पॉलिमर भौतिकी: Difference between revisions

From Vigyanwiki
(Created page with "पॉलीमर भौतिकी भौतिकी का क्षेत्र है जो क्रमशः पॉलिमर, उनके उतार-च...")
 
No edit summary
Line 1: Line 1:
[[ पॉलीमर ]] भौतिकी भौतिकी का क्षेत्र है जो क्रमशः पॉलिमर, उनके उतार-चढ़ाव, सातत्य यांत्रिकी, साथ ही पॉलिमर और [[मोनोमर]]्स के क्षरण और [[बहुलकीकरण]] से जुड़े रासायनिक कैनेटीक्स का अध्ययन करता है।<ref name=flory_53>पी। फ्लोरी, पॉलिमर केमिस्ट्री के सिद्धांत, कॉर्नेल यूनिवर्सिटी प्रेस, 1953। {{ISBN|0-8014-0134-8}}.</रेफरी><ref name=dg_79>पियरे गाइल्स डे जेनेस, स्केलिंग कॉन्सेप्ट्स इन पॉलीमर फिजिक्स कॉर्नेल यूनिवर्सिटी प्रेस इथाका और लंदन, 1979</ref><ref name=d_e_86>एम. दोई और एस. एफ. एडवर्ड्स, द थ्योरी ऑफ़ पॉलीमर डायनामिक्स ऑक्सफ़ोर्ड यूनिवर्सिटी इंक एनवाई, 1986</ref><ref>Michael Rubinstein and Ralph H. Colby, ''Polymer Physics'' Oxford University Press, 2003</ref>
[[ पॉलीमर |पॉलीमर]] भौतिकी का क्षेत्र है जो क्रमशः पॉलिमर, उनके उतार-चढ़ाव, सातत्य यांत्रिकी, साथ ही पॉलिमर और [[मोनोमर]]्स के क्षरण और [[बहुलकीकरण]] से जुड़े रासायनिक कैनेटीक्स का अध्ययन करता है।<ref name=flory_53>पी। फ्लोरी, पॉलिमर केमिस्ट्री के सिद्धांत, कॉर्नेल यूनिवर्सिटी प्रेस, 1953। {{ISBN|0-8014-0134-8}}.</रेफरी><ref name=dg_79>पियरे गाइल्स डे जेनेस, स्केलिंग कॉन्सेप्ट्स इन पॉलीमर फिजिक्स कॉर्नेल यूनिवर्सिटी प्रेस इथाका और लंदन, 1979</ref><ref name=d_e_86>एम. दोई और एस. एफ. एडवर्ड्स, द थ्योरी ऑफ़ पॉलीमर डायनामिक्स ऑक्सफ़ोर्ड यूनिवर्सिटी इंक एनवाई, 1986</ref><ref>Michael Rubinstein and Ralph H. Colby, ''Polymer Physics'' Oxford University Press, 2003</ref>
 
जबकि यह [[संघनित पदार्थ भौतिकी]] के परिप्रेक्ष्य पर केंद्रित है, बहुलक भौतिकी मूल रूप से [[सांख्यिकीय भौतिकी]] की एक शाखा है। पॉलिमर भौतिकी और [[बहुलक रसायन]] विज्ञान भी [[बहुलक विज्ञान]] के क्षेत्र से संबंधित हैं, जहाँ इसे पॉलिमर का अनुप्रयुक्त भाग माना जाता है।
जबकि यह [[संघनित पदार्थ भौतिकी]] के परिप्रेक्ष्य पर केंद्रित है, बहुलक भौतिकी मूल रूप से [[सांख्यिकीय भौतिकी]] की एक शाखा है। पॉलिमर भौतिकी और [[बहुलक रसायन]] विज्ञान भी [[बहुलक विज्ञान]] के क्षेत्र से संबंधित हैं, जहाँ इसे पॉलिमर का अनुप्रयुक्त भाग माना जाता है।


पॉलिमर बड़े अणु होते हैं और इस प्रकार नियतात्मक पद्धति का उपयोग करके हल करने के लिए बहुत जटिल होते हैं। फिर भी, सांख्यिकीय दृष्टिकोण परिणाम दे सकते हैं और अक्सर प्रासंगिक होते हैं, क्योंकि बड़े पॉलिमर (अर्थात्, कई मोनोमर्स वाले पॉलिमर) असीम रूप से कई मोनोमर्स की [[थर्मोडायनामिक सीमा]] में कुशलता से वर्णित हैं (हालांकि वास्तविक आकार स्पष्ट रूप से परिमित है)।
पॉलिमर बड़े अणु होते हैं और इस प्रकार नियतात्मक पद्धति का उपयोग करके हल करने के लिए बहुत जटिल होते हैं। फिर भी, सांख्यिकीय दृष्टिकोण परिणाम दे सकते हैं और अधिकांशतः प्रासंगिक होते हैं, क्योंकि बड़े पॉलिमर (अर्थात्, कई मोनोमर्स वाले पॉलिमर) असीम रूप से कई मोनोमर्स की [[थर्मोडायनामिक सीमा]] में कुशलता से वर्णित हैं (चूंकि वास्तविक बनावट स्पष्ट रूप से परिमित है)।


थर्मल उतार-चढ़ाव तरल समाधानों में पॉलिमर के आकार को लगातार प्रभावित करते हैं, और उनके प्रभाव को मॉडलिंग करने के लिए [[सांख्यिकीय यांत्रिकी]] और गतिकी के सिद्धांतों का उपयोग करने की आवश्यकता होती है। एक परिणाम के रूप में, तापमान समाधान में पॉलिमर के भौतिक व्यवहार को दृढ़ता से प्रभावित करता है, जिससे चरण संक्रमण होता है, पिघलता है, और इसी तरह।
थर्मल उतार-चढ़ाव तरल समाधानों में पॉलिमर के बनावट को लगातार प्रभावित करते हैं, और उनके प्रभाव को नमूनािंग करने के लिए [[सांख्यिकीय यांत्रिकी]] और गतिकी के सिद्धांतों का उपयोग करने की आवश्यकता होती है। एक परिणाम के रूप में, तापमान समाधान में पॉलिमर के भौतिक व्यवहार को दृढ़ता से प्रभावित करता है, जिससे चरण संक्रमण होता है, पिघलता है, और इसी प्रकार।


बहुलक भौतिकी के लिए सांख्यिकीय दृष्टिकोण एक बहुलक और या तो एक [[एक प्रकार कि गति]], या अन्य प्रकार के एक यादृच्छिक चलने के बीच समानता पर आधारित है, [[आत्म-परहेज चलना]]। सरल यादृच्छिक चलने के अनुरूप, सबसे सरल संभव बहुलक मॉडल आदर्श श्रृंखला द्वारा प्रस्तुत किया जाता है। पॉलिमर लक्षण वर्णन के लिए प्रायोगिक दृष्टिकोण भी सामान्य हैं, [[बहुलक लक्षण वर्णन]] विधियों का उपयोग करते हुए, जैसे कि आकार बहिष्करण क्रोमैटोग्राफी, [[विस्कोमेट्री]], गतिशील प्रकाश बिखरने और पॉलिमरराइजेशन रिएक्शन्स ([[ACOMP]]) की स्वचालित निरंतर ऑनलाइन निगरानी।<ref>US patent 6052184 and US Patent 6653150, other patents pending</ref><ref>F. H. Florenzano; R. Strelitzki; W. F. Reed, "Absolute, Online Monitoring of Polymerization Reactions", Macromolecules 1998, 31(21), 7226-7238</ref> पॉलिमर के रासायनिक, भौतिक और भौतिक गुणों का निर्धारण करने के लिए। इन प्रयोगात्मक तरीकों ने पॉलिमर के गणितीय मॉडलिंग और यहां तक ​​कि पॉलिमर के गुणों की बेहतर समझ के लिए भी मदद की।
बहुलक भौतिकी के लिए सांख्यिकीय दृष्टिकोण एक बहुलक और या तो एक [[एक प्रकार कि गति]], या अन्य प्रकार के एक यादृच्छिक चलने के बीच समानता पर आधारित है, [[आत्म-परहेज चलना]]। सरल यादृच्छिक चलने के अनुरूप, सबसे सरल संभव बहुलक नमूना आदर्श श्रृंखला द्वारा प्रस्तुत किया जाता है। पॉलिमर लक्षण वर्णन के लिए प्रायोगिक दृष्टिकोण भी सामान्य हैं, [[बहुलक लक्षण वर्णन]] विधियों का उपयोग करते हुए, जैसे कि बनावट बहिष्करण क्रोमैटोग्राफी, [[विस्कोमेट्री]], गतिशील प्रकाश बिखरने और पॉलिमरराइजेशन रिएक्शन्स ([[ACOMP]]) की स्वचालित निरंतर ऑनलाइन देख-रेख।<ref>US patent 6052184 and US Patent 6653150, other patents pending</ref><ref>F. H. Florenzano; R. Strelitzki; W. F. Reed, "Absolute, Online Monitoring of Polymerization Reactions", Macromolecules 1998, 31(21), 7226-7238</ref> पॉलिमर के रासायनिक, भौतिक और भौतिक गुणों का निर्धारण करने के लिए। इन प्रयोगात्मक तरीकों ने पॉलिमर के गणितीय नमूनािंग और यहां तक ​​कि पॉलिमर के गुणों की उत्तम समझ के लिए भी मदद की


* [[पॉल फ्लोरी]] को बहुलक भौतिकी के क्षेत्र की स्थापना करने वाला पहला वैज्ञानिक माना जाता है।<ref name=flory_53/>* फ्रांसीसी वैज्ञानिकों ने 70 के दशक से बहुत योगदान दिया है (उदाहरण के लिए [[पियरे-गिल्स डी गेनेस]], जे डेस क्लोइज़ॉक्स)।<ref name=dg_79/><ref>{{cite book| author1-last=des Cloiseaux| author1-first= Jacques| author2-last=Jannink| author2-first= Gerard|title=समाधान में पॉलिमर|publisher=Oxford University Press|date=1991| doi= 10.1002/pola.1992.080300733}}</ref>
* [[पॉल फ्लोरी]] को बहुलक भौतिकी के क्षेत्र की स्थापना करने वाला पहला वैज्ञानिक माना जाता है।<ref name=flory_53/>* फ्रांसीसी वैज्ञानिकों ने 70 के दशक से बहुत योगदान दिया है (उदाहरण के लिए [[पियरे-गिल्स डी गेनेस]], जे डेस क्लोइज़ॉक्स)।<ref name=dg_79/><ref>{{cite book| author1-last=des Cloiseaux| author1-first= Jacques| author2-last=Jannink| author2-first= Gerard|title=समाधान में पॉलिमर|publisher=Oxford University Press|date=1991| doi= 10.1002/pola.1992.080300733}}</ref>
Line 13: Line 14:
{{Condensed matter physics}}
{{Condensed matter physics}}


== मॉडल ==
== नमूना ==


बहुलक श्रृंखलाओं के मॉडल दो प्रकारों में विभाजित होते हैं: आदर्श मॉडल और वास्तविक मॉडल। आदर्श श्रृंखला मॉडल मानते हैं कि श्रृंखला मोनोमर्स के बीच कोई अंतःक्रिया नहीं होती है। यह धारणा कुछ बहुलक प्रणालियों के लिए मान्य है, जहां मोनोमर के बीच सकारात्मक और नकारात्मक बातचीत प्रभावी रूप से रद्द हो जाती है। आदर्श श्रृंखला मॉडल अधिक जटिल प्रणालियों की जांच के लिए एक अच्छा प्रारंभिक बिंदु प्रदान करते हैं और अधिक पैरामीटर वाले समीकरणों के लिए बेहतर अनुकूल हैं।
बहुलक श्रृंखलाओं के नमूना दो प्रकारों में विभाजित होते हैं: आदर्श नमूना और वास्तविक नमूना। आदर्श श्रृंखला नमूना मानते हैं कि श्रृंखला मोनोमर्स के बीच कोई अंतःक्रिया नहीं होती है। यह धारणा कुछ बहुलक प्रणालियों के लिए मान्य है, जहां मोनोमर के बीच सकारात्मक और नकारात्मक बातचीत प्रभावी रूप से रद्द हो जाती है। आदर्श श्रृंखला नमूना अधिक जटिल प्रणालियों की जांच के लिए एक अच्छा प्रारंभिक बिंदु प्रदान करते हैं और अधिक पैरामीटर वाले समीकरणों के लिए उत्तम अनुकूल हैं।


=== आदर्श जंजीरें ===
=== आदर्श जंजीरें ===
{{anchor|Ideal Chains}}
* स्वतंत्र रूप से जुड़ी श्रृंखला बहुलक का सबसे सरल नमूना है। इस नमूना में, निश्चित लंबाई के बहुलक खंड रैखिक रूप से जुड़े हुए हैं, और सभी बंधन और मरोड़ कोण परिवर्तनीय हैं।<ref>H. Yamakawa, "Helical Wormlike Chains in Polymer Solution", (Springer Verlag, Berlin, 1997)</ref> इसलिए बहुलक को एक साधारण यादृच्छिक चाल और आदर्श श्रृंखला द्वारा वर्णित किया जा सकता है। बॉन्ड स्ट्रेचिंग का प्रतिनिधित्व करने के लिए एक्स्टेंसिबल सेगमेंट को सम्मलित करने के लिए नमूना को बढ़ाया जा सकता है।<ref name=BSG>{{cite journal|last1=Buche|first1=M.R.|last2=Silberstein|first2=M.N.|last3=Grutzik|first3=S.J.|title=एक्स्टेंसिबल लिंक के साथ स्वतंत्र रूप से जुड़ी हुई जंजीर|journal=Phys. Rev. E|volume=106|pages=024502|year=2022|issue=2–1 |doi=10.1103/PhysRevE.106.024502|pmid=36109919 |arxiv=2203.05421 |s2cid=247362917 }}</ref>
 
* स्वतंत्र रूप से घूमने वाली श्रृंखला इस बात को ध्यान में रखते हुए स्वतंत्र रूप से जुड़ी श्रृंखला नमूना में सुधार करती है कि विशिष्ट रासायनिक बंधन के कारण बहुलक खंड निकटतम इकाइयों के लिए एक निश्चित बंधन कोण बनाते हैं। इस निश्चित कोण के अनुसार, खंड अभी भी घूमने के लिए स्वतंत्र हैं और सभी मरोड़ वाले कोण समान रूप से होने की संभावना है।
* स्वतंत्र रूप से जुड़ी श्रृंखला बहुलक का सबसे सरल मॉडल है। इस मॉडल में, निश्चित लंबाई के बहुलक खंड रैखिक रूप से जुड़े हुए हैं, और सभी बंधन और मरोड़ कोण परिवर्तनीय हैं।<ref>H. Yamakawa, "Helical Wormlike Chains in Polymer Solution", (Springer Verlag, Berlin, 1997)</ref> इसलिए बहुलक को एक साधारण यादृच्छिक चाल और आदर्श श्रृंखला द्वारा वर्णित किया जा सकता है। बॉन्ड स्ट्रेचिंग का प्रतिनिधित्व करने के लिए एक्स्टेंसिबल सेगमेंट को शामिल करने के लिए मॉडल को बढ़ाया जा सकता है।<ref name=BSG>{{cite journal|last1=Buche|first1=M.R.|last2=Silberstein|first2=M.N.|last3=Grutzik|first3=S.J.|title=एक्स्टेंसिबल लिंक के साथ स्वतंत्र रूप से जुड़ी हुई जंजीर|journal=Phys. Rev. E|volume=106|pages=024502|year=2022|issue=2–1 |doi=10.1103/PhysRevE.106.024502|pmid=36109919 |arxiv=2203.05421 |s2cid=247362917 }}</ref>
* बाधित रोटेशन नमूना मानता है कि मरोड़ कोण एक संभावित ऊर्जा से बाधित है। यह प्रत्येक मरोड़ कोण की संभाव्यता को [[बोल्ट्जमान कारक]] के समानुपाती बनाता है:
* स्वतंत्र रूप से घूमने वाली श्रृंखला इस बात को ध्यान में रखते हुए स्वतंत्र रूप से जुड़ी श्रृंखला मॉडल में सुधार करती है कि विशिष्ट रासायनिक बंधन के कारण बहुलक खंड पड़ोसी इकाइयों के लिए एक निश्चित बंधन कोण बनाते हैं। इस निश्चित कोण के तहत, खंड अभी भी घूमने के लिए स्वतंत्र हैं और सभी मरोड़ वाले कोण समान रूप से होने की संभावना है।
* बाधित रोटेशन मॉडल मानता है कि मरोड़ कोण एक संभावित ऊर्जा से बाधित है। यह प्रत्येक मरोड़ कोण की संभाव्यता को [[बोल्ट्जमान कारक]] के समानुपाती बनाता है:


:<math>P(\theta)\propto{}\exp\left(-U(\theta)/kT\right)</math>, कहाँ <math>U(\theta)</math> के प्रत्येक मूल्य की संभावना का निर्धारण करने वाली क्षमता है <math>\theta</math>.
:<math>P(\theta)\propto{}\exp\left(-U(\theta)/kT\right)</math>, कहाँ <math>U(\theta)</math> के प्रत्येक मूल्य की संभावना का निर्धारण करने वाली क्षमता है <math>\theta</math>.


* घूर्णी समावयवी अवस्था मॉडल में अनुमत मरोड़ कोण घूर्णी स्थितिज ऊर्जा में मिनीमा की स्थिति द्वारा निर्धारित किए जाते हैं। बॉन्ड की लंबाई और बॉन्ड एंगल स्थिर हैं।
* घूर्णी समावयवी अवस्था नमूना में अनुमत मरोड़ कोण घूर्णी स्थितिज ऊर्जा में मिनीमा की स्थिति द्वारा निर्धारित किए जाते हैं। बॉन्ड की लंबाई और बॉन्ड एंगल स्थिर हैं।
* कृमि जैसी शृंखला एक अधिक जटिल मॉडल है। यह दृढ़ता की लंबाई को ध्यान में रखता है। पॉलिमर पूरी तरह से लचीले नहीं होते हैं; उन्हें झुकाने के लिए ऊर्जा की आवश्यकता होती है। [[दृढ़ता लंबाई]] के नीचे लंबाई के पैमाने पर, बहुलक कमोबेश एक कठोर छड़ की तरह व्यवहार करता है।
* कृमि जैसी शृंखला एक अधिक जटिल नमूना है। यह दृढ़ता की लंबाई को ध्यान में रखता है। पॉलिमर पूरी प्रकार से लचीले नहीं होते हैं; उन्हें झुकाने के लिए ऊर्जा की आवश्यकता होती है। [[दृढ़ता लंबाई]] के नीचे लंबाई के पैमाने पर, बहुलक कमोबेश एक कठोर छड़ की प्रकार व्यवहार करता है।


=== असली जंजीर ===
=== असली जंजीर ===


चेन मोनोमर्स के बीच बातचीत को बहिष्कृत मात्रा के रूप में मॉडलिंग किया जा सकता है # बहुलक विज्ञान में। यह श्रृंखला की संरूपण संभावनाओं में कमी का कारण बनता है, और एक स्व-परहेज यादृच्छिक चलने की ओर जाता है। स्व-परहेज रैंडम वॉक में साधारण रैंडम वॉक के अलग-अलग आँकड़े होते हैं।
चेन मोनोमर्स के बीच बातचीत को बहिष्कृत मात्रा के रूप में नमूनािंग किया जा सकता है # बहुलक विज्ञान में। यह श्रृंखला की संरूपण संभावनाओं में कमी का कारण बनता है, और एक स्व-परहेज यादृच्छिक चलने की ओर जाता है। स्व-परहेज रैंडम वॉक में साधारण रैंडम वॉक के भिन्न-भिन्न आँकड़े होते हैं।


== विलायक और तापमान प्रभाव ==
== विलायक और तापमान प्रभाव ==
{{Unreferenced section|date=November 2016}}
एकल बहुलक श्रृंखला के आँकड़े विलायक में बहुलक की घुलनशीलता पर निर्भर करते हैं। एक विलायक के लिए जिसमें बहुलक बहुत घुलनशील (एक अच्छा विलायक) होता है, श्रृंखला अधिक विस्तारित होती है, जबकि एक विलायक के लिए जिसमें बहुलक अघुलनशील या बकठिनाई घुलनशील (एक खराब विलायक) होता है, श्रृंखला खंड एक दूसरे के करीब रहते हैं। एक बहुत खराब विलायक की सीमा में बहुलक श्रृंखला मात्र एक कठिन क्षेत्र बनाने के लिए ढह जाती है, जबकि एक अच्छे विलायक में बहुलक-द्रव संपर्कों की संख्या को अधिकतम करने के लिए श्रृंखला सूज जाती है। इस स्थिति के लिए फ्लोरी के माध्य क्षेत्र दृष्टिकोण का उपयोग करके परिभ्रमण की त्रिज्या का अनुमान लगाया जाता है, जो कि परिभ्रमण की त्रिज्या के लिए एक स्केलिंग उत्पन्न करता है:
एकल बहुलक श्रृंखला के आँकड़े विलायक में बहुलक की घुलनशीलता पर निर्भर करते हैं। एक विलायक के लिए जिसमें बहुलक बहुत घुलनशील (एक अच्छा विलायक) होता है, श्रृंखला अधिक विस्तारित होती है, जबकि एक विलायक के लिए जिसमें बहुलक अघुलनशील या बमुश्किल घुलनशील (एक खराब विलायक) होता है, श्रृंखला खंड एक दूसरे के करीब रहते हैं। एक बहुत खराब विलायक की सीमा में बहुलक श्रृंखला केवल एक कठिन क्षेत्र बनाने के लिए ढह जाती है, जबकि एक अच्छे विलायक में बहुलक-द्रव संपर्कों की संख्या को अधिकतम करने के लिए श्रृंखला सूज जाती है। इस मामले के लिए फ्लोरी के माध्य क्षेत्र दृष्टिकोण का उपयोग करके परिभ्रमण की त्रिज्या का अनुमान लगाया जाता है, जो कि परिभ्रमण की त्रिज्या के लिए एक स्केलिंग उत्पन्न करता है:
::<math>R_g \sim N^\nu</math>,
::<math>R_g \sim N^\nu</math>,
कहाँ <math>R_g</math> बहुलक के परिभ्रमण की त्रिज्या है, <math>N</math> श्रृंखला के बंधन खंडों (पोलीमराइजेशन की डिग्री के बराबर) की संख्या है और <math>\nu</math> फ्लोरी प्रतिपादक है।
कहाँ <math>R_g</math> बहुलक के परिभ्रमण की त्रिज्या है, <math>N</math> श्रृंखला के बंधन खंडों (पोलीमराइजेशन की डिग्री के बराबर) की संख्या है और <math>\nu</math> फ्लोरी प्रतिपादक है।


अच्छे विलायक के लिए, <math>\nu\approx3/5</math>; गरीब विलायक के लिए, <math>\nu=1/3</math>. इसलिए, अच्छे विलायक में बहुलक का आकार बड़ा होता है और यह [[भग्न]] वस्तु की तरह व्यवहार करता है। खराब विलायक में यह एक ठोस गोले की तरह व्यवहार करता है।
अच्छे विलायक के लिए, <math>\nu\approx3/5</math>; गरीब विलायक के लिए, <math>\nu=1/3</math>. इसलिए, अच्छे विलायक में बहुलक का बनावट बड़ा होता है और यह [[भग्न]] वस्तु की प्रकार व्यवहार करता है। खराब विलायक में यह एक ठोस गोले की प्रकार व्यवहार करता है।


तथाकथित में <math>\theta</math> विलायक, <math>\nu=1/2</math>, जो साधारण रैंडम वॉक का परिणाम है। श्रृंखला ऐसा व्यवहार करती है मानो वह एक आदर्श श्रृंखला हो।
तथाकथित में <math>\theta</math> विलायक, <math>\nu=1/2</math>, जो साधारण रैंडम वॉक का परिणाम है। श्रृंखला ऐसा व्यवहार करती है मानो वह एक आदर्श श्रृंखला हो।


विलायक की गुणवत्ता तापमान पर भी निर्भर करती है। एक लचीले बहुलक के लिए, कम तापमान खराब गुणवत्ता के अनुरूप हो सकता है और उच्च तापमान उसी विलायक को अच्छा बनाता है। एक विशेष तापमान जिसे थीटा (θ) तापमान कहा जाता है, पर विलायक एक आदर्श श्रृंखला की तरह व्यवहार करता है।
विलायक की गुणवत्ता तापमान पर भी निर्भर करती है। एक लचीले बहुलक के लिए, कम तापमान खराब गुणवत्ता के अनुरूप हो सकता है और उच्च तापमान उसी विलायक को अच्छा बनाता है। एक विशेष तापमान जिसे थीटा (θ) तापमान कहा जाता है, पर विलायक एक आदर्श श्रृंखला की प्रकार व्यवहार करता है।


== बहिष्कृत वॉल्यूम इंटरैक्शन ==
== बहिष्कृत वॉल्यूम इंटरैक्शन ==
आदर्श श्रृंखला मॉडल मानता है कि बहुलक खंड एक दूसरे के साथ ओवरलैप कर सकते हैं जैसे कि श्रृंखला एक प्रेत श्रृंखला थी। वास्तव में, दो खंड एक ही समय में एक ही स्थान पर कब्जा नहीं कर सकते। खंडों के बीच की इस बातचीत को बहिष्कृत वॉल्यूम इंटरैक्शन कहा जाता है।
आदर्श श्रृंखला नमूना मानता है कि बहुलक खंड एक दूसरे के साथ ओवरलैप कर सकते हैं जैसे कि श्रृंखला एक प्रेत श्रृंखला थी। वास्तव में, दो खंड एक ही समय में एक ही स्थान पर कब्जा नहीं कर सकते। खंडों के बीच की इस बातचीत को बहिष्कृत वॉल्यूम इंटरैक्शन कहा जाता है।


[[बहिष्कृत मात्रा]] का सबसे सरल सूत्रीकरण स्व-परहेज रैंडम वॉक है, एक रैंडम वॉक जो अपने पिछले पथ को दोहरा नहीं सकता है। तीन आयामों में एन चरणों के इस चलने का एक मार्ग बहिष्कृत वॉल्यूम इंटरैक्शन के साथ एक बहुलक की रचना का प्रतिनिधित्व करता है। इस मॉडल की स्व-परहेज प्रकृति के कारण, संभावित अनुरूपताओं की संख्या में काफी कमी आई है। परिभ्रमण की त्रिज्या आम तौर पर आदर्श श्रृंखला की तुलना में बड़ी होती है।
[[बहिष्कृत मात्रा]] का सबसे सरल सूत्रीकरण स्व-परहेज रैंडम वॉक है, एक रैंडम वॉक जो अपने पिछले पथ को दोहरा नहीं सकता है। तीन आयामों में एन चरणों के इस चलने का एक मार्ग बहिष्कृत वॉल्यूम इंटरैक्शन के साथ एक बहुलक की रचना का प्रतिनिधित्व करता है। इस नमूना की स्व-परहेज प्रकृति के कारण, संभावित अनुरूपताओं की संख्या में अधिक कमी आई है। परिभ्रमण की त्रिज्या आम तौर पर आदर्श श्रृंखला की तुलना में बड़ी होती है।


==लचीलापन और पुनरावृत्ति ==
==लचीलापन और पुनरावृत्ति ==
पॉलिमर लचीला है या नहीं यह ब्याज के पैमाने पर निर्भर करता है। उदाहरण के लिए, डबल-स्ट्रैंडेड [[डीएनए]] की पर्सिस्टेंस लंबाई लगभग 50 एनएम है। 50 एनएम से छोटे लंबाई के पैमाने को देखते हुए, यह कमोबेश एक कठोर छड़ की तरह व्यवहार करता है।<ref>G.McGuinness, ''Polymer Physics'', Oxford University Press, p347</ref> 50 एनएम से अधिक बड़े पैमाने पर, यह एक लचीली श्रृंखला की तरह व्यवहार करता है।
पॉलिमर लचीला है या नहीं यह ब्याज के पैमाने पर निर्भर करता है। उदाहरण के लिए, डबल-स्ट्रैंडेड [[डीएनए]] की पर्सिस्टेंस लंबाई लगभग 50 एनएम है। 50 एनएम से छोटे लंबाई के पैमाने को देखते हुए, यह कमोबेश एक कठोर छड़ की प्रकार व्यवहार करता है।<ref>G.McGuinness, ''Polymer Physics'', Oxford University Press, p347</ref> 50 एनएम से अधिक बड़े पैमाने पर, यह एक लचीली श्रृंखला की प्रकार व्यवहार करता है।


रिप्टेशन मूल रूप से उलझे हुए, बहुत लंबे रैखिक की तापीय गति है
रिप्टेशन मूल रूप से उलझे हुए, बहुत लंबे रैखिक की तापीय गति है
बहुलक में [[बड़े अणुओं]] पिघलता है या केंद्रित बहुलक समाधान। [[[[साँप]]]] शब्द से व्युत्पन्न, [[ दोहराव ]] एक दूसरे के माध्यम से रेंगने वाले सांपों के समान होने के रूप में उलझी हुई बहुलक श्रृंखलाओं की गति का सुझाव देता है।<ref name="Rubinstein">{{cite conference | url=http://www.aps.org/units/dpoly/resources/degennes.cfm | title=उलझे हुए पॉलिमर की गतिशीलता| publisher=American Physical Society | access-date=6 April 2015 | author=Rubinstein, Michael |date=March 2008  | conference=Pierre-Gilles de Gennes Symposium | location=New Orleans, LA}}</ref> पियरे-गिल्स डी गेनेस ने 1971 में बहुलक भौतिकी में पुनरावृत्ति की अवधारणा को इसकी लंबाई पर एक मैक्रोमोलेक्यूल की गतिशीलता की निर्भरता की व्याख्या करने के लिए पेश किया (और नाम दिया)। एक अनाकार बहुलक में चिपचिपा प्रवाह को समझाने के लिए एक तंत्र के रूप में पुनरावृत्ति का उपयोग किया जाता है।<ref>{{Cite journal | last1 = De Gennes | first1 = P. G. | title = उलझे हुए पॉलिमर| doi = 10.1063/1.2915700 | journal = Physics Today | publisher = American Institute of Physics | volume = 36 | issue = 6 | pages = 33–39 | year = 1983 | quote = साँप जैसी गति पर आधारित एक सिद्धांत जिसके द्वारा मोनोमर्स की श्रृंखला पिघल में चलती है, रियोलॉजी, प्रसार, बहुलक-बहुलक वेल्डिंग, रासायनिक कैनेटीक्स और जैव प्रौद्योगिकी की हमारी समझ को बढ़ा रही है।|bibcode = 1983PhT....36f..33D }}</ref><ref>{{Cite journal | last1 = De Gennes | first1 = P. G. | title = निश्चित बाधाओं की उपस्थिति में एक बहुलक श्रृंखला का पुनरावृत्ति| doi = 10.1063/1.1675789 | journal = The Journal of Chemical Physics | publisher = American Institute of Physics | volume = 55 | issue = 2 | pages = 572–579 | year = 1971 |bibcode = 1971JChPh..55..572D }}</ref> सैम एडवर्ड्स (भौतिक विज्ञानी) और मसाओ दोई ने बाद में प्रत्यावर्तन सिद्धांत को परिष्कृत किया।<ref>{{citation |title=Samuel Edwards: Boltzmann Medallist 1995 |publisher=IUPAP Commission on Statistical Physics |url=http://iupap.cii.fc.ul.pt/Boltz_Award/BA1995.html |access-date=2013-02-20 |url-status=dead |archive-url=https://web.archive.org/web/20131017061732/http://iupap.cii.fc.ul.pt/Boltz_Award/BA1995.html |archive-date=2013-10-17 }}</ref><ref name="flow">{{Cite journal | last1 = Doi | first1 = M. | last2 = Edwards | first2 = S. F. | doi = 10.1039/f29787401789 | title = Dynamics of concentrated polymer systems. Part 1.?Brownian motion in the equilibrium state | journal = Journal of the Chemical Society, Faraday Transactions 2 | volume = 74 | pages = 1789–1801 | year = 1978 }}</ref> [[व्लादिमीर पोक्रोव्स्की]] द्वारा पॉलिमर की थर्मल गति का सुसंगत सिद्धांत दिया गया था<ref>{{Cite journal | last1 = Pokrovskii | first1 = V. N. | doi = 10.1016/j.physa.2005.10.028 | title = मेसोस्कोपिक दृष्टिकोण में एक रेखीय मैक्रोमोलेक्यूल के रेप्टेशन-ट्यूब गतिकी का औचित्य| journal = Physica A: Statistical Mechanics and Its Applications | volume = 366 | pages = 88–106| year = 2006 |bibcode = 2006PhyA..366...88P }}</ref> .<ref>{{Cite journal | last1 = Pokrovskii | first1 = V. N. | title = रेखीय मैक्रोमोलेक्युलस की गति के दोहराव और प्रसार के तरीके| doi = 10.1134/S1063776108030205 | journal = Journal of Experimental and Theoretical Physics | volume = 106 | issue = 3 | pages = 604–607 | year = 2008 | bibcode = 2008JETP..106..604P | s2cid = 121054836 }}</ref>  <ref>{{Cite book|title=पॉलिमर डायनेमिक्स का मेसोस्कोपिक सिद्धांत, दूसरा संस्करण।|last=Pokrovskii|first=Vladimir|series=Springer Series in Chemical Physics |publisher=Springer, Dordrecht-Heidelberg-London-New York.|year=2010|volume=95 |isbn=978-90-481-2230-1|url=https://link.springer.com/book/10.1007%2F978-90-481-2231-8|pages=|doi=10.1007/978-90-481-2231-8 }}</ref> इसी तरह की घटनाएं प्रोटीन में भी होती हैं।<ref>{{Cite journal
बहुलक में [[बड़े अणुओं]] पिघलता है या केंद्रित बहुलक समाधान। [[[[साँप]]]] शब्द से व्युत्पन्न, [[ दोहराव ]] एक दूसरे के माध्यम से रेंगने वाले सांपों के समान होने के रूप में उलझी हुई बहुलक श्रृंखलाओं की गति का सुझाव देता है।<ref name="Rubinstein">{{cite conference | url=http://www.aps.org/units/dpoly/resources/degennes.cfm | title=उलझे हुए पॉलिमर की गतिशीलता| publisher=American Physical Society | access-date=6 April 2015 | author=Rubinstein, Michael |date=March 2008  | conference=Pierre-Gilles de Gennes Symposium | location=New Orleans, LA}}</ref> पियरे-गिल्स डी गेनेस ने 1971 में बहुलक भौतिकी में पुनरावृत्ति की अवधारणा को इसकी लंबाई पर एक मैक्रोमोलेक्यूल की गतिशीलता की निर्भरता की व्याख्या करने के लिए प्रस्तुत किया (और नाम दिया)। एक अनाकार बहुलक में चिपचिपा प्रवाह को समझाने के लिए एक तंत्र के रूप में पुनरावृत्ति का उपयोग किया जाता है।<ref>{{Cite journal | last1 = De Gennes | first1 = P. G. | title = उलझे हुए पॉलिमर| doi = 10.1063/1.2915700 | journal = Physics Today | publisher = American Institute of Physics | volume = 36 | issue = 6 | pages = 33–39 | year = 1983 | quote = साँप जैसी गति पर आधारित एक सिद्धांत जिसके द्वारा मोनोमर्स की श्रृंखला पिघल में चलती है, रियोलॉजी, प्रसार, बहुलक-बहुलक वेल्डिंग, रासायनिक कैनेटीक्स और जैव प्रौद्योगिकी की हमारी समझ को बढ़ा रही है।|bibcode = 1983PhT....36f..33D }}</ref><ref>{{Cite journal | last1 = De Gennes | first1 = P. G. | title = निश्चित बाधाओं की उपस्थिति में एक बहुलक श्रृंखला का पुनरावृत्ति| doi = 10.1063/1.1675789 | journal = The Journal of Chemical Physics | publisher = American Institute of Physics | volume = 55 | issue = 2 | pages = 572–579 | year = 1971 |bibcode = 1971JChPh..55..572D }}</ref> सैम एडवर्ड्स (भौतिक विज्ञानी) और मसाओ दोई ने पश्चात प्रत्यावर्तन सिद्धांत को परिष्कृत किया।<ref>{{citation |title=Samuel Edwards: Boltzmann Medallist 1995 |publisher=IUPAP Commission on Statistical Physics |url=http://iupap.cii.fc.ul.pt/Boltz_Award/BA1995.html |access-date=2013-02-20 |url-status=dead |archive-url=https://web.archive.org/web/20131017061732/http://iupap.cii.fc.ul.pt/Boltz_Award/BA1995.html |archive-date=2013-10-17 }}</ref><ref name="flow">{{Cite journal | last1 = Doi | first1 = M. | last2 = Edwards | first2 = S. F. | doi = 10.1039/f29787401789 | title = Dynamics of concentrated polymer systems. Part 1.?Brownian motion in the equilibrium state | journal = Journal of the Chemical Society, Faraday Transactions 2 | volume = 74 | pages = 1789–1801 | year = 1978 }}</ref> [[व्लादिमीर पोक्रोव्स्की]] द्वारा पॉलिमर की थर्मल गति का सुसंगत सिद्धांत दिया गया था<ref>{{Cite journal | last1 = Pokrovskii | first1 = V. N. | doi = 10.1016/j.physa.2005.10.028 | title = मेसोस्कोपिक दृष्टिकोण में एक रेखीय मैक्रोमोलेक्यूल के रेप्टेशन-ट्यूब गतिकी का औचित्य| journal = Physica A: Statistical Mechanics and Its Applications | volume = 366 | pages = 88–106| year = 2006 |bibcode = 2006PhyA..366...88P }}</ref> .<ref>{{Cite journal | last1 = Pokrovskii | first1 = V. N. | title = रेखीय मैक्रोमोलेक्युलस की गति के दोहराव और प्रसार के तरीके| doi = 10.1134/S1063776108030205 | journal = Journal of Experimental and Theoretical Physics | volume = 106 | issue = 3 | pages = 604–607 | year = 2008 | bibcode = 2008JETP..106..604P | s2cid = 121054836 }}</ref>  <ref>{{Cite book|title=पॉलिमर डायनेमिक्स का मेसोस्कोपिक सिद्धांत, दूसरा संस्करण।|last=Pokrovskii|first=Vladimir|series=Springer Series in Chemical Physics |publisher=Springer, Dordrecht-Heidelberg-London-New York.|year=2010|volume=95 |isbn=978-90-481-2230-1|url=https://link.springer.com/book/10.1007%2F978-90-481-2231-8|pages=|doi=10.1007/978-90-481-2231-8 }}</ref> इसी प्रकार की घटनाएं प्रोटीन में भी होती हैं।<ref>{{Cite journal
  | pmid = 11575938
  | pmid = 11575938
| year = 2001
| year = 2001
Line 74: Line 72:




== उदाहरण मॉडल (सरल यादृच्छिक-चलना, स्वतंत्र रूप से संयुक्त) ==
== उदाहरण नमूना (सरल यादृच्छिक-चलना, स्वतंत्र रूप से संयुक्त) ==
 
{{unreferenced section|date=August 2013}}


1950 के दशक के बाद से लंबी श्रृंखला वाले [[पॉलिमर]] का अध्ययन सांख्यिकीय यांत्रिकी के दायरे में समस्याओं का एक स्रोत रहा है। हालांकि एक कारण यह है कि वैज्ञानिक अपने अध्ययन में रुचि रखते थे कि बहुलक श्रृंखला के व्यवहार को नियंत्रित करने वाले समीकरण श्रृंखला रसायन शास्त्र से स्वतंत्र थे। क्या अधिक है, गवर्निंग समीकरण अंतरिक्ष में एक यादृच्छिक चलना, या विसरित चलना है। वास्तव में, श्रोडिंगर समीकरण स्वयं काल्पनिक समय में एक [[प्रसार समीकरण]] है, t' = it।
1950 के दशक के बाद से लंबी श्रृंखला वाले [[पॉलिमर]] का अध्ययन सांख्यिकीय यांत्रिकी के दायरे में समस्याओं का एक स्रोत रहा है। चूंकि एक कारण यह है कि वैज्ञानिक अपने अध्ययन में रुचि रखते थे कि बहुलक श्रृंखला के व्यवहार को नियंत्रित करने वाले समीकरण श्रृंखला रसायन शास्त्र से स्वतंत्र थे। क्या अधिक है, गवर्निंग समीकरण अंतरिक्ष में एक यादृच्छिक चलना, या विसरित चलना है। वास्तव में, श्रोडिंगर समीकरण स्वयं काल्पनिक समय में एक [[प्रसार समीकरण]] है, t' = it।


===यादृच्छिक समय में चलता है===
===यादृच्छिक समय में चलता है===
यादृच्छिक चलने का पहला उदाहरण अंतरिक्ष में एक है, जहां एक कण अपने आसपास के माध्यम में बाह्य शक्तियों के कारण एक यादृच्छिक गति से गुजरता है। एक विशिष्ट उदाहरण पानी के एक बीकर में पराग कण होगा। यदि कोई किसी तरह परागकण द्वारा लिए गए पथ को डाई कर सकता है, तो देखे गए पथ को यादृच्छिक चाल के रूप में परिभाषित किया जाता है।
यादृच्छिक चलने का पहला उदाहरण अंतरिक्ष में एक है, जहां एक कण अपने आसपास के माध्यम में बाह्य शक्तियों के कारण एक यादृच्छिक गति से गुजरता है। एक विशिष्ट उदाहरण पानी के एक बीकर में पराग कण होगा। यदि कोई किसी प्रकार परागकण द्वारा लिए गए पथ को डाई कर सकता है, तो देखे गए पथ को यादृच्छिक चाल के रूप में परिभाषित किया जाता है।


एक्स-दिशा में 1डी ट्रैक के साथ चलने वाली ट्रेन की खिलौना समस्या पर विचार करें। मान लीजिए कि ट्रेन या तो +b या -b की दूरी तय करती है (b प्रत्येक चरण के लिए समान है), यह इस बात पर निर्भर करता है कि फ़्लिप करने पर सिक्का हेड आता है या टेल। आइए टॉय ट्रेन द्वारा उठाए जाने वाले कदमों के आँकड़ों पर विचार करके शुरुआत करें (जहाँ S<sub>i</sub>क्या वां कदम उठाया गया है):
एक्स-दिशा में 1डी ट्रैक के साथ चलने वाली ट्रेन की खिलौना समस्या पर विचार करें। मान लीजिए कि ट्रेन या तो +b या -b की दूरी तय करती है (b प्रत्येक चरण के लिए समान है), यह इस बात पर निर्भर करता है कि फ़्लिप करने पर सिक्का हेड आता है या टेल। आइए टॉय ट्रेन द्वारा उठाए जाने वाले कदमों के आँकड़ों पर विचार करके शुरुआत करें (जहाँ S<sub>i</sub>क्या वां कदम उठाया गया है):
Line 87: Line 83:
:<math>\langle S_{i} \rangle = 0</math> ; प्राथमिक समान संभावनाओं के कारण
:<math>\langle S_{i} \rangle = 0</math> ; प्राथमिक समान संभावनाओं के कारण
:<math>\langle S_{i} S_{j} \rangle = b^2 \delta_{ij}.</math>
:<math>\langle S_{i} S_{j} \rangle = b^2 \delta_{ij}.</math>
दूसरी मात्रा को [[सहसंबंध समारोह]] के रूप में जाना जाता है। डेल्टा [[क्रोनकर डेल्टा]] है जो हमें बताता है कि यदि सूचकांक i और j भिन्न हैं, तो परिणाम 0 है, लेकिन यदि i = j है तो क्रोनकर डेल्टा 1 है, इसलिए सहसंबंध फ़ंक्शन b का मान लौटाता है<sup>2</उप>। यह समझ में आता है, क्योंकि अगर i = j तो हम उसी कदम पर विचार कर रहे हैं। बल्कि मामूली तौर पर यह दिखाया जा सकता है कि एक्स-अक्ष पर ट्रेन का औसत विस्थापन 0 है;
दूसरी मात्रा को [[सहसंबंध समारोह]] के रूप में जाना जाता है। डेल्टा [[क्रोनकर डेल्टा]] है जो हमें बताता है कि यदि सूचकांक i और j भिन्न हैं, तो परिणाम 0 है, लेकिन यदि i = j है तो क्रोनकर डेल्टा 1 है, इसलिए सहसंबंध फ़ंक्शन b का मान लौटाता है<sup>2</उप>। यह समझ में आता है, क्योंकि यदि i = j तो हम उसी कदम पर विचार कर रहे हैं। अपितु मामूली तौर पर यह दिखाया जा सकता है कि एक्स-अक्ष पर ट्रेन का औसत विस्थापन 0 है;


:<math>x = \sum_{i=1}^{N} S_i</math>
:<math>x = \sum_{i=1}^{N} S_i</math>
Line 96: Line 92:


:<math>x_\mathrm{rms} = \sqrt {\langle x^2 \rangle} = b \sqrt N. </math>
:<math>x_\mathrm{rms} = \sqrt {\langle x^2 \rangle} = b \sqrt N. </math>
प्रसार समीकरण से यह दिखाया जा सकता है कि एक माध्यम में एक विसरित कण की गति उस समय की जड़ के समानुपाती होती है, जिसके लिए प्रणाली विसरित होती रही है, जहां आनुपातिकता स्थिरांक प्रसार स्थिरांक की जड़ है। उपरोक्त संबंध, हालांकि कॉस्मैटिक रूप से अलग-अलग समान भौतिकी को प्रकट करता है, जहां N केवल स्थानांतरित किए गए चरणों की संख्या है (समय के साथ शिथिल रूप से जुड़ा हुआ है) और b विशेषता चरण की लंबाई है। परिणामस्वरूप हम प्रसार को एक यादृच्छिक चलने की प्रक्रिया के रूप में मान सकते हैं।
प्रसार समीकरण से यह दिखाया जा सकता है कि एक माध्यम में एक विसरित कण की गति उस समय की जड़ के समानुपाती होती है, जिसके लिए प्रणाली विसरित होती रही है, जहां आनुपातिकता स्थिरांक प्रसार स्थिरांक की जड़ है। उपरोक्त संबंध, चूंकि कॉस्मैटिक रूप से भिन्न-भिन्न समान भौतिकी को प्रकट करता है, जहां N मात्र स्थानांतरित किए गए चरणों की संख्या है (समय के साथ शिथिल रूप से जुड़ा हुआ है) और b विशेषता चरण की लंबाई है। परिणामस्वरूप हम प्रसार को एक यादृच्छिक चलने की प्रक्रिया के रूप में मान सकते हैं।


===अंतरिक्ष में यादृच्छिक चहलकदमी===
===अंतरिक्ष में यादृच्छिक चहलकदमी===
Line 133: Line 129:
जो हुक के नियम का पालन करते हुए एक वसंत की [[संभावित ऊर्जा]] के समान रूप है।
जो हुक के नियम का पालन करते हुए एक वसंत की [[संभावित ऊर्जा]] के समान रूप है।


इस परिणाम को एंट्रोपिक वसंत परिणाम के रूप में जाना जाता है और यह कहने के बराबर है कि एक बहुलक श्रृंखला को खींचने पर आप इसे (पसंदीदा) संतुलन स्थिति से दूर खींचने के लिए सिस्टम पर काम कर रहे हैं। इसका एक उदाहरण एक सामान्य इलास्टिक बैंड है, जो लंबी श्रृंखला (रबर) पॉलिमर से बना है। लोचदार बैंड को खींचकर आप सिस्टम पर काम कर रहे हैं और बैंड पारंपरिक वसंत की तरह व्यवहार करता है, सिवाय इसके कि धातु के वसंत के मामले के विपरीत, किए गए सभी काम थर्मल ऊर्जा के रूप में तत्काल दिखाई देते हैं, जितना थर्मोडायनामिक रूप से इसी तरह के मामले में एक पिस्टन में एक आदर्श गैस को संपीडित करना।
इस परिणाम को एंट्रोपिक वसंत परिणाम के रूप में जाना जाता है और यह कहने के बराबर है कि एक बहुलक श्रृंखला को खींचने पर आप इसे (पसंदीदा) संतुलन स्थिति से दूर खींचने के लिए सिस्टम पर काम कर रहे हैं। इसका एक उदाहरण एक सामान्य इलास्टिक बैंड है, जो लंबी श्रृंखला (रबर) पॉलिमर से बना है। लोचदार बैंड को खींचकर आप सिस्टम पर काम कर रहे हैं और बैंड पारंपरिक वसंत की प्रकार व्यवहार करता है, सिवाय इसके कि धातु के वसंत के स्थिति के विपरीत, किए गए सभी काम थर्मल ऊर्जा के रूप में तत्काल दिखाई देते हैं, जितना थर्मोडायनामिक रूप से इसी प्रकार के स्थिति में एक पिस्टन में एक आदर्श गैस को संपीडित करना।


यह पहली बार में आश्चर्यजनक हो सकता है कि बहुलक श्रृंखला को खींचने में किया गया कार्य पूरी तरह से तंत्र के एन्ट्रॉपी में परिवर्तन के परिणामस्वरूप होने वाले परिवर्तन से संबंधित हो सकता है। हालाँकि, यह उन प्रणालियों के लिए विशिष्ट है जो किसी भी ऊर्जा को संभावित ऊर्जा के रूप में संग्रहीत नहीं करते हैं, जैसे कि आदर्श गैसें। इस तरह की प्रणालियाँ किसी दिए गए तापमान पर पूरी तरह से एन्ट्रापी परिवर्तन से संचालित होती हैं, जब भी ऐसा मामला होता है जिसे परिवेश पर काम करने की अनुमति दी जाती है (जैसे कि जब एक इलास्टिक बैंड अनुबंध करके पर्यावरण पर काम करता है, या एक आदर्श गैस विस्तार करके पर्यावरण पर काम करता है)। क्योंकि ऐसे मामलों में मुक्त ऊर्जा परिवर्तन आंतरिक (संभावित) ऊर्जा रूपांतरण के बजाय पूरी तरह से एन्ट्रापी परिवर्तन से प्राप्त होता है, दोनों ही मामलों में किया गया कार्य पूरी तरह से बहुलक में तापीय ऊर्जा से खींचा जा सकता है, तापीय ऊर्जा के कार्य में रूपांतरण की 100% दक्षता के साथ . आदर्श गैस और बहुलक दोनों में, यह संकुचन से भौतिक एंट्रॉपी वृद्धि से संभव हो जाता है जो तापीय ऊर्जा के अवशोषण से एंट्रॉपी के नुकसान के लिए तैयार होता है, और सामग्री को ठंडा करता है।
यह पहली बार में आश्चर्यजनक हो सकता है कि बहुलक श्रृंखला को खींचने में किया गया कार्य पूरी प्रकार से तंत्र के एन्ट्रॉपी में परिवर्तन के परिणामस्वरूप होने वाले परिवर्तन से संबंधित हो सकता है। हालाँकि, यह उन प्रणालियों के लिए विशिष्ट है जो किसी भी ऊर्जा को संभावित ऊर्जा के रूप में संग्रहीत नहीं करते हैं, जैसे कि आदर्श गैसें। इस प्रकार की प्रणालियाँ किसी दिए गए तापमान पर पूरी प्रकार से एन्ट्रापी परिवर्तन से संचालित होती हैं, जब भी ऐसा स्थिति होता है जिसे परिवेश पर काम करने की अनुमति दी जाती है (जैसे कि जब एक इलास्टिक बैंड अनुबंध करके पर्यावरण पर काम करता है, या एक आदर्श गैस विस्तार करके पर्यावरण पर काम करता है)। क्योंकि ऐसे स्थितियों में मुक्त ऊर्जा परिवर्तन आंतरिक (संभावित) ऊर्जा रूपांतरण के अतिरिक्त पूरी प्रकार से एन्ट्रापी परिवर्तन से प्राप्त होता है, दोनों ही स्थितियों में किया गया कार्य पूरी प्रकार से बहुलक में तापीय ऊर्जा से खींचा जा सकता है, तापीय ऊर्जा के कार्य में रूपांतरण की 100% दक्षता के साथ . आदर्श गैस और बहुलक दोनों में, यह संकुचन से भौतिक एंट्रॉपी वृद्धि से संभव हो जाता है जो तापीय ऊर्जा के अवशोषण से एंट्रॉपी के नुकसान के लिए तैयार होता है, और सामग्री को ठंडा करता है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 12:33, 30 March 2023

पॉलीमर भौतिकी का क्षेत्र है जो क्रमशः पॉलिमर, उनके उतार-चढ़ाव, सातत्य यांत्रिकी, साथ ही पॉलिमर और मोनोमर्स के क्षरण और बहुलकीकरण से जुड़े रासायनिक कैनेटीक्स का अध्ययन करता है।Cite error: Closing </ref> missing for <ref> tag[1][2]

जबकि यह संघनित पदार्थ भौतिकी के परिप्रेक्ष्य पर केंद्रित है, बहुलक भौतिकी मूल रूप से सांख्यिकीय भौतिकी की एक शाखा है। पॉलिमर भौतिकी और बहुलक रसायन विज्ञान भी बहुलक विज्ञान के क्षेत्र से संबंधित हैं, जहाँ इसे पॉलिमर का अनुप्रयुक्त भाग माना जाता है।

पॉलिमर बड़े अणु होते हैं और इस प्रकार नियतात्मक पद्धति का उपयोग करके हल करने के लिए बहुत जटिल होते हैं। फिर भी, सांख्यिकीय दृष्टिकोण परिणाम दे सकते हैं और अधिकांशतः प्रासंगिक होते हैं, क्योंकि बड़े पॉलिमर (अर्थात्, कई मोनोमर्स वाले पॉलिमर) असीम रूप से कई मोनोमर्स की थर्मोडायनामिक सीमा में कुशलता से वर्णित हैं (चूंकि वास्तविक बनावट स्पष्ट रूप से परिमित है)।

थर्मल उतार-चढ़ाव तरल समाधानों में पॉलिमर के बनावट को लगातार प्रभावित करते हैं, और उनके प्रभाव को नमूनािंग करने के लिए सांख्यिकीय यांत्रिकी और गतिकी के सिद्धांतों का उपयोग करने की आवश्यकता होती है। एक परिणाम के रूप में, तापमान समाधान में पॉलिमर के भौतिक व्यवहार को दृढ़ता से प्रभावित करता है, जिससे चरण संक्रमण होता है, पिघलता है, और इसी प्रकार।

बहुलक भौतिकी के लिए सांख्यिकीय दृष्टिकोण एक बहुलक और या तो एक एक प्रकार कि गति, या अन्य प्रकार के एक यादृच्छिक चलने के बीच समानता पर आधारित है, आत्म-परहेज चलना। सरल यादृच्छिक चलने के अनुरूप, सबसे सरल संभव बहुलक नमूना आदर्श श्रृंखला द्वारा प्रस्तुत किया जाता है। पॉलिमर लक्षण वर्णन के लिए प्रायोगिक दृष्टिकोण भी सामान्य हैं, बहुलक लक्षण वर्णन विधियों का उपयोग करते हुए, जैसे कि बनावट बहिष्करण क्रोमैटोग्राफी, विस्कोमेट्री, गतिशील प्रकाश बिखरने और पॉलिमरराइजेशन रिएक्शन्स (ACOMP) की स्वचालित निरंतर ऑनलाइन देख-रेख।[3][4] पॉलिमर के रासायनिक, भौतिक और भौतिक गुणों का निर्धारण करने के लिए। इन प्रयोगात्मक तरीकों ने पॉलिमर के गणितीय नमूनािंग और यहां तक ​​कि पॉलिमर के गुणों की उत्तम समझ के लिए भी मदद की

  • पॉल फ्लोरी को बहुलक भौतिकी के क्षेत्र की स्थापना करने वाला पहला वैज्ञानिक माना जाता है।[5]* फ्रांसीसी वैज्ञानिकों ने 70 के दशक से बहुत योगदान दिया है (उदाहरण के लिए पियरे-गिल्स डी गेनेस, जे डेस क्लोइज़ॉक्स)।[6][7]
  • मसाओ दोई और सैम एडवर्ड्स (भौतिक विज्ञानी) ने बहुलक भौतिकी में एक बहुत प्रसिद्ध पुस्तक लिखी।[1]* भौतिकी के सोवियत/रूसी स्कूल (इल्या_लिफ्शिट्ज|आईएम लिफ्शिट्ज, ए.यू. ग्रोसबर्ग, ए.आर. खोखलोव, व्लादिमीर पोक्रोव्स्की|वी.एन. पोक्रोव्स्की) बहुलक भौतिकी के विकास में बहुत सक्रिय रहे हैं।[8][9]

नमूना

बहुलक श्रृंखलाओं के नमूना दो प्रकारों में विभाजित होते हैं: आदर्श नमूना और वास्तविक नमूना। आदर्श श्रृंखला नमूना मानते हैं कि श्रृंखला मोनोमर्स के बीच कोई अंतःक्रिया नहीं होती है। यह धारणा कुछ बहुलक प्रणालियों के लिए मान्य है, जहां मोनोमर के बीच सकारात्मक और नकारात्मक बातचीत प्रभावी रूप से रद्द हो जाती है। आदर्श श्रृंखला नमूना अधिक जटिल प्रणालियों की जांच के लिए एक अच्छा प्रारंभिक बिंदु प्रदान करते हैं और अधिक पैरामीटर वाले समीकरणों के लिए उत्तम अनुकूल हैं।

आदर्श जंजीरें

  • स्वतंत्र रूप से जुड़ी श्रृंखला बहुलक का सबसे सरल नमूना है। इस नमूना में, निश्चित लंबाई के बहुलक खंड रैखिक रूप से जुड़े हुए हैं, और सभी बंधन और मरोड़ कोण परिवर्तनीय हैं।[10] इसलिए बहुलक को एक साधारण यादृच्छिक चाल और आदर्श श्रृंखला द्वारा वर्णित किया जा सकता है। बॉन्ड स्ट्रेचिंग का प्रतिनिधित्व करने के लिए एक्स्टेंसिबल सेगमेंट को सम्मलित करने के लिए नमूना को बढ़ाया जा सकता है।[11]
  • स्वतंत्र रूप से घूमने वाली श्रृंखला इस बात को ध्यान में रखते हुए स्वतंत्र रूप से जुड़ी श्रृंखला नमूना में सुधार करती है कि विशिष्ट रासायनिक बंधन के कारण बहुलक खंड निकटतम इकाइयों के लिए एक निश्चित बंधन कोण बनाते हैं। इस निश्चित कोण के अनुसार, खंड अभी भी घूमने के लिए स्वतंत्र हैं और सभी मरोड़ वाले कोण समान रूप से होने की संभावना है।
  • बाधित रोटेशन नमूना मानता है कि मरोड़ कोण एक संभावित ऊर्जा से बाधित है। यह प्रत्येक मरोड़ कोण की संभाव्यता को बोल्ट्जमान कारक के समानुपाती बनाता है:
, कहाँ के प्रत्येक मूल्य की संभावना का निर्धारण करने वाली क्षमता है .
  • घूर्णी समावयवी अवस्था नमूना में अनुमत मरोड़ कोण घूर्णी स्थितिज ऊर्जा में मिनीमा की स्थिति द्वारा निर्धारित किए जाते हैं। बॉन्ड की लंबाई और बॉन्ड एंगल स्थिर हैं।
  • कृमि जैसी शृंखला एक अधिक जटिल नमूना है। यह दृढ़ता की लंबाई को ध्यान में रखता है। पॉलिमर पूरी प्रकार से लचीले नहीं होते हैं; उन्हें झुकाने के लिए ऊर्जा की आवश्यकता होती है। दृढ़ता लंबाई के नीचे लंबाई के पैमाने पर, बहुलक कमोबेश एक कठोर छड़ की प्रकार व्यवहार करता है।

असली जंजीर

चेन मोनोमर्स के बीच बातचीत को बहिष्कृत मात्रा के रूप में नमूनािंग किया जा सकता है # बहुलक विज्ञान में। यह श्रृंखला की संरूपण संभावनाओं में कमी का कारण बनता है, और एक स्व-परहेज यादृच्छिक चलने की ओर जाता है। स्व-परहेज रैंडम वॉक में साधारण रैंडम वॉक के भिन्न-भिन्न आँकड़े होते हैं।

विलायक और तापमान प्रभाव

एकल बहुलक श्रृंखला के आँकड़े विलायक में बहुलक की घुलनशीलता पर निर्भर करते हैं। एक विलायक के लिए जिसमें बहुलक बहुत घुलनशील (एक अच्छा विलायक) होता है, श्रृंखला अधिक विस्तारित होती है, जबकि एक विलायक के लिए जिसमें बहुलक अघुलनशील या बकठिनाई घुलनशील (एक खराब विलायक) होता है, श्रृंखला खंड एक दूसरे के करीब रहते हैं। एक बहुत खराब विलायक की सीमा में बहुलक श्रृंखला मात्र एक कठिन क्षेत्र बनाने के लिए ढह जाती है, जबकि एक अच्छे विलायक में बहुलक-द्रव संपर्कों की संख्या को अधिकतम करने के लिए श्रृंखला सूज जाती है। इस स्थिति के लिए फ्लोरी के माध्य क्षेत्र दृष्टिकोण का उपयोग करके परिभ्रमण की त्रिज्या का अनुमान लगाया जाता है, जो कि परिभ्रमण की त्रिज्या के लिए एक स्केलिंग उत्पन्न करता है:

,

कहाँ बहुलक के परिभ्रमण की त्रिज्या है, श्रृंखला के बंधन खंडों (पोलीमराइजेशन की डिग्री के बराबर) की संख्या है और फ्लोरी प्रतिपादक है।

अच्छे विलायक के लिए, ; गरीब विलायक के लिए, . इसलिए, अच्छे विलायक में बहुलक का बनावट बड़ा होता है और यह भग्न वस्तु की प्रकार व्यवहार करता है। खराब विलायक में यह एक ठोस गोले की प्रकार व्यवहार करता है।

तथाकथित में विलायक, , जो साधारण रैंडम वॉक का परिणाम है। श्रृंखला ऐसा व्यवहार करती है मानो वह एक आदर्श श्रृंखला हो।

विलायक की गुणवत्ता तापमान पर भी निर्भर करती है। एक लचीले बहुलक के लिए, कम तापमान खराब गुणवत्ता के अनुरूप हो सकता है और उच्च तापमान उसी विलायक को अच्छा बनाता है। एक विशेष तापमान जिसे थीटा (θ) तापमान कहा जाता है, पर विलायक एक आदर्श श्रृंखला की प्रकार व्यवहार करता है।

बहिष्कृत वॉल्यूम इंटरैक्शन

आदर्श श्रृंखला नमूना मानता है कि बहुलक खंड एक दूसरे के साथ ओवरलैप कर सकते हैं जैसे कि श्रृंखला एक प्रेत श्रृंखला थी। वास्तव में, दो खंड एक ही समय में एक ही स्थान पर कब्जा नहीं कर सकते। खंडों के बीच की इस बातचीत को बहिष्कृत वॉल्यूम इंटरैक्शन कहा जाता है।

बहिष्कृत मात्रा का सबसे सरल सूत्रीकरण स्व-परहेज रैंडम वॉक है, एक रैंडम वॉक जो अपने पिछले पथ को दोहरा नहीं सकता है। तीन आयामों में एन चरणों के इस चलने का एक मार्ग बहिष्कृत वॉल्यूम इंटरैक्शन के साथ एक बहुलक की रचना का प्रतिनिधित्व करता है। इस नमूना की स्व-परहेज प्रकृति के कारण, संभावित अनुरूपताओं की संख्या में अधिक कमी आई है। परिभ्रमण की त्रिज्या आम तौर पर आदर्श श्रृंखला की तुलना में बड़ी होती है।

लचीलापन और पुनरावृत्ति

पॉलिमर लचीला है या नहीं यह ब्याज के पैमाने पर निर्भर करता है। उदाहरण के लिए, डबल-स्ट्रैंडेड डीएनए की पर्सिस्टेंस लंबाई लगभग 50 एनएम है। 50 एनएम से छोटे लंबाई के पैमाने को देखते हुए, यह कमोबेश एक कठोर छड़ की प्रकार व्यवहार करता है।[12] 50 एनएम से अधिक बड़े पैमाने पर, यह एक लचीली श्रृंखला की प्रकार व्यवहार करता है।

रिप्टेशन मूल रूप से उलझे हुए, बहुत लंबे रैखिक की तापीय गति है बहुलक में बड़े अणुओं पिघलता है या केंद्रित बहुलक समाधान। [[साँप]] शब्द से व्युत्पन्न, दोहराव एक दूसरे के माध्यम से रेंगने वाले सांपों के समान होने के रूप में उलझी हुई बहुलक श्रृंखलाओं की गति का सुझाव देता है।[13] पियरे-गिल्स डी गेनेस ने 1971 में बहुलक भौतिकी में पुनरावृत्ति की अवधारणा को इसकी लंबाई पर एक मैक्रोमोलेक्यूल की गतिशीलता की निर्भरता की व्याख्या करने के लिए प्रस्तुत किया (और नाम दिया)। एक अनाकार बहुलक में चिपचिपा प्रवाह को समझाने के लिए एक तंत्र के रूप में पुनरावृत्ति का उपयोग किया जाता है।[14][15] सैम एडवर्ड्स (भौतिक विज्ञानी) और मसाओ दोई ने पश्चात प्रत्यावर्तन सिद्धांत को परिष्कृत किया।[16][17] व्लादिमीर पोक्रोव्स्की द्वारा पॉलिमर की थर्मल गति का सुसंगत सिद्धांत दिया गया था[18] .[19] [20] इसी प्रकार की घटनाएं प्रोटीन में भी होती हैं।[21]


उदाहरण नमूना (सरल यादृच्छिक-चलना, स्वतंत्र रूप से संयुक्त)

1950 के दशक के बाद से लंबी श्रृंखला वाले पॉलिमर का अध्ययन सांख्यिकीय यांत्रिकी के दायरे में समस्याओं का एक स्रोत रहा है। चूंकि एक कारण यह है कि वैज्ञानिक अपने अध्ययन में रुचि रखते थे कि बहुलक श्रृंखला के व्यवहार को नियंत्रित करने वाले समीकरण श्रृंखला रसायन शास्त्र से स्वतंत्र थे। क्या अधिक है, गवर्निंग समीकरण अंतरिक्ष में एक यादृच्छिक चलना, या विसरित चलना है। वास्तव में, श्रोडिंगर समीकरण स्वयं काल्पनिक समय में एक प्रसार समीकरण है, t' = it।

यादृच्छिक समय में चलता है

यादृच्छिक चलने का पहला उदाहरण अंतरिक्ष में एक है, जहां एक कण अपने आसपास के माध्यम में बाह्य शक्तियों के कारण एक यादृच्छिक गति से गुजरता है। एक विशिष्ट उदाहरण पानी के एक बीकर में पराग कण होगा। यदि कोई किसी प्रकार परागकण द्वारा लिए गए पथ को डाई कर सकता है, तो देखे गए पथ को यादृच्छिक चाल के रूप में परिभाषित किया जाता है।

एक्स-दिशा में 1डी ट्रैक के साथ चलने वाली ट्रेन की खिलौना समस्या पर विचार करें। मान लीजिए कि ट्रेन या तो +b या -b की दूरी तय करती है (b प्रत्येक चरण के लिए समान है), यह इस बात पर निर्भर करता है कि फ़्लिप करने पर सिक्का हेड आता है या टेल। आइए टॉय ट्रेन द्वारा उठाए जाने वाले कदमों के आँकड़ों पर विचार करके शुरुआत करें (जहाँ Siक्या वां कदम उठाया गया है):

 ; प्राथमिक समान संभावनाओं के कारण

दूसरी मात्रा को सहसंबंध समारोह के रूप में जाना जाता है। डेल्टा क्रोनकर डेल्टा है जो हमें बताता है कि यदि सूचकांक i और j भिन्न हैं, तो परिणाम 0 है, लेकिन यदि i = j है तो क्रोनकर डेल्टा 1 है, इसलिए सहसंबंध फ़ंक्शन b का मान लौटाता है2</उप>। यह समझ में आता है, क्योंकि यदि i = j तो हम उसी कदम पर विचार कर रहे हैं। अपितु मामूली तौर पर यह दिखाया जा सकता है कि एक्स-अक्ष पर ट्रेन का औसत विस्थापन 0 है;

जैसा कि कहा गया , तो योग अभी भी 0 है। समस्या के मूल माध्य वर्ग मान की गणना करने के लिए ऊपर प्रदर्शित समान विधि का उपयोग करके इसे भी दिखाया जा सकता है। इस गणना का परिणाम नीचे दिया गया है

प्रसार समीकरण से यह दिखाया जा सकता है कि एक माध्यम में एक विसरित कण की गति उस समय की जड़ के समानुपाती होती है, जिसके लिए प्रणाली विसरित होती रही है, जहां आनुपातिकता स्थिरांक प्रसार स्थिरांक की जड़ है। उपरोक्त संबंध, चूंकि कॉस्मैटिक रूप से भिन्न-भिन्न समान भौतिकी को प्रकट करता है, जहां N मात्र स्थानांतरित किए गए चरणों की संख्या है (समय के साथ शिथिल रूप से जुड़ा हुआ है) और b विशेषता चरण की लंबाई है। परिणामस्वरूप हम प्रसार को एक यादृच्छिक चलने की प्रक्रिया के रूप में मान सकते हैं।

अंतरिक्ष में यादृच्छिक चहलकदमी

अंतरिक्ष में रैंडम वॉक को समय में रैंडम वॉकर द्वारा लिए गए पथ के स्नैपशॉट के रूप में सोचा जा सकता है। ऐसा ही एक उदाहरण लंबी श्रृंखला वाले पॉलिमर का स्थानिक विन्यास है।

अंतरिक्ष में दो प्रकार के रैंडम वॉक होते हैं: सेल्फ अवॉयडिंग वॉक | सेल्फ अवॉयडिंग रैंडम वॉक, जहां पॉलीमर चेन के लिंक इंटरैक्ट करते हैं और स्पेस में ओवरलैप नहीं होते हैं, और प्योर रैंडम वॉक, जहां पॉलीमर चेन के लिंक नॉन हैं -इंटरैक्टिंग और लिंक एक दूसरे के ऊपर झूठ बोलने के लिए स्वतंत्र हैं। पूर्व प्रकार भौतिक प्रणालियों पर सबसे अधिक लागू होता है, लेकिन उनके समाधान पहले सिद्धांतों से प्राप्त करना कठिन होता है।

एक स्वतंत्र रूप से संयुक्त, गैर-अंतःक्रियात्मक बहुलक श्रृंखला पर विचार करके, एंड-टू-एंड वेक्टर है

जहां आरi श्रृंखला में i-वें लिंक की सदिश स्थिति है। केंद्रीय सीमा प्रमेय के परिणामस्वरूप, यदि N ≫ 1 तो हम एंड-टू-एंड वेक्टर के लिए गॉसियन वितरण की अपेक्षा करते हैं। हम स्वयं लिंक्स के आँकड़ों का विवरण भी दे सकते हैं;

  •  ; अंतरिक्ष की आइसोट्रॉपी द्वारा
  •  ; श्रृंखला की सभी कड़ियाँ एक दूसरे से असंबद्ध हैं

व्यक्तिगत लिंक के आँकड़ों का उपयोग करके, यह आसानी से दिखाया जाता है

.

ध्यान दें कि यह अंतिम परिणाम वही है जो समय में यादृच्छिक चलने के लिए मिला है।

यह मानते हुए, जैसा कि कहा गया है, कि बहुत बड़ी संख्या में समान बहुलक श्रृंखलाओं के लिए एंड-टू-एंड वैक्टर का वितरण गॉसियन है, प्रायिकता वितरण का निम्न रूप है

यह हमारे किस काम का? याद रखें कि समसंभाव्यता के सिद्धांत के अनुसार प्राथमिक प्रायिकता, कुछ भौतिक मान पर माइक्रोस्टेट्स की संख्या, Ω, उस भौतिक मान पर प्रायिकता वितरण के सीधे आनुपातिक होती है, अर्थात;

जहाँ c एक मनमाना आनुपातिकता स्थिरांक है। हमारे वितरण समारोह को देखते हुए, 'आर' = '0' के अनुरूप एक उच्चिष्ठता है। शारीरिक रूप से यह मात्रा अधिक माइक्रोस्टेट होने के कारण होती है, जिसमें किसी भी अन्य माइक्रोस्टेट की तुलना में 0 का एंड-टू-एंड वेक्टर होता है। अब विचार करके

जहाँ F हेल्महोल्ट्ज़ मुक्त ऊर्जा है, और यह दिखाया जा सकता है

जो हुक के नियम का पालन करते हुए एक वसंत की संभावित ऊर्जा के समान रूप है।

इस परिणाम को एंट्रोपिक वसंत परिणाम के रूप में जाना जाता है और यह कहने के बराबर है कि एक बहुलक श्रृंखला को खींचने पर आप इसे (पसंदीदा) संतुलन स्थिति से दूर खींचने के लिए सिस्टम पर काम कर रहे हैं। इसका एक उदाहरण एक सामान्य इलास्टिक बैंड है, जो लंबी श्रृंखला (रबर) पॉलिमर से बना है। लोचदार बैंड को खींचकर आप सिस्टम पर काम कर रहे हैं और बैंड पारंपरिक वसंत की प्रकार व्यवहार करता है, सिवाय इसके कि धातु के वसंत के स्थिति के विपरीत, किए गए सभी काम थर्मल ऊर्जा के रूप में तत्काल दिखाई देते हैं, जितना थर्मोडायनामिक रूप से इसी प्रकार के स्थिति में एक पिस्टन में एक आदर्श गैस को संपीडित करना।

यह पहली बार में आश्चर्यजनक हो सकता है कि बहुलक श्रृंखला को खींचने में किया गया कार्य पूरी प्रकार से तंत्र के एन्ट्रॉपी में परिवर्तन के परिणामस्वरूप होने वाले परिवर्तन से संबंधित हो सकता है। हालाँकि, यह उन प्रणालियों के लिए विशिष्ट है जो किसी भी ऊर्जा को संभावित ऊर्जा के रूप में संग्रहीत नहीं करते हैं, जैसे कि आदर्श गैसें। इस प्रकार की प्रणालियाँ किसी दिए गए तापमान पर पूरी प्रकार से एन्ट्रापी परिवर्तन से संचालित होती हैं, जब भी ऐसा स्थिति होता है जिसे परिवेश पर काम करने की अनुमति दी जाती है (जैसे कि जब एक इलास्टिक बैंड अनुबंध करके पर्यावरण पर काम करता है, या एक आदर्श गैस विस्तार करके पर्यावरण पर काम करता है)। क्योंकि ऐसे स्थितियों में मुक्त ऊर्जा परिवर्तन आंतरिक (संभावित) ऊर्जा रूपांतरण के अतिरिक्त पूरी प्रकार से एन्ट्रापी परिवर्तन से प्राप्त होता है, दोनों ही स्थितियों में किया गया कार्य पूरी प्रकार से बहुलक में तापीय ऊर्जा से खींचा जा सकता है, तापीय ऊर्जा के कार्य में रूपांतरण की 100% दक्षता के साथ . आदर्श गैस और बहुलक दोनों में, यह संकुचन से भौतिक एंट्रॉपी वृद्धि से संभव हो जाता है जो तापीय ऊर्जा के अवशोषण से एंट्रॉपी के नुकसान के लिए तैयार होता है, और सामग्री को ठंडा करता है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 एम. दोई और एस. एफ. एडवर्ड्स, द थ्योरी ऑफ़ पॉलीमर डायनामिक्स ऑक्सफ़ोर्ड यूनिवर्सिटी इंक एनवाई, 1986
  2. Michael Rubinstein and Ralph H. Colby, Polymer Physics Oxford University Press, 2003
  3. US patent 6052184 and US Patent 6653150, other patents pending
  4. F. H. Florenzano; R. Strelitzki; W. F. Reed, "Absolute, Online Monitoring of Polymerization Reactions", Macromolecules 1998, 31(21), 7226-7238
  5. Cite error: Invalid <ref> tag; no text was provided for refs named flory_53
  6. Cite error: Invalid <ref> tag; no text was provided for refs named dg_79
  7. des Cloiseaux, Jacques; Jannink, Gerard (1991). समाधान में पॉलिमर. Oxford University Press. doi:10.1002/pola.1992.080300733.
  8. Vladimir Pokrovski, The Mesoscopic Theory of Polymer Dynamics, Springer, 2010
  9. A. Yu. Grosberg, A.R. Khokhlov. Statistical Physics of Macromolecules, 1994, American Institute o Physics
  10. H. Yamakawa, "Helical Wormlike Chains in Polymer Solution", (Springer Verlag, Berlin, 1997)
  11. Buche, M.R.; Silberstein, M.N.; Grutzik, S.J. (2022). "एक्स्टेंसिबल लिंक के साथ स्वतंत्र रूप से जुड़ी हुई जंजीर". Phys. Rev. E. 106 (2–1): 024502. arXiv:2203.05421. doi:10.1103/PhysRevE.106.024502. PMID 36109919. S2CID 247362917.
  12. G.McGuinness, Polymer Physics, Oxford University Press, p347
  13. Rubinstein, Michael (March 2008). उलझे हुए पॉलिमर की गतिशीलता. Pierre-Gilles de Gennes Symposium. New Orleans, LA: American Physical Society. Retrieved 6 April 2015.
  14. De Gennes, P. G. (1983). "उलझे हुए पॉलिमर". Physics Today. American Institute of Physics. 36 (6): 33–39. Bibcode:1983PhT....36f..33D. doi:10.1063/1.2915700. साँप जैसी गति पर आधारित एक सिद्धांत जिसके द्वारा मोनोमर्स की श्रृंखला पिघल में चलती है, रियोलॉजी, प्रसार, बहुलक-बहुलक वेल्डिंग, रासायनिक कैनेटीक्स और जैव प्रौद्योगिकी की हमारी समझ को बढ़ा रही है।
  15. De Gennes, P. G. (1971). "निश्चित बाधाओं की उपस्थिति में एक बहुलक श्रृंखला का पुनरावृत्ति". The Journal of Chemical Physics. American Institute of Physics. 55 (2): 572–579. Bibcode:1971JChPh..55..572D. doi:10.1063/1.1675789.
  16. Samuel Edwards: Boltzmann Medallist 1995, IUPAP Commission on Statistical Physics, archived from the original on 2013-10-17, retrieved 2013-02-20
  17. Doi, M.; Edwards, S. F. (1978). "Dynamics of concentrated polymer systems. Part 1.?Brownian motion in the equilibrium state". Journal of the Chemical Society, Faraday Transactions 2. 74: 1789–1801. doi:10.1039/f29787401789.
  18. Pokrovskii, V. N. (2006). "मेसोस्कोपिक दृष्टिकोण में एक रेखीय मैक्रोमोलेक्यूल के रेप्टेशन-ट्यूब गतिकी का औचित्य". Physica A: Statistical Mechanics and Its Applications. 366: 88–106. Bibcode:2006PhyA..366...88P. doi:10.1016/j.physa.2005.10.028.
  19. Pokrovskii, V. N. (2008). "रेखीय मैक्रोमोलेक्युलस की गति के दोहराव और प्रसार के तरीके". Journal of Experimental and Theoretical Physics. 106 (3): 604–607. Bibcode:2008JETP..106..604P. doi:10.1134/S1063776108030205. S2CID 121054836.
  20. Pokrovskii, Vladimir (2010). पॉलिमर डायनेमिक्स का मेसोस्कोपिक सिद्धांत, दूसरा संस्करण।. Springer Series in Chemical Physics. Vol. 95. Springer, Dordrecht-Heidelberg-London-New York. doi:10.1007/978-90-481-2231-8. ISBN 978-90-481-2230-1.
  21. Bu, Z; Cook, J; Callaway, D. J. (2001). "Dynamic regimes and correlated structural dynamics in native and denatured alpha-lactalbumin". Journal of Molecular Biology. 312 (4): 865–73. doi:10.1006/jmbi.2001.5006. PMID 11575938. S2CID 23418562.


बाहरी संबंध