द्विध्रुवी निर्देशांक: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|2-dimensional orthogonal coordinate system based on Apollonian circles}} {{See also|two-center bipolar coordinates}} File:Iso1.svg|thumb|right|350px|द...")
 
No edit summary
Line 1: Line 1:
{{short description|2-dimensional orthogonal coordinate system based on Apollonian circles}}
{{short description|2-dimensional orthogonal coordinate system based on Apollonian circles}}
{{See also|two-center bipolar coordinates}}
{{See also|दो-केंद्र द्विध्रुवी निर्देशांक}}
[[File:Iso1.svg|thumb|right|350px|द्विध्रुवी समन्वय प्रणाली]]द्विध्रुवी निर्देशांक एक द्वि-आयामी [[ऑर्थोगोनल निर्देशांक]] समन्वय प्रणाली है जो अपोलोनियन मंडलियों पर आधारित है।<ref name=bip>Eric W. Weisstein, '''Concise Encyclopedia of Mathematics CD-ROM''', ''Bipolar Coordinates'', CD-ROM edition 1.0, May 20, 1999<!-- Bot generated title --> {{Cite web |url=http://bbs.sachina.pku.edu.cn/Stat/Math_World/math/b/b233.htm |title=Bipolar Coordinates |access-date=December 9, 2006 |archive-date=December 12, 2007 |archive-url=https://web.archive.org/web/20071212005309/http://bbs.sachina.pku.edu.cn/Stat/Math_World/math/b/b233.htm |url-status=dead }}</ref> भ्रामक रूप से, एक ही शब्द का प्रयोग कभी-कभी [[दो-केंद्र द्विध्रुवी निर्देशांक]] के लिए भी किया जाता है। एक तीसरी प्रणाली भी है, जो दो ध्रुवों ([[द्विकोणीय निर्देशांक]]) पर आधारित है।
[[File:Iso1.svg|thumb|right|350px|द्विध्रुवी समन्वय प्रणाली]]द्विध्रुवी निर्देशांक एक द्वि-आयामी [[ऑर्थोगोनल निर्देशांक]] समन्वय प्रणाली है जो अपोलोनियन मंडलियों पर आधारित है। <ref name=bip>Eric W. Weisstein, '''Concise Encyclopedia of Mathematics CD-ROM''', ''Bipolar Coordinates'', CD-ROM edition 1.0, May 20, 1999<!-- Bot generated title --> {{Cite web |url=http://bbs.sachina.pku.edu.cn/Stat/Math_World/math/b/b233.htm |title=Bipolar Coordinates |access-date=December 9, 2006 |archive-date=December 12, 2007 |archive-url=https://web.archive.org/web/20071212005309/http://bbs.sachina.pku.edu.cn/Stat/Math_World/math/b/b233.htm |url-status=dead }}</ref> भ्रामक रूप से, एक ही शब्द का प्रयोग कभी-कभी [[दो-केंद्र द्विध्रुवी निर्देशांक]] के लिए भी किया जाता है। एक तीसरी प्रणाली भी है, जो दो ध्रुवों ([[द्विकोणीय निर्देशांक]]) पर आधारित है।


बाइपोलर शब्द का प्रयोग अवसर पर अन्य वक्रों का वर्णन करने के लिए किया जाता है, जिसमें दो एकवचन बिंदु (foci), जैसे दीर्घवृत्त, [[अतिशयोक्ति]] और [[कैसिनी [[अंडाकार]]]] होते हैं। हालाँकि, द्विध्रुवी निर्देशांक शब्द यहाँ वर्णित निर्देशांक के लिए आरक्षित है, और कभी भी उन अन्य वक्रों से जुड़े सिस्टम के लिए उपयोग नहीं किया जाता है, जैसे कि [[अण्डाकार निर्देशांक]]।
बाइपोलर शब्द का प्रयोग अवसर पर अन्य वक्रों का वर्णन करने के लिए किया जाता है, जिसमें दो एकवचन बिंदु (foci), जैसे दीर्घवृत्त, [[अतिशयोक्ति]] और कैसिनी [[अंडाकार]] होते हैं। हालाँकि, द्विध्रुवी निर्देशांक शब्द यहाँ वर्णित निर्देशांक के लिए आरक्षित है, और कभी भी उन अन्य वक्रों से जुड़े सिस्टम के लिए उपयोग नहीं किया जाता है, जैसे कि [[अण्डाकार निर्देशांक]]।


[[File:Bipolar_coordinates.svg|thumb|right|350px|द्विध्रुवी निर्देशांक की ज्यामितीय व्याख्या। कोण σ दो नाभियों और बिंदु P से बनता है, जबकि ''τ'' नाभियों से दूरियों के अनुपात का लघुगणक है। स्थिर ''σ'' और ''τ'' के संगत वृत्त क्रमशः लाल और नीले रंग में दिखाए जाते हैं, और समकोण पर मिलते हैं (मैजेंटा बॉक्स); वे ओर्थोगोनल हैं।]]
[[File:Bipolar_coordinates.svg|thumb|right|350px|द्विध्रुवी निर्देशांक की ज्यामितीय व्याख्या। कोण σ दो नाभियों और बिंदु P से बनता है, जबकि ''τ'' नाभियों से दूरियों के अनुपात का लघुगणक है। स्थिर ''σ'' और ''τ'' के संगत वृत्त क्रमशः लाल और नीले रंग में दिखाए जाते हैं, और समकोण पर मिलते हैं (मैजेंटा बॉक्स); वे ओर्थोगोनल हैं।]]
Line 26: Line 26:
:<math>
:<math>
x + i y = a i \cot\left( \frac{\sigma + i \tau}{2}\right).
x + i y = a i \cot\left( \frac{\sigma + i \tau}{2}\right).
</math><ref name="Polyanin"/><ref name="Happel"/>इस समीकरण से पता चलता है कि σ और τ x+iy के एक विश्लेषणात्मक कार्य के वास्तविक और काल्पनिक भाग हैं (फोसी पर लॉगरिदमिक शाखा बिंदुओं के साथ), जो बदले में ([[अनुरूप मानचित्रण]] के सामान्य सिद्धांत के लिए अपील द्वारा) साबित करता है (कॉची- रीमैन समीकरण) कि σ और τ के ये विशेष वक्र समकोण पर प्रतिच्छेद करते हैं, यानी कि समन्वय प्रणाली ऑर्थोगोनल है।
</math><ref name="Polyanin"/><ref name="Happel"/> इस समीकरण से पता चलता है कि σ और τ x+iy के एक विश्लेषणात्मक कार्य के वास्तविक और काल्पनिक भाग हैं (फोसी पर लॉगरिदमिक शाखा बिंदुओं के साथ), जो बदले में ([[अनुरूप मानचित्रण]] के सामान्य सिद्धांत के लिए अपील द्वारा) साबित करता है (कॉची- रीमैन समीकरण) कि σ और τ के ये विशेष वक्र समकोण पर प्रतिच्छेद करते हैं, यानी कि समन्वय प्रणाली ऑर्थोगोनल है।


== निरंतर σ और τ == के वक्र
निरंतर σ और τ के वक्र


[[File:Bipolar sigma isosurfaces.png|right|280px]]
[[File:Bipolar sigma isosurfaces.png|right|280px]]
Line 90: Line 90:
</math>
</math>
कई परिणाम अब ऑर्थोगोनल निर्देशांक के लिए सामान्य सूत्रों से त्वरित उत्तराधिकार में अनुसरण करते हैं।
कई परिणाम अब ऑर्थोगोनल निर्देशांक के लिए सामान्य सूत्रों से त्वरित उत्तराधिकार में अनुसरण करते हैं।
इस प्रकार, अतिसूक्ष्म क्षेत्र तत्व बराबर है
इस प्रकार, अतिसूक्ष्म क्षेत्र तत्व बराबर है


Line 108: Line 109:


== अनुप्रयोग ==
== अनुप्रयोग ==
द्विध्रुवी निर्देशांक के क्लासिक अनुप्रयोग [[आंशिक अंतर समीकरण]]ों को हल करने में हैं, उदाहरण के लिए, लाप्लास का समीकरण या [[हेल्महोल्ट्ज़ समीकरण]], जिसके लिए द्विध्रुवी निर्देशांक एक अलग_ऑफ_वेरिएबल्स #pde की अनुमति देते हैं। एक उदाहरण असमान व्यास वाले दो समानांतर बेलनाकार कंडक्टरों के आसपास का [[विद्युत क्षेत्र]] है।
द्विध्रुवी निर्देशांक के क्लासिक अनुप्रयोग [[आंशिक अंतर समीकरण]] को हल करने में हैं, उदाहरण के लिए, लाप्लास का समीकरण या [[हेल्महोल्ट्ज़ समीकरण]], जिसके लिए द्विध्रुवी निर्देशांक एक अलग ऑफ वेरिएबल्स pde की अनुमति देते हैं। एक उदाहरण असमान व्यास वाले दो समानांतर बेलनाकार कंडक्टरों के आसपास का [[विद्युत क्षेत्र]] है।
 
'''द्विध्रुवी निर्देशांक शब्द यहाँ वर्णित निर्देशांक के लिए आरक्षित है, और कभी भी उन अन्य वक्रों से जुड़े सिस्टम के लिए उपयोग नहीं किया जाता है, जैसे कि [[अण्डाकार निर्देशांक]]।'''


== 3-आयामों तक विस्तार ==
== 3-आयामों तक विस्तार ==

Revision as of 09:30, 20 April 2023

द्विध्रुवी समन्वय प्रणाली

द्विध्रुवी निर्देशांक एक द्वि-आयामी ऑर्थोगोनल निर्देशांक समन्वय प्रणाली है जो अपोलोनियन मंडलियों पर आधारित है। [1] भ्रामक रूप से, एक ही शब्द का प्रयोग कभी-कभी दो-केंद्र द्विध्रुवी निर्देशांक के लिए भी किया जाता है। एक तीसरी प्रणाली भी है, जो दो ध्रुवों (द्विकोणीय निर्देशांक) पर आधारित है।

बाइपोलर शब्द का प्रयोग अवसर पर अन्य वक्रों का वर्णन करने के लिए किया जाता है, जिसमें दो एकवचन बिंदु (foci), जैसे दीर्घवृत्त, अतिशयोक्ति और कैसिनी अंडाकार होते हैं। हालाँकि, द्विध्रुवी निर्देशांक शब्द यहाँ वर्णित निर्देशांक के लिए आरक्षित है, और कभी भी उन अन्य वक्रों से जुड़े सिस्टम के लिए उपयोग नहीं किया जाता है, जैसे कि अण्डाकार निर्देशांक

द्विध्रुवी निर्देशांक की ज्यामितीय व्याख्या। कोण σ दो नाभियों और बिंदु P से बनता है, जबकि τ नाभियों से दूरियों के अनुपात का लघुगणक है। स्थिर σ और τ के संगत वृत्त क्रमशः लाल और नीले रंग में दिखाए जाते हैं, और समकोण पर मिलते हैं (मैजेंटा बॉक्स); वे ओर्थोगोनल हैं।

परिभाषा

प्रणाली दो फोकस (ज्यामिति) एफ पर आधारित है1 और एफ2. दाईं ओर की आकृति का संदर्भ देते हुए, एक बिंदु P का σ-निर्देशांक कोण F के बराबर होता है1पी एफ2, और τ-निर्देशांक दूरी d के अनुपात के प्राकृतिक लघुगणक के बराबर है1 और डी2:

अगर, कार्तीय प्रणाली में, foci को (−a, 0) और (a, 0) पर ले जाया जाता है, तो बिंदु P के निर्देशांक हैं

निर्देशांक τ से लेकर होता है (एफ के करीब बिंदुओं के लिए1) को (एफ के करीब बिंदुओं के लिए2). निर्देशांक σ केवल परिभाषित मॉड्यूल 2π है, और इसे तीव्र कोण F के ऋणात्मक के रूप में -π से π तक की सीमा में ले जाना सबसे अच्छा है।1पी एफ2 अगर पी निचले आधे विमान में है।

== सबूत है कि समन्वय प्रणाली ऑर्थोगोनल == है

x और y के समीकरणों को मिलाकर दिया जा सकता है

[2][3] इस समीकरण से पता चलता है कि σ और τ x+iy के एक विश्लेषणात्मक कार्य के वास्तविक और काल्पनिक भाग हैं (फोसी पर लॉगरिदमिक शाखा बिंदुओं के साथ), जो बदले में (अनुरूप मानचित्रण के सामान्य सिद्धांत के लिए अपील द्वारा) साबित करता है (कॉची- रीमैन समीकरण) कि σ और τ के ये विशेष वक्र समकोण पर प्रतिच्छेद करते हैं, यानी कि समन्वय प्रणाली ऑर्थोगोनल है।

निरंतर σ और τ के वक्र

Bipolar sigma isosurfaces.png
Bipolar tau isosurfaces.png

स्थिर σ के वक्र गैर-केंद्रित वृत्तों के संगत होते हैं

जो दो केन्द्रों पर प्रतिच्छेद करता है। स्थिर-σ वृत्तों के केंद्र y-अक्ष पर स्थित हैं। धनात्मक σ के वृत्त x-अक्ष के ऊपर केंद्रित होते हैं, जबकि ऋणात्मक σ के वृत्त अक्ष के नीचे स्थित होते हैं। जैसे-जैसे परिमाण |σ|- π/2 घटता है, वृत्तों की त्रिज्या घटती जाती है और केंद्र मूल बिंदु (0, 0) तक पहुंचता है, जो कि |σ| = π/2. (प्रारंभिक ज्यामिति से, एक व्यास के विपरीत सिरों पर 2 कोने वाले वृत्त पर सभी त्रिभुज समकोण त्रिभुज हैं।)

स्थिरांक के वक्र विभिन्न त्रिज्याओं के अप्रतिच्छेदी वृत्त हैं

जो foci को घेरते हैं लेकिन फिर से संकेंद्रित नहीं होते हैं। नियत-τ वृत्तों के केंद्र x-अक्ष पर स्थित हैं। धनात्मक τ के वृत्त समतल (x > 0) के दाईं ओर स्थित होते हैं, जबकि ऋणात्मक τ के वृत्त तल के बाईं ओर स्थित होते हैं (x < 0)। τ = 0 वक्र y-अक्ष (x = 0) के संगत है। जैसे-जैसे τ का परिमाण बढ़ता है, वृत्तों की त्रिज्या घटती जाती है और उनके केंद्र नाभियों की ओर बढ़ते हैं।

पारस्परिक संबंध

कार्तीय निर्देशांक से द्विध्रुवी निर्देशांक की ओर मार्ग निम्नलिखित सूत्रों के माध्यम से किया जा सकता है:

और

निर्देशांकों की भी पहचान होती है:

और

उपरोक्त अनुभाग में परिभाषा से एक x = 0 प्राप्त करने की सीमा क्या है। और सभी सीमाएँ x = 0 पर बहुत साधारण दिखती हैं।

स्केल कारक

द्विध्रुवी निर्देशांक के पैमाने कारक प्राप्त करने के लिए, हम समीकरण के अंतर को लेते हैं , जो देता है

इस समीकरण को इसकी जटिल संयुग्म उपज के साथ गुणा करना

ज्या और कोज्या के गुणनफल के लिए त्रिकोणमितीय सर्वसमिका का प्रयोग करके, हम प्राप्त करते हैं

जिससे यह अनुसरण करता है

इसलिए σ और τ के स्केल कारक बराबर हैं, और द्वारा दिए गए हैं

कई परिणाम अब ऑर्थोगोनल निर्देशांक के लिए सामान्य सूत्रों से त्वरित उत्तराधिकार में अनुसरण करते हैं।

इस प्रकार, अतिसूक्ष्म क्षेत्र तत्व बराबर है

और लाप्लासियन द्वारा दिया गया है

के लिए भाव , , और ऑर्थोगोनल निर्देशांक में पाए जाने वाले सामान्य सूत्रों में स्केल कारकों को प्रतिस्थापित करके प्राप्त किया जा सकता है।

अनुप्रयोग

द्विध्रुवी निर्देशांक के क्लासिक अनुप्रयोग आंशिक अंतर समीकरण को हल करने में हैं, उदाहरण के लिए, लाप्लास का समीकरण या हेल्महोल्ट्ज़ समीकरण, जिसके लिए द्विध्रुवी निर्देशांक एक अलग ऑफ वेरिएबल्स pde की अनुमति देते हैं। एक उदाहरण असमान व्यास वाले दो समानांतर बेलनाकार कंडक्टरों के आसपास का विद्युत क्षेत्र है।

द्विध्रुवी निर्देशांक शब्द यहाँ वर्णित निर्देशांक के लिए आरक्षित है, और कभी भी उन अन्य वक्रों से जुड़े सिस्टम के लिए उपयोग नहीं किया जाता है, जैसे कि अण्डाकार निर्देशांक

3-आयामों तक विस्तार

द्विध्रुवी निर्देशांक त्रि-आयामी ऑर्थोगोनल निर्देशांक के कई सेटों का आधार बनाते हैं।

  • ध्रुवीय बेलनाकार निर्देशांक z-अक्ष के साथ द्विध्रुवी निर्देशांकों का अनुवाद करके निर्मित होते हैं, अर्थात, समतल अक्ष के बाहर।
  • ध्रुवीय निर्देशांक x-अक्ष के चारों ओर द्विध्रुवीय निर्देशांक को घुमाकर उत्पन्न होते हैं, अर्थात, फ़ोकस को जोड़ने वाली धुरी।
  • टॉरॉयडल निर्देशांक y-अक्ष के चारों ओर द्विध्रुवी निर्देशांक को घुमाकर निर्मित किए जाते हैं, अर्थात, फ़ोकस को अलग करने वाली धुरी।

संदर्भ

  1. Eric W. Weisstein, Concise Encyclopedia of Mathematics CD-ROM, Bipolar Coordinates, CD-ROM edition 1.0, May 20, 1999 "Bipolar Coordinates". Archived from the original on December 12, 2007. Retrieved December 9, 2006.
  2. Polyanin, Andrei Dmitrievich (2002). Handbook of linear partial differential equations for engineers and scientists. CRC Press. p. 476. ISBN 1-58488-299-9.
  3. Happel, John; Brenner, Howard (1983). Low Reynolds number hydrodynamics: with special applications to particulate media. Mechanics of fluids and transport processes. Vol. 1. Springer. p. 497. ISBN 978-90-247-2877-0.