिका अधिक देने में सक्षम होती है।

यदि इंजन व्यापक उपरोधक के प्रारंभ पर भारी भार के अंतर्गत काम कर रहा है जैसे विराम से ​​​​त्वरित करना या कार को पहाड़ी पर कर्षण तो इंजन की गति भार से सीमित होती है और न्यूनतम निर्वात बनाया जाएगा। इंजन की गति कम है लेकिन तितलीनुमा वाल्ब पूरी तरह से खुला है। चूँकि पिस्टन बिना किसी भार की तुलना में अधिक धीरे-धीरे उतर रहे हैं, दबाव अंतर कम चिह्नित हैं और प्रेरण प्रणाली में परप्रेरित अवरोध नगण्य है। इंजन पूरे परिवेश के दबाव में वायु को सिलेंडर में खींचता है।

कुछ स्थितियों में अधिक निर्वात निर्मित होता है। अवमंदन पर या पहाड़ी से उतरते समय, उपरोधक बंद हो जाएगा और गति को नियंत्रित करने के लिए एक निम्न गियर का चयन किया जाएगा। इंजन तेजी से घूम रहा होगा क्योंकि सड़क के पहिए और प्रेषक तेजी से चल रहे हैं, लेकिन तितलीनुमा वाल्ब पूरी तरह से बंद हो जाएगा। इंजन के माध्यम से वायु का प्रवाह उपरोधक द्वारा दृढ़ता से प्रतिबंधित है, तितलीनुमा वाल्ब के इंजन की तरफ एक मजबूत निर्वात पैदा करता है जो इंजन की गति को सीमित करता है। इंजन ब्रेकिंग के रूप में जानी जाने वाली इस घटना का उपयोग त्वरण को रोकने या यहां तक ​​​​कि न्यूनतम या बिना अवरोध के उपयोग को मंद (जैसे कि लंबी या खड़ी पहाड़ी से उतरते समय) करने के लिए किया जाता है। इस निर्वात अवरोधन को संपीड़न अवरोधन (उर्फ जेक ब्रेक), या निर्वातक ब्रेक (अवरोध) के साथ भ्रमित नहीं होना चाहिए, जो प्रायः बड़े डीजल ट्रकों पर उपयोग किया जाता है। डीजल के साथ इंजन अवरोधन के लिए ऐसे उपकरण आवश्यक हैं क्योंकि वाहन को अवरोध करने के लिए पर्याप्त निर्वात बनाने के लिए वायु के प्रवाह को प्रतिबंधित करने के लिए उनमें उपरोधक की कमी होती है।

बहुमुख निर्वात का उपयोग

ऑटोवैक ईंधन भारोत्तोलक दोनों बसों में लाल रंग का ऑटोवैक टैंक बाएँ अगले पहिये के ऊपर और पीछे देखा जा सकता है।

यह कम (या ऋणात्मक) दबाव उपयोग में लाया जा सकता है। चालक को यह संकेत देने के लिए बहुमुख दाब मापने वाला एक दबाव गेज लगाया जा सकता है कि इंजन कार्य कर रहा है और इसका उपयोग चालन आदतों को समायोजित करके अधिकतम क्षणिक ईंधन दक्षता प्राप्त करने के लिए किया जा सकता है: बहुमुख निर्वात को कम करने से स्थायी दक्षता बढ़ जाती है[citation needed]. बंद-उपरोधक स्थितियों के अंतर्गत एक दुर्बल बहुमुख निर्वात से पता चलता है कि तितलीनुमा वाल्ब या इंजन के आंतरिक घटक ( वॉल्व या पिस्टन वलय) जीर्ण हुए हैं, इंजन द्वारा अच्छी पंपिंग प्रक्रिया को रोकते हैं और समग्र दक्षता को कम करते हैं।

निर्वात वाहन पर सहायक शक्ति का एक सामान्य तरीका हुआ करता था। निर्वात प्रणाली अवधि के साथ अविश्वसनीय होते जाते हैं क्योंकि निर्वात नलिका भंगुर हो जाती है और रिसाव के लिए अतिसंवेदनशील हो जाती है।

1960 से पहले

  • वायुरोधी परिरक्षी मोटर - राष्ट्रीय यातायात और मोटर वाहन सुरक्षा अधिनियम 1966 द्वारा संयुक्त राज्य अमेरिका में संघीय मोटर वाहन सुरक्षा मानक के प्रारंभ से पहले, वायवीय मोटर के साथ वायुरोधक वाइपर चलाने के लिए बहुमुख निर्वात का उपयोग करना सामान्य था। यह प्रणाली सस्ती और सरल थी, लेकिन इसके परिणामस्वरूप वाइपर का अद्वितीय लेकिन असुरक्षित प्रभाव हुआ, जो इंजन के निष्क्रिय होने पर पूरी गति से काम करता है, परिभ्रमण के समय लगभग आधी गति से काम करता है, और जब चालक पूरी तरह से पैडल दबाता है तो पूरी तरह से रुक जाता है।
  • विद्युत अवरोध मोटर
  • ऑटोवैक ईंधन भारोत्तोलक,[1] जो मुख्य टैंक से ईंधन को एक छोटे सहायक टैंक तक उठाने के लिए निर्वात का उपयोग करता है, जहां से यह गुरुत्वाकर्षण द्वारा कार्बोरेटर में प्रवाहित होता है। इसने ईंधन पंप को समाप्त कर दिया, जो प्रारम्भिक कारों में एक अविश्वसनीय वस्तु थी।

1960–1990 EDIT

वाहन निर्वात प्रणाली 1960 और 1980 के दशक के बीच अपने उपयोग की ऊंचाई पर पहुंच गए। इस समय के समय निर्वात स्विच, निर्वात देरी वाल्व और सहायक उपकरणों की एक विशाल विविधता बनाई गई। एक उदाहरण के रूप में, 1967 के फोर्ड थंडरबर्ड ने निर्वात का उपयोग किया:

  • इसे खाली रखें निर्वात-असिस्ट ब्रेक सर्वो (पावर ब्रेक) वायुमंडलीय दबाव का उपयोग ब्रेक पर दबाव बढ़ाने के लिए इंजन के बहुमुख निर्वात के खिलाफ दबाते हैं। चूंकि ब्रेक लगाना लगभग सदैव उपरोधक के बंद होने और जुड़े उच्च बहुमुख निर्वात के साथ होता है, यह प्रणाली सरल और लगभग बेवकूफी भरा सबूत है। उनके एकीकृत ब्रेकिंग प्रणाली को नियंत्रित करने के लिए ट्रेलरों पर निर्वात टैंक स्थापित किए गए थे।
  • प्रेषक (यांत्रिकी) शिफ्ट नियंत्रण
  • छिपे हुए हेडलैंप के लिए दरवाजे
  • रिमोट ट्रंक कुंडी रिलीज
  • बिजली के दरवाजे का ताला
  • एचवीएसी वायु रूटिंग - वाहन एचवीएसी प्रणाली ने वायुप्रवाह और तापमान को नियंत्रित करने वाले एक्ट्यूएटर्स को चलाने के लिए बहुमुख निर्वात का इस्तेमाल किया।
  • हीटर कोर वाल्व का नियंत्रण
  • रियर केबिन वेंट नियंत्रण
  • टिल्ट-अवे स्टीयरिंग व्हील रिलीज़

अन्य आइटम जिन्हें निर्वात द्वारा संचालित किया जा सकता है उनमें सम्मिलित हैं:

आधुनिक प्रयोग

आधुनिक कारों में न्यूनतम मात्रा में सहायक उपकरण होते हैं जो निर्वात का उपयोग करते हैं। पहले निर्वात द्वारा चलाए जाने वाले कई उपसाधनों को इलेक्ट्रॉनिक उपसाधनों से बदल दिया गया है। कुछ आधुनिक सामान जो कभी-कभी निर्वात का उपयोग करते हैं उनमें सम्मिलित हैं:

डीजल इंजनों में बहुमुख निर्वात

कई डीजल इंजनों में तितलीनुमा वाल्ब उपरोधक नहीं होते हैं। नलिका सीधे वायु के अंतर्ग्राही से जुड़ा होता है और बनाया गया एकमात्र सक्शन अवरोही पिस्टन के कारण होता है, जिसे बढ़ाने के लिए कोई वेंचुरी नहीं होता है, और इंजन की शक्ति को ईंधन अंत:क्षिप्‍त द्वारा सिलेंडर में इंजेक्ट किए जाने वाले ईंधन की मात्रा को अलग करके नियंत्रित किया जाता है। प्रणाली। यह पेट्रोल इंजन की तुलना में डीजल को अधिक कुशल बनाने में सहायता करता है।

यदि निर्वात की आवश्यकता होती है (ऐसे वाहन जिन्हें पेट्रोल और डीजल दोनों इंजनों के साथ लगाया जा सकता है, प्रायः प्रणाली की आवश्यकता होती है), उपरोधक से जुड़े एक तितलीनुमा वाल्ब को नलिका लगाया जा सकता है। यह दक्षता को कम करता है और अभी भी उतना प्रभावी नहीं है क्योंकि यह एक वेंटुरी से जुड़ा नहीं है। चूंकि कम दबाव केवल ओवररन पर बनाया जाता है (जैसे कि बंद उपरोधक के साथ पहाड़ियों से उतरते समय), पेट्रोल इंजन की तरह स्थितियों की एक विस्तृत श्रृंखला पर नहीं, एक निर्वात टैंक लगाया जाता है।

अधिकांश डीजल इंजनों में अब एक अलग निर्वात पंप (एग्जॉस्टर) लगा होता है, जो हर समय, सभी इंजन गति पर निर्वात प्रदान करता है।

कई नए बीएमडब्ल्यू पेट्रोल इंजन सामान्य चलने में उपरोधक का उपयोग नहीं करते हैं, बल्कि इंजन में प्रवेश करने वाली वायु की मात्रा को नियंत्रित करने के लिए वेल्वेट्रोनिक वेरिएबल-लिफ्ट अंतर्ग्राही वाल्व का उपयोग करते हैं। डीजल इंजन की तरह, इन इंजनों में बहुमुख निर्वात व्यावहारिक रूप से सम्मिलित नहीं है और ब्रेक सर्वो को शक्ति देने के लिए एक अलग स्रोत का उपयोग किया जाना चाहिए।

संदर्भ


यह भी देखें

  • निर्वात देरी वाल्व

श्रेणी:आंतरिक दहन इंजन श्रेणी:इंजन तकनीक केटेगरी: निर्वात