रेखा-गोलाकार चौराहा: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 7: Line 7:
इन मामलों को अलग करने के तरीके, और बाद के मामलों में बिंदुओं के लिए निर्देशांक निर्धारित करना, कई परिस्थितियों में उपयोगी होते हैं। उदाहरण के लिए, [[ किरण अनुरेखण (ग्राफिक्स) ]] के दौरान प्रदर्शन करना एक सामान्य गणना है। <ref>{{cite book|last1=Eberly|first=David H.|title=3D game engine design: a practical approach to real-time computer graphics, 2nd edition|date=2006|publisher=Morgan Kaufmann.|isbn=0-12-229063-1|page=698}}</ref>
इन मामलों को अलग करने के तरीके, और बाद के मामलों में बिंदुओं के लिए निर्देशांक निर्धारित करना, कई परिस्थितियों में उपयोगी होते हैं। उदाहरण के लिए, [[ किरण अनुरेखण (ग्राफिक्स) ]] के दौरान प्रदर्शन करना एक सामान्य गणना है। <ref>{{cite book|last1=Eberly|first=David H.|title=3D game engine design: a practical approach to real-time computer graphics, 2nd edition|date=2006|publisher=Morgan Kaufmann.|isbn=0-12-229063-1|page=698}}</ref>


इन मामलों को अलग करने के तरीके, और बाद के मामलों में बिंदुओं के लिए निर्देशांक निर्धारित करना, कई परिस्थितियों में उपयोगी होते हैं।
'''इन मामलों को अलग करने के तरीके, और बाद के मामलों में बिंदुओं के'''


'''3डी  में सदिश का उपयोग कर गणना'''
'''3डी  में सदिश का उपयोग कर गणना'''

Revision as of 10:54, 20 April 2023

तीन संभावित रेखा-क्षेत्र प्रतिच्छेदन:
1. कोई प्रतिच्छेदन नहीं।
2. बिंदु प्रतिच्छेदन।
3. दो बिंदु प्रतिच्छेदन।

विश्लेषणात्मक ज्यामिति में, एक रेखा (गणित) और एक वृत्त तीन तरीकों से प्रतिच्छेद कर सकता है:

  1. कोई प्रतिच्छेदन नहीं
  2. केवल एक बिंदु में प्रतिच्छेदन
  3. दो बिंदुओं में प्रतिच्छेदन।

इन मामलों को अलग करने के तरीके, और बाद के मामलों में बिंदुओं के लिए निर्देशांक निर्धारित करना, कई परिस्थितियों में उपयोगी होते हैं। उदाहरण के लिए, किरण अनुरेखण (ग्राफिक्स) के दौरान प्रदर्शन करना एक सामान्य गणना है। [1]

इन मामलों को अलग करने के तरीके, और बाद के मामलों में बिंदुओं के

3डी में सदिश का उपयोग कर गणना

सदिश संकेतन में, समीकरण इस प्रकार हैं:

वृत्त के लिए समीकरण

  •  : वृत्त पर बिंदु
  •  : केंद्र बिंदु
  •  : वृत्त की त्रिज्या

से शुरू होने वाली रेखा के लिए समीकरण

  •  : रेखा पर बिंदु
  •  : रेखा की उत्पत्ति
  •  : रेखा की उत्पत्ति से दूरी
  •  : रेखा की दिशा (एक गैर-शून्य सदिश)

उन बिंदुओं की खोज करना जो रेखा पर हैं और वृत्त पर हैं, का अर्थ है समीकरणों को जोड़ना और हल करना , सदिश के आदिश-गुणनफल को शामिल करना:

संयुक्त समीकरण
विस्तारित और पुनर्व्यवस्थित:
द्विघात सूत्र का रूप अब देखने योग्य है। (यह द्विघात समीकरण जोआकिमस्थल के समीकरण का एक उदाहरण है।) [2]
कहाँ
सरलीकृत
ध्यान दें कि विशिष्ट मामले में जहां एक इकाई सदिश है, और इस प्रकार , हम इसे और सरल कर सकते हैं (लिखने के लिए के बजाय एक इकाई सदिश इंगित करने के लिए):
  • यदि , तो यह स्पष्ट है कि कोई समाधान मौजूद नहीं है, अर्थात रेखा वृत्त को नहीं काटती है (स्थिति 1)।
  • यदि , तो वास्तव में एक समाधान मौजूद है, यानी रेखा सिर्फ एक बिंदु (स्थिति 2) में वृत्त को छूती है।
  • यदि , दो समाधान मौजूद हैं, और इस प्रकार रेखा दो बिंदुओं (स्थिति 3) में वृत्त को छूती है।

यह भी देखें

  • प्रतिच्छेदन (ज्यामिति) ए रेखा और एक वृत्त
  • विश्लेषणात्मक ज्यामिति
  • रेखा-समतल प्रतिच्छेदन
  • समतल-समतल प्रतिच्छेदन
  • विमान-वृत्ताकार प्रतिच्छेदन

संदर्भ

  1. Eberly, David H. (2006). 3D game engine design: a practical approach to real-time computer graphics, 2nd edition. Morgan Kaufmann. p. 698. ISBN 0-12-229063-1.
  2. "Joachimsthal's Equation".