जटिल अंतर रूप: Difference between revisions

From Vigyanwiki
(TEXT)
(TEXT)
Line 19: Line 19:
सम्मिश्र अवकल रूपों के वेज उत्पाद को वास्तविक रूपों के समान ही परिभाषित किया गया है। ''p'' और ''q'' को गैर-नकारात्मक पूर्णांक ≤ ''n'' की एक युग्म होने दें। समष्टि  Ω<sup>p,q</sup> का  (''p'', ''q'')-रूपों को Ω<sup>1,0</sup> से p तत्वों और Ω<sup>0,1</sup> से ''q'' तत्वों के वेज उत्पादों के रैखिक संयोजनों को लेकर परिभाषित किया गया हैं। प्रतीकात्मक रूप से,
सम्मिश्र अवकल रूपों के वेज उत्पाद को वास्तविक रूपों के समान ही परिभाषित किया गया है। ''p'' और ''q'' को गैर-नकारात्मक पूर्णांक ≤ ''n'' की एक युग्म होने दें। समष्टि  Ω<sup>p,q</sup> का  (''p'', ''q'')-रूपों को Ω<sup>1,0</sup> से p तत्वों और Ω<sup>0,1</sup> से ''q'' तत्वों के वेज उत्पादों के रैखिक संयोजनों को लेकर परिभाषित किया गया हैं। प्रतीकात्मक रूप से,
:<math>\Omega^{p,q}=\underbrace{\Omega^{1,0}\wedge\dotsb\wedge\Omega^{1,0}}_{p \text{ times}}\wedge\underbrace{\Omega^{0,1}\wedge\dotsb\wedge\Omega^{0,1}}_{q \text{ times}}</math>
:<math>\Omega^{p,q}=\underbrace{\Omega^{1,0}\wedge\dotsb\wedge\Omega^{1,0}}_{p \text{ times}}\wedge\underbrace{\Omega^{0,1}\wedge\dotsb\wedge\Omega^{0,1}}_{q \text{ times}}</math>
जहां Ω के पी कारक हैं<sup>1,0</sup> और Ω के q कारक<sup>0,1</sup>. जैसे 1-रूपों के दो स्थानों के साथ, ये निर्देशांक के पूर्णसममितिक परिवर्तनों के तहत स्थिर होते हैं, और इसलिए सदिश बंडलों को निर्धारित करते हैं।
जहां Ω<sup>1,0</sup> के ''p'' कारक और Ω<sup>0,1</sup> के ''q'' कारक है। जैसे 1-रूपों के दो समष्टि के साथ, ये निर्देशांक के पूर्णसममितिक परिवर्तनों के अंतर्गत स्थिर होते हैं, और इसलिए सदिश बंडलों को निर्धारित करते हैं।


यदि <sup>k</sup> कुल डिग्री k के सभी सम्मिश्र अवकल रूपों का स्थान है, तो E का प्रत्येक तत्व<sup>k</sup> को समष्टि Ω के तत्वों के रैखिक संयोजन के रूप में एक अनोखे तरीके से व्यक्त किया जा सकता है<sup>पी,क्यू</sup> के साथ {{nowrap|1=''p'' + ''q'' = ''k''}}. अधिक संक्षेप में, सदिश बंडलों के अपघटन का प्रत्यक्ष योग है
यदि ''E<sup>k</sup>'' कुल डिग्री k के सभी सम्मिश्र अवकल रूपों का समष्टि है, तब E<sup>k</sup> के प्रत्येक अवयव को {{nowrap|1=''p'' + ''q'' = ''k''}} वाले समष्टि Ω<sup>p,q</sup> के तत्वों के रैखिक संयोजन के रूप में एक अद्वितीय प्रकार से व्यक्त किया जा सकता है। अधिक संक्षेप में, प्रत्यक्ष योग अपघटन होता है
:<math>E^k=\Omega^{k,0}\oplus\Omega^{k-1,1}\oplus\dotsb\oplus\Omega^{1,k-1}\oplus\Omega^{0,k}=\bigoplus_{p+q=k}\Omega^{p,q}.</math>
:<math>E^k=\Omega^{k,0}\oplus\Omega^{k-1,1}\oplus\dotsb\oplus\Omega^{1,k-1}\oplus\Omega^{0,k}=\bigoplus_{p+q=k}\Omega^{p,q}.</math>
क्योंकि यह प्रत्यक्ष योग अपघटन पूर्णसममितिक समन्वय परिवर्तन के तहत स्थिर है, यह एक सदिश बंडल अपघटन भी निर्धारित करता है।
क्योंकि यह प्रत्यक्ष योग अपघटन पूर्णसममितिक समन्वय परिवर्तन के अंतर्गत स्थिर है, यह एक सदिश बंडल अपघटन भी निर्धारित करता है।


विशेष रूप से, प्रत्येक k और प्रत्येक p और q के साथ {{nowrap|1=''p'' + ''q'' = ''k''}}, सदिश बंडलों का एक विहित प्रक्षेपण है
विशेष रूप से, प्रत्येक k और प्रत्येक p और q के लिए {{nowrap|1=''p'' + ''q'' = ''k''}} के साथ, सदिश बंडलों का एक विहित प्रक्षेपण है
:<math>\pi^{p,q}:E^k\rightarrow\Omega^{p,q}.</math>
:<math>\pi^{p,q}:E^k\rightarrow\Omega^{p,q}.</math>
=== डोलबेल्ट ऑपरेटर्स ===
=== डोलबेल्ट प्रचालक ===
सामान्य बाहरी व्युत्पन्न अनुभागों के मानचित्रण को परिभाषित करता है <math> d: \Omega^{r} \to \Omega^{r+1}</math> के जरिए
सामान्य बाहरी व्युत्पन्न अनुभागों के मानचित्रण को परिभाषित करता है <math> d: \Omega^{r} \to \Omega^{r+1}</math> के माध्यम से
:<math> d(\Omega^{p,q}) \subseteq \bigoplus_{r + s = p + q + 1} \Omega^{r,s}</math>
:<math> d(\Omega^{p,q}) \subseteq \bigoplus_{r + s = p + q + 1} \Omega^{r,s}</math>
बाहरी व्युत्पन्न अपने आप में बहुरूपता अधिक कठोर सम्मिश्र संरचना को प्रतिबिंबित नहीं करता है।
बाहरी व्युत्पन्न अपने आप में बहुरूपता अधिक दृढ़ सम्मिश्र संरचना को प्रतिबिंबित नहीं करता है।


d और पिछले उपखंड में परिभाषित अनुमानों का उपयोग करके, 'Dolbeault ऑपरेटरों' को परिभाषित करना संभव है:
d और पूर्व उपखंड में परिभाषित अनुमानों का उपयोग करके, '''डोलबेल्ट प्रचालक''' को परिभाषित करना संभव है:
:<math>\partial=\pi^{p+1,q}\circ d:\Omega^{p,q}\rightarrow\Omega^{p+1,q},\quad \bar{\partial}=\pi^{p,q+1}\circ d:\Omega^{p,q}\rightarrow\Omega^{p,q+1}</math>
:<math>\partial=\pi^{p+1,q}\circ d:\Omega^{p,q}\rightarrow\Omega^{p+1,q},\quad \bar{\partial}=\pi^{p,q+1}\circ d:\Omega^{p,q}\rightarrow\Omega^{p,q+1}</math>
स्थानीय निर्देशांक में इन ऑपरेटरों का वर्णन करने के लिए, आइए
स्थानीय निर्देशांक में इन प्रचालक का वर्णन करने के लिए, अनुमान
:<math>\alpha=\sum_{|I|=p,|J|=q}\ f_{IJ}\,dz^I\wedge d\bar{z}^J\in\Omega^{p,q}</math>
:<math>\alpha=\sum_{|I|=p,|J|=q}\ f_{IJ}\,dz^I\wedge d\bar{z}^J\in\Omega^{p,q}</math>
जहाँ I और J [[ बहु सूचकांक ]] हैं | मल्टी-इंडेक्स हैं। तब
जहाँ ''I'' और ''J''[[ बहु सूचकांक ]]हैं | तब
:<math>\partial\alpha=\sum_{|I|,|J|}\sum_\ell \frac{\partial f_{IJ}}{\partial z^\ell}\,dz^\ell\wedge dz^I\wedge d\bar{z}^J</math>
:<math>\partial\alpha=\sum_{|I|,|J|}\sum_\ell \frac{\partial f_{IJ}}{\partial z^\ell}\,dz^\ell\wedge dz^I\wedge d\bar{z}^J</math>
:<math>\bar{\partial}\alpha=\sum_{|I|,|J|}\sum_\ell \frac{\partial f_{IJ}}{\partial \bar{z}^\ell}d\bar{z}^\ell\wedge dz^I\wedge d\bar{z}^J.</math>
:<math>\bar{\partial}\alpha=\sum_{|I|,|J|}\sum_\ell \frac{\partial f_{IJ}}{\partial \bar{z}^\ell}d\bar{z}^\ell\wedge dz^I\wedge d\bar{z}^J.</math>
धारण करने के लिए निम्नलिखित गुण देखे जाते हैं:
आयोजित करने के लिए निम्नलिखित गुण देखे जाते हैं:
:<math>d=\partial+\bar{\partial}</math>
:<math>d=\partial+\bar{\partial}</math>
:<math>\partial^2=\bar{\partial}^2=\partial\bar{\partial}+\bar{\partial}\partial=0.</math>
:<math>\partial^2=\bar{\partial}^2=\partial\bar{\partial}+\bar{\partial}\partial=0.</math>
ये ऑपरेटर और उनके गुण [[Dolbeault cohomology]] और हॉज थ्योरी के कई पहलुओं के लिए आधार बनाते हैं।
ये प्रचालक और उनके गुण [[Dolbeault cohomology|डोलबेल्ट सह समरूपता]] और हॉज सिद्धांत के कई गुणो के लिए आधार बनाते हैं।


एक [[स्टार डोमेन]] पर। एक सम्मिश्र मैनिफोल्ड के स्टार-आकार वाले डोमेन में डोलबेल्ट ऑपरेटरों के पास दोहरी होमोटॉपी ऑपरेटर हैं <ref name=":0">{{Cite journal|last=Kycia|first=Radosław Antoni|date=2020|others=Section 4|title=पॉइंकेयर लेम्मा, एंटीएक्सैक्ट फॉर्म और फर्मियोनिक क्वांटम हार्मोनिक ऑसिलेटर|journal=Results in Mathematics|language=en|volume=75|issue=3|pages=122|doi=10.1007/s00025-020-01247-8|s2cid=199472766|issn=1422-6383|doi-access=free}}</ref> के लिए Poincare लेम्मा के विभाजन के परिणामस्वरूप <math>d</math>.<ref name=":0" />यह एक सम्मिश्र मैनिफोल्ड पर पॉइंकेयर लेम्मा की सामग्री है।
एक सम्मिश्र बहुरूपता के स्टार-आकार वाले प्रक्षेत्र पर, डोलबेल्ट प्रचालक के पास द्वैध होमोटॉपी प्रचालक होते हैं, <ref name=":0">{{Cite journal|last=Kycia|first=Radosław Antoni|date=2020|others=Section 4|title=पॉइंकेयर लेम्मा, एंटीएक्सैक्ट फॉर्म और फर्मियोनिक क्वांटम हार्मोनिक ऑसिलेटर|journal=Results in Mathematics|language=en|volume=75|issue=3|pages=122|doi=10.1007/s00025-020-01247-8|s2cid=199472766|issn=1422-6383|doi-access=free}}</ref> जो <math>d</math> के लिए होमोटॉपी प्रचालक के विभाजन से उत्पन्न होते हैं।<ref name=":0" /> यह एक सम्मिश्र बहुरूपता पर प्वांकारे लेम्मा की विषय सूची है।


Poincare लेम्मा के लिए <math>\bar \partial</math> और <math>\partial</math> स्थानीय डीडीबार लेम्मा|लोकल में और सुधार किया जा सकता है <math>\partial \bar \partial</math>-लेम्मा, जो दर्शाता है कि हर <math>d</math>-सटीक सम्मिश्र अवकल रूप वास्तव में है <math>\partial \bar \partial</math>-एकदम सही। कॉम्पैक्ट पर काहलर स्थानीय के वैश्विक रूप को बहुरूपता बढ़ा देता है <math>\partial \bar \partial</math>-लेम्मा होल्ड, जिसे ddbar लेम्मा के नाम से जाना जाता है<math>\partial \bar \partial</math>-लेम्मा। यह हॉज सिद्धांत का एक परिणाम है, और बताता है कि एक सम्मिश्र अवकल रूप जो विश्व स्तर पर है <math>d</math>-सटीक (दूसरे शब्दों में, जिसका वर्ग राम कोहोलॉजी में शून्य है) विश्व स्तर पर है <math>\partial \bar \partial</math>-एकदम सही।
<math>\bar \partial</math> और <math>\partial</math> के लिए पोंकारे लेम्मा को स्थानीय में और संशोधित बनाया जा सकता है <math>\partial \bar \partial</math>-लेम्मा, जो दर्शाता है कि प्रत्येक <math>d</math>-सम्मिश्र अवकल रूप वास्तव में <math>\partial \bar \partial</math>-सटीक है। संक्षिप्त काहलर पर स्थानीय <math>\partial \bar \partial</math>-लेम्मा का एक वैश्विक रूप बहुरूपता है, जिसे <math>\partial \bar \partial</math>-लेम्मा के रूप में जाना जाता है। यह हॉज सिद्धांत का एक परिणाम है, और बताता है कि एक सम्मिश्र अवकल रूप जो विश्व स्तर पर है <math>d</math>-सटीक है (दूसरे शब्दों में, जिसका वर्ग राम कोहोलॉजी में शून्य है) विश्व स्तर पर <math>\partial \bar \partial</math>-सटीक है।


=== पूर्णसममितिक रूप ===
=== पूर्णसममितिक रूप ===
प्रत्येक पी के लिए, एक 'पूर्णसममितिक पी-फॉर्म' बंडल Ω का एक पूर्णसममितिक खंड है<sup>पी, 0</सुपा>. स्थानीय निर्देशांक में, एक पूर्णसममितिक पी-फॉर्म को फॉर्म में लिखा जा सकता है
प्रत्येक ''p'' के लिए, एक 'पूर्णसममितिक '''''p'''''-रूप' बंडल Ω<sup>''p'',0</sup> का एक पूर्णसममितिक खंड है। स्थानीय निर्देशांक में, एक पूर्णसममितिक '''''p'''''-रूप को रूप में लिखा जा सकता है


:<math>\alpha=\sum_{|I|=p}f_I\,dz^I</math>
:<math>\alpha=\sum_{|I|=p}f_I\,dz^I</math>
जहां <math> f_I </math> पूर्णसममितिक कार्य हैं। समतुल्य रूप से, और कॉची-रीमैन समीकरणों के कारण # सम्मिश्र संयुग्म की स्वतंत्रता, (p, 0) -फॉर्म α पूर्णसममितिक है अगर और केवल अगर
जहां <math> f_I </math> पूर्णसममितिक फलन हैं। समान रूप से, और सम्मिश्र संयुग्म की स्वतंत्रता के कारण, (p, 0) -रूप α पूर्णसममितिक है अगर और केवल अगर
:<math>\bar{\partial}\alpha=0.</math>
:<math>\bar{\partial}\alpha=0.</math>
पूर्णसममितिक पी-रूपों के [[शीफ (गणित)]] को अक्सर Ω लिखा जाता है<sup>पी</sup>, हालांकि यह कभी-कभी भ्रम पैदा कर सकता है इसलिए कई लेखक वैकल्पिक संकेतन को अपनाने की प्रवृत्ति रखते हैं।
पूर्णसममितिक ''p''-रूपों के [[शीफ (गणित)|शीफ]] को प्रायः Ω<sup>''p''</sup> लिखा जाता है, हालांकि यह कभी-कभी संभ्रम पैदा कर सकता है इसलिए कई लेखक वैकल्पिक संकेतन को स्वीकार करते हैं।


== यह भी देखें ==
== यह भी देखें ==


*[[डोलबियॉल्ट कॉम्प्लेक्स]]
*[[डोलबियॉल्ट कॉम्प्लेक्स|डोलबियॉल्ट सम्मिश्र]]
*फ्रोलिकर स्पेक्ट्रल अनुक्रम
*फ्रोलिकर वर्णक्रमीय अनुक्रम
* [[पहली तरह का अंतर|पहली तरह का अवकल]]
* [[पहली तरह का अंतर|प्रथम प्रकार का अवकल]]


== संदर्भ ==
== संदर्भ ==

Revision as of 15:19, 20 April 2023

गणित में, एक सम्मिश्र अवकल रूप बहुरूपता (सामान्यतः एक सम्मिश्र बहुरूपता) पर एक अवकल रूप होता है जिसे सम्मिश्र गुणांक रखने की अनुमति होती है।

सम्मिश्र रूपों में अवकल ज्यामिति में व्यापक अनुप्रयोग होते हैं। सम्मिश्र बहुरूपता पर, वे मौलिक हैं और बहुत से बीजगणितीय ज्यामिति, काहलर ज्यामिति और हॉज सिद्धांत के आधार के रूप में काम करते हैं। गैर-सम्मिश्र बहुरूपता पर, वे लगभग सम्मिश्र संरचनाओं, स्पिनरों के सिद्धांत और सीआर संरचनाओं के अध्ययन में भी भूमिका निभाते हैं।

विशिष्ट रूप से, सम्मिश्र रूपों को कुछ वांछनीय अपघटन के कारण माना जाता है जो रूपों को स्वीकार करते हैं। एक सम्मिश्र बहुरूपता पर, उदाहरण के लिए, किसी भी सम्मिश्र k-विधि को तथाकथित (p, q)-रूपों के योग में विशिष्ट रूप से विघटित किया जा सकता है: अशिष्टता से, पूर्णसममितिक निर्देशांक के p अंतरों के वेजेज उनके सम्मिश्र संयुग्मों के q अवकलों के साथ होते हैं। (pq)-रूपों का समुच्चय अध्ययन का आदिम उद्देश्य बन जाता है, और k-रूपों की तुलना में बहुरूपता सूक्ष्मतर ज्यामितीय संरचना निर्धारित करता है। यहां तक ​​कि उत्तम संरचनाएं भी उपस्तिथ हैं, उदाहरण के लिए, उन प्रकरणों में जहां हॉज सिद्धांत उपयोजित होता है।

एक सम्मिश्र बहुरूपता पर अवकल रूप

मान लीजिए कि M सम्मिश्र आयाम n का एक सम्मिश्र बहुरूपता है। फिर एक स्थानीय समन्वय प्रणाली है जिसमें n सम्मिश्र-मूल्यवान फलानो z1, ..., zn सम्मलित हैं, जैसे कि एक पैच से दूसरे में संक्रमण का समन्वय इन चरों के पूर्णसममितिक फलन हैं। सम्मिश्र रूपों का स्थान एक समृद्ध संरचना रखता है, जो मौलिक रूप से इस तथ्य पर निर्भर करता है कि ये संक्रमण फलन केवल सुचारू होने के बदले पूर्णसममितिक हैं।

एक रूप

हम एक-रूपों के प्रकरण से प्रारंभ करते हैं। पहले सम्मिश्र निर्देशांक को उनके वास्तविक और काल्पनिक भागों में विघटित करें: zj = xj + iyj प्रत्येक j के लिए। अनुमान

कोई देखता है कि सम्मिश्र गुणांक वाले किसी भी अवकल रूप को योग के रूप में विशिष्ट रूप से लिखा जा सकता है

अनुमान Ω1,0 सम्मिश्र अवकल रूपों का स्थान हो जिसमें केवल s और Ω0,1 केवल वाले रूपों का स्थान हो। कोई दिखा सकता है, कॉची-रीमैन समीकरणों द्वारा, समष्टि Ω1.0 और Ω0,1 पूर्णसममितिक समन्वय परिवर्तन के अंतर्गत स्थिर हैं। दूसरे शब्दों में, यदि कोई पूर्णसममितिक समन्वय प्रणाली का एक अलग विकल्प बनाता है, तो Ω1,0 के तत्व तन्य रूप से बदलते हैं, जैसा कि Ω0,1 के तत्व करते हैं। इस प्रकार समष्टि Ω0.1 और Ω1,0 सम्मिश्र बहुरूपता पर सदिश बंडल का निर्धारण करते हैं।

उच्च-डिग्री फॉर्म

सम्मिश्र अवकल रूपों के वेज उत्पाद को वास्तविक रूपों के समान ही परिभाषित किया गया है। p और q को गैर-नकारात्मक पूर्णांक ≤ n की एक युग्म होने दें। समष्टि Ωp,q का (p, q)-रूपों को Ω1,0 से p तत्वों और Ω0,1 से q तत्वों के वेज उत्पादों के रैखिक संयोजनों को लेकर परिभाषित किया गया हैं। प्रतीकात्मक रूप से,

जहां Ω1,0 के p कारक और Ω0,1 के q कारक है। जैसे 1-रूपों के दो समष्टि के साथ, ये निर्देशांक के पूर्णसममितिक परिवर्तनों के अंतर्गत स्थिर होते हैं, और इसलिए सदिश बंडलों को निर्धारित करते हैं।

यदि Ek कुल डिग्री k के सभी सम्मिश्र अवकल रूपों का समष्टि है, तब Ek के प्रत्येक अवयव को p + q = k वाले समष्टि Ωp,q के तत्वों के रैखिक संयोजन के रूप में एक अद्वितीय प्रकार से व्यक्त किया जा सकता है। अधिक संक्षेप में, प्रत्यक्ष योग अपघटन होता है

क्योंकि यह प्रत्यक्ष योग अपघटन पूर्णसममितिक समन्वय परिवर्तन के अंतर्गत स्थिर है, यह एक सदिश बंडल अपघटन भी निर्धारित करता है।

विशेष रूप से, प्रत्येक k और प्रत्येक p और q के लिए p + q = k के साथ, सदिश बंडलों का एक विहित प्रक्षेपण है

डोलबेल्ट प्रचालक

सामान्य बाहरी व्युत्पन्न अनुभागों के मानचित्रण को परिभाषित करता है के माध्यम से

बाहरी व्युत्पन्न अपने आप में बहुरूपता अधिक दृढ़ सम्मिश्र संरचना को प्रतिबिंबित नहीं करता है।

d और पूर्व उपखंड में परिभाषित अनुमानों का उपयोग करके, डोलबेल्ट प्रचालक को परिभाषित करना संभव है:

स्थानीय निर्देशांक में इन प्रचालक का वर्णन करने के लिए, अनुमान

जहाँ I और Jबहु सूचकांक हैं | तब

आयोजित करने के लिए निम्नलिखित गुण देखे जाते हैं:

ये प्रचालक और उनके गुण डोलबेल्ट सह समरूपता और हॉज सिद्धांत के कई गुणो के लिए आधार बनाते हैं।

एक सम्मिश्र बहुरूपता के स्टार-आकार वाले प्रक्षेत्र पर, डोलबेल्ट प्रचालक के पास द्वैध होमोटॉपी प्रचालक होते हैं, [1] जो के लिए होमोटॉपी प्रचालक के विभाजन से उत्पन्न होते हैं।[1] यह एक सम्मिश्र बहुरूपता पर प्वांकारे लेम्मा की विषय सूची है।

और के लिए पोंकारे लेम्मा को स्थानीय में और संशोधित बनाया जा सकता है -लेम्मा, जो दर्शाता है कि प्रत्येक -सम्मिश्र अवकल रूप वास्तव में -सटीक है। संक्षिप्त काहलर पर स्थानीय -लेम्मा का एक वैश्विक रूप बहुरूपता है, जिसे -लेम्मा के रूप में जाना जाता है। यह हॉज सिद्धांत का एक परिणाम है, और बताता है कि एक सम्मिश्र अवकल रूप जो विश्व स्तर पर है -सटीक है (दूसरे शब्दों में, जिसका वर्ग राम कोहोलॉजी में शून्य है) विश्व स्तर पर -सटीक है।

पूर्णसममितिक रूप

प्रत्येक p के लिए, एक 'पूर्णसममितिक p-रूप' बंडल Ωp,0 का एक पूर्णसममितिक खंड है। स्थानीय निर्देशांक में, एक पूर्णसममितिक p-रूप को रूप में लिखा जा सकता है

जहां पूर्णसममितिक फलन हैं। समान रूप से, और सम्मिश्र संयुग्म की स्वतंत्रता के कारण, (p, 0) -रूप α पूर्णसममितिक है अगर और केवल अगर

पूर्णसममितिक p-रूपों के शीफ को प्रायः Ωp लिखा जाता है, हालांकि यह कभी-कभी संभ्रम पैदा कर सकता है इसलिए कई लेखक वैकल्पिक संकेतन को स्वीकार करते हैं।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Kycia, Radosław Antoni (2020). Section 4. "पॉइंकेयर लेम्मा, एंटीएक्सैक्ट फॉर्म और फर्मियोनिक क्वांटम हार्मोनिक ऑसिलेटर". Results in Mathematics (in English). 75 (3): 122. doi:10.1007/s00025-020-01247-8. ISSN 1422-6383. S2CID 199472766.