आवश्यकता और पर्याप्तता: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Terms to describe a conditional relationship between two statements}} {{about|the formal terminology in logic|causal meanings of the terms|Causality|the co...")
 
No edit summary
Line 1: Line 1:
{{Short description|Terms to describe a conditional relationship between two statements}}
{{Short description|Terms to describe a conditional relationship between two statements}}
{{about|the formal terminology in logic|causal meanings of the terms|Causality|the concepts in statistics|Sufficient statistic}}
{{about|तर्क में औपचारिक शब्दावली|शर्तों का कारण अर्थ|करणीय संबंध|सांख्यिकी में अवधारणाएँ|पर्याप्त आँकड़ा}}


[[तर्क]] और गणित में, आवश्यकता और पर्याप्तता ऐसे शब्द हैं जिनका उपयोग दो कथनों (तर्क) के बीच भौतिक सशर्त या निहितार्थ संबंध का वर्णन करने के लिए किया जाता है। उदाहरण के लिए, [[सशर्त वाक्य]] में: यदि {{mvar|P}} तब {{mvar|Q}} , {{mvar|Q}} के लिए आवश्यक है {{mvar|P}}, क्योंकि का सत्य मान {{mvar|Q}} की सच्चाई की गारंटी है {{mvar|P}} (समान रूप से, यह होना असंभव है {{mvar|P}} बिना {{mvar|Q}}).<ref name=":0">{{Cite web|url=https://philosophy.hku.hk/think/meaning/nsc.php|title=[M06] Necessity and sufficiency|website=philosophy.hku.hk|access-date=2019-12-02}}</ref> इसी प्रकार, {{mvar|P}} के लिए पर्याप्त है {{mvar|Q}}, क्योंकि {{mvar|P}} सत्य होने का अर्थ हमेशा यही होता है {{mvar|Q}} सच है, लेकिन {{mvar|P}} सत्य नहीं होने का हमेशा यह अर्थ नहीं होता है {{mvar|Q}} यह सच नहीं है।<ref>{{Cite book|title=Proofs and Fundamentals: A First Course in Abstract Mathematics|last=Bloch|first=Ethan D.|publisher=Springer|year=2011|isbn=978-1-4419-7126-5|pages=8–9}}</ref>
[[तर्क]] और गणित में, आवश्यकता और पर्याप्तता ऐसे शब्द हैं जिनका उपयोग दो कथनों (तर्क) के बीच भौतिक सशर्त या निहितार्थ संबंध का वर्णन करने के लिए किया जाता है। उदाहरण के लिए, [[सशर्त वाक्य]] में: यदि {{mvar|P}} तब {{mvar|Q}} , {{mvar|Q}} के लिए आवश्यक है {{mvar|P}}, क्योंकि का सत्य मान {{mvar|Q}} की सच्चाई की गारंटी है {{mvar|P}} (समान रूप से, यह होना असंभव है {{mvar|P}} बिना {{mvar|Q}}).<ref name=":0">{{Cite web|url=https://philosophy.hku.hk/think/meaning/nsc.php|title=[M06] Necessity and sufficiency|website=philosophy.hku.hk|access-date=2019-12-02}}</ref> इसी प्रकार, {{mvar|P}} के लिए पर्याप्त है {{mvar|Q}}, क्योंकि {{mvar|P}} सत्य होने का अर्थ हमेशा यही होता है {{mvar|Q}} सच है, लेकिन {{mvar|P}} सत्य नहीं होने का हमेशा यह अर्थ नहीं होता है {{mvar|Q}} यह सच नहीं है।<ref>{{Cite book|title=Proofs and Fundamentals: A First Course in Abstract Mathematics|last=Bloch|first=Ethan D.|publisher=Springer|year=2011|isbn=978-1-4419-7126-5|pages=8–9}}</ref>
Line 16: Line 16:


{| class="wikitable" style="margin:1em auto; text-align:center;"
{| class="wikitable" style="margin:1em auto; text-align:center;"
|+ Truth table
|+ सत्य सारणी
|-
|-
! scope="col"  style="width:20%" | {{nobold|{{mvar|S}}}}
! scope="col"  style="width:20%" | {{nobold|{{mvar|S}}}}
Line 80: Line 80:


== एक साथ आवश्यकता और पर्याप्तता ==
== एक साथ आवश्यकता और पर्याप्तता ==
{{See also|Material equivalence}}
{{See also|सामग्री समानता}}


यह कहना कि P, Q के लिए आवश्यक और पर्याप्त है, दो बातें कहना है:
यह कहना कि P, Q के लिए आवश्यक और पर्याप्त है, दो बातें कहना है:

Revision as of 09:48, 23 April 2023

तर्क और गणित में, आवश्यकता और पर्याप्तता ऐसे शब्द हैं जिनका उपयोग दो कथनों (तर्क) के बीच भौतिक सशर्त या निहितार्थ संबंध का वर्णन करने के लिए किया जाता है। उदाहरण के लिए, सशर्त वाक्य में: यदि P तब Q , Q के लिए आवश्यक है P, क्योंकि का सत्य मान Q की सच्चाई की गारंटी है P (समान रूप से, यह होना असंभव है P बिना Q).[1] इसी प्रकार, P के लिए पर्याप्त है Q, क्योंकि P सत्य होने का अर्थ हमेशा यही होता है Q सच है, लेकिन P सत्य नहीं होने का हमेशा यह अर्थ नहीं होता है Q यह सच नहीं है।[2] सामान्य तौर पर, एक आवश्यक शर्त वह होती है जो किसी अन्य स्थिति के होने के लिए मौजूद होनी चाहिए, जबकि एक पर्याप्त स्थिति वह होती है जो उक्त स्थिति उत्पन्न करती है।[3] यह अभिकथन कि एक कथन दूसरे की एक आवश्यक और पर्याप्त शर्त है, इसका मतलब है कि पूर्व कथन सत्य है यदि और केवल यदि बाद वाला सत्य है। अर्थात्, दो कथन या तो एक साथ सत्य होने चाहिए, या एक साथ असत्य होने चाहिए।[4][5][6] साधारण अंग्रेजी में (प्राकृतिक भाषा भी) आवश्यक और पर्याप्त परिस्थितियों या मामलों की स्थिति के बीच संबंधों को इंगित करता है, बयानों को नहीं। उदाहरण के लिए, एक भाई होने के लिए एक पुरुष होना एक आवश्यक शर्त है, लेकिन यह पर्याप्त नहीं है - जबकि भाई होने के लिए एक पुरुष भाई होना एक आवश्यक और पर्याप्त शर्त है। किसी भी सशर्त बयान में कम से कम एक पर्याप्त शर्त और कम से कम एक आवश्यक शर्त होती है।

परिभाषाएँ

सशर्त बयान में, यदि एस, तो एन, एस द्वारा प्रस्तुत अभिव्यक्ति को पूर्ववर्ती (तर्क) कहा जाता है, और एन द्वारा प्रस्तुत अभिव्यक्ति को परिणामी कहा जाता है। यह सशर्त बयान कई समकक्ष तरीकों से लिखा जा सकता है, जैसे एन अगर एस, एस केवल अगर एन, एस एन का तात्पर्य है, एन एस द्वारा निहित है, SN , SN और एन जब भी एस।[7] N की उपरोक्त स्थिति में जब भी S, S को N के लिए एक 'आवश्यक' शर्त कहा जाता है। सामान्य भाषा में, यह कहने के बराबर है कि यदि सशर्त कथन एक सत्य कथन है, तो परिणामी N सत्य होना चाहिए- यदि S को सत्य होना है (तुरंत नीचे सत्य तालिका का तीसरा स्तंभ देखें)। दूसरे शब्दों में, एन के सत्य होने के बिना पूर्ववर्ती एस सत्य नहीं हो सकता है। यदि N, तो S की विपरीत स्थिति में, उदाहरण के लिए, किसी को 'S'ocrates कहलाने के लिए, उसके लिए किसी का 'N'amed होना आवश्यक है। इसी तरह मनुष्य के जीने के लिए जरूरी है कि उसके पास हवा हो।[8] कोई यह भी कह सकता है कि S, N के लिए एक 'पर्याप्त' स्थिति है (तुरंत नीचे दी गई सत्य तालिका के तीसरे कॉलम को फिर से देखें)। यदि सशर्त कथन सत्य है, तो यदि S सत्य है, N सत्य होना चाहिए; जबकि यदि सशर्त कथन सत्य है और N सत्य है, तो S सत्य या असत्य हो सकता है। सामान्य शब्दों में, S की सत्यता, N की सत्यता की गारंटी देती है।[8]उदाहरण के लिए, पिछले उदाहरण से आगे बढ़ते हुए, कोई कह सकता है कि यह जानना कि किसी को S''ame कहा जाता है, यह जानने के लिए पर्याप्त है कि किसी के पास Name है।

एक आवश्यक और पर्याप्त स्थिति के लिए दोनों निहितार्थों की आवश्यकता होती है और (जिसका उत्तरार्द्ध भी लिखा जा सकता है ) पकड़ना। पहला निहितार्थ बताता है कि S, N के लिए एक पर्याप्त स्थिति है, जबकि दूसरा निहितार्थ बताता है कि S, N के लिए एक आवश्यक स्थिति है। इसे S के रूप में व्यक्त किया जाता है, जो N के लिए आवश्यक और पर्याप्त है, S यदि और केवल यदि N, या .

सत्य सारणी
S N
T T T T T
T F F T F
F T T F F
F F T T T


आवश्यकता

सूर्य का क्षितिज से ऊपर होना प्रत्यक्ष सूर्य के प्रकाश के लिए एक आवश्यक शर्त है; लेकिन यह एक पर्याप्त स्थिति नहीं है, क्योंकि कुछ और छाया हो सकती है, उदाहरण के लिए, सूर्य ग्रहण के मामले में चंद्रमा।

पी के लिए क्यू जरूरी है कि पी के बराबर बोलचाल की बात सही नहीं हो सकती है जब तक कि क्यू सच न हो या क्यू झूठा हो, तो पी झूठा है।[8][1]विरोधाभास से, यह वही बात है जैसे जब भी पी सच होता है, तो क्यू भी होता है।

P और Q के बीच तार्किक संबंध को P, फिर Q के रूप में व्यक्त किया जाता है और P ⇒ Q (P तार्किक परिणाम Q) को निरूपित किया जाता है। इसे केवल P में से किसी के रूप में भी व्यक्त किया जा सकता है यदि Q, Q, यदि P, Q जब भी P, और Q जब P हो। उदाहरण के लिए, अक्सर गणितीय गद्य में, कई आवश्यक शर्तों को एक साथ लिया जाता है, जो एक पर्याप्त स्थिति (यानी, व्यक्तिगत रूप से आवश्यक और संयुक्त रूप से पर्याप्त) का गठन करती हैं।[8]), जैसा कि उदाहरण 5 में दिखाया गया है।

उदाहरण 1: यह सच होने के लिए कि जॉन अविवाहित है, यह आवश्यक है कि यह भी सत्य हो कि वह अविवाहित है

  1. अविवाहित,
  2. नर,
  3. वयस्क,
चूंकि जॉन के स्नातक होने का अर्थ है कि जॉन के पास उन तीन अतिरिक्त विधेय (गणितीय तर्क) में से प्रत्येक है।

उदाहरण 2: दो से बड़ी पूर्ण संख्याओं के लिए, अभाज्य होने के लिए विषम होना आवश्यक है, क्योंकि दो ही एकमात्र पूर्ण संख्या है जो सम और अभाज्य दोनों है।

उदाहरण 3: गड़गड़ाहट पर विचार करें, बिजली की वजह से होने वाली ध्वनि। एक का कहना है कि बिजली चमकने के लिए गड़गड़ाहट जरूरी है, क्योंकि बिजली कभी भी बिना गरज के नहीं होती है। जब भी बिजली होती है, गड़गड़ाहट होती है। गड़गड़ाहट बिजली का कारण नहीं है (चूंकि बिजली गड़गड़ाहट का कारण बनती है), लेकिन क्योंकि बिजली हमेशा गड़गड़ाहट के साथ आती है, हम कहते हैं कि बिजली चमकने के लिए गड़गड़ाहट आवश्यक है। (अर्थात्, इसके औपचारिक अर्थ में, आवश्यकता का अर्थ कार्य-कारण नहीं है।)

उदाहरण 4: अमेरिकी सीनेट में सेवा करने के लिए कम से कम 30 वर्ष का होना आवश्यक है। यदि आपकी आयु 30 वर्ष से कम है, तो आपके लिए सीनेटर बनना असंभव है। अर्थात्, यदि आप एक सीनेटर हैं, तो यह इस प्रकार है कि आपकी आयु कम से कम 30 वर्ष होनी चाहिए।

उदाहरण 5
बीजगणित में, कुछ सेट (गणित) एस के लिए एक बाइनरी ऑपरेशन के साथ एक समूह (गणित) बनाने के लिए, यह आवश्यक है कि सहयोगी हो। यह भी आवश्यक है कि S में एक विशेष तत्व e शामिल हो जैसे कि S में प्रत्येक x के लिए, यह मामला है कि e एक्स और एक्स ई दोनों बराबर एक्स। यह भी जरूरी है कि एस में हर एक्स के लिए एक संबंधित तत्व एक्स "मौजूद है, जैसे दोनों एक्स एक्स″ और एक्स″ एक्स विशेष तत्व ई के बराबर है। इन तीन आवश्यक शर्तों में से कोई भी अपने आप में पर्याप्त नहीं है, लेकिन तीनों का संयोजन (तर्क) पर्याप्त है।

पर्याप्तता

ट्रेन समय पर चलती है यह समय पर आने के लिए पर्याप्त शर्त हो सकती है (यदि कोई ट्रेन में चढ़ता है और ट्रेन समय पर जाती है, तो वह समय पर पहुंच जाएगी); लेकिन यह हमेशा एक आवश्यक शर्त नहीं है, क्योंकि यात्रा करने के अन्य तरीके हैं (यदि ट्रेन समय पर नहीं चलती है, तब भी परिवहन के अन्य साधनों के माध्यम से समय पर पहुंचा जा सकता है)।

यदि P, Q के लिए पर्याप्त है, तो P का सत्य होना यह निष्कर्ष निकालने के लिए पर्याप्त आधार है कि Q सत्य है; हालाँकि, P को झूठा जानना यह निष्कर्ष निकालने की न्यूनतम आवश्यकता को पूरा नहीं करता है कि Q झूठा है।

तार्किक संबंध, पहले की तरह, P, फिर Q या P ⇒ Q के रूप में व्यक्त किया गया है। इसे P के रूप में भी व्यक्त किया जा सकता है यदि Q , P का अर्थ Q या कई अन्य संस्करण हैं। यह मामला हो सकता है कि कई पर्याप्त शर्तें, जब एक साथ ली जाती हैं, तो एक आवश्यक शर्त (यानी, व्यक्तिगत रूप से पर्याप्त और संयुक्त रूप से आवश्यक) का गठन होता है, जैसा कि उदाहरण 5 में दिखाया गया है।

उदाहरण 1: जॉन एक राजा है जिसका अर्थ है कि जॉन पुरुष है। इसलिए यह जानना कि यूहन्ना एक राजा है, यह जानने के लिए पर्याप्त है कि वह एक पुरुष है।

उदाहरण 2: किसी संख्या का 4 से विभाज्य होना उसके सम होने के लिए पर्याप्त (लेकिन आवश्यक नहीं) है, लेकिन 2 से विभाज्य होना उसके सम होने के लिए पर्याप्त और आवश्यक दोनों है।

उदाहरण 3: गड़गड़ाहट की घटना इस अर्थ में बिजली की घटना के लिए पर्याप्त स्थिति है कि गड़गड़ाहट सुनना, और स्पष्ट रूप से इसे इस तरह पहचानना, यह निष्कर्ष निकालना उचित ठहराता है कि बिजली का बोल्ट हुआ है।

उदाहरण 4: यदि अमेरिकी कांग्रेस एक विधेयक पारित करती है, तो विधेयक पर राष्ट्रपति के हस्ताक्षर इसे कानून बनाने के लिए पर्याप्त हैं। ध्यान दें कि जिस मामले में राष्ट्रपति ने बिल पर हस्ताक्षर नहीं किए, उदा। राष्ट्रपति के वीटो का प्रयोग करने के माध्यम से#संयुक्त राज्य अमेरिका, इसका मतलब यह नहीं है कि बिल कानून नहीं बन गया है (उदाहरण के लिए, यह अभी भी कांग्रेस के वीटो ओवरराइड के माध्यम से कानून बन सकता है)।

उदाहरण 5
ताश के केंद्र को एक बड़ी कुदाल (♠) से चिह्नित किया जाना चाहिए, ताश के इक्का होने के लिए पर्याप्त है। तीन अन्य पर्याप्त शर्तें हैं कि कार्ड के केंद्र को एक हीरे (♦), दिल (♥), या क्लब (♣) के साथ चिह्नित किया जाए। कार्ड के इक्का होने के लिए इन शर्तों में से कोई भी आवश्यक नहीं है, लेकिन उनका वियोग है, क्योंकि कोई भी कार्ड इन शर्तों में से कम से कम (वास्तव में, बिल्कुल) को पूरा किए बिना इक्का नहीं हो सकता है।

आवश्यकता और पर्याप्तता के बीच संबंध

बैंगनी क्षेत्र में होना A में होने के लिए पर्याप्त है, लेकिन आवश्यक नहीं है। ए में होना बैंगनी क्षेत्र में होने के लिए जरूरी है, लेकिन पर्याप्त नहीं है। ए में होना और बी में होना बैंगनी क्षेत्र में होने के लिए आवश्यक और पर्याप्त है।

एक शर्त दूसरे के बिना या तो आवश्यक या पर्याप्त हो सकती है। उदाहरण के लिए, एक स्तनपायी (N) होना आवश्यक है, लेकिन मानव (S) होने के लिए पर्याप्त नहीं है, और वह एक संख्या है तर्कसंगत है (एस) पर्याप्त है लेकिन आवश्यक नहीं है एक वास्तविक संख्या (N) होना (चूँकि ऐसी वास्तविक संख्याएँ हैं जो परिमेय नहीं हैं)।

एक शर्त आवश्यक और पर्याप्त दोनों हो सकती है। उदाहरण के लिए, वर्तमान में, आज चौथा जुलाई एक आवश्यक और पर्याप्त शर्त है, आज के लिए संयुक्त राज्य अमेरिका में स्वतंत्रता दिवस (संयुक्त राज्य अमेरिका) है। इसी तरह, एक मैट्रिक्स (गणित) एम के व्युत्क्रम मैट्रिक्स के लिए एक आवश्यक और पर्याप्त शर्त यह है कि एम में एक शून्येतर निर्धारक है।

गणितीय रूप से बोलना, आवश्यकता और पर्याप्तता एक दूसरे के लिए द्वैत (गणित) हैं। किसी भी कथन S और N के लिए, यह दावा कि S के लिए N आवश्यक है, इस कथन के बराबर है कि S, N के लिए पर्याप्त है। इस द्वैत का एक अन्य पहलू यह है कि, जैसा कि ऊपर दिखाया गया है, आवश्यक शर्तों के संयोजन (उपयोग और ) पर्याप्तता प्राप्त कर सकते हैं, जबकि पर्याप्त शर्तों के संयोजन (उपयोग या ) आवश्यकता प्राप्त कर सकते हैं। तीसरे पहलू के लिए, प्रत्येक गणितीय विधेय (गणित) N को वस्तुओं, घटनाओं, या कथनों के सबसेट T(N) के साथ पहचानें जिसके लिए N सत्य है; तब S के लिए N की आवश्यकता पर जोर देना यह दावा करने के बराबर है कि T(N) T(S) का सुपरसेट है, जबकि N के लिए S की पर्याप्तता पर जोर देना यह दावा करने के बराबर है कि T(S) T(N) का एक उपसमुच्चय है ).

मनोवैज्ञानिक रूप से बोलना, आवश्यकता और पर्याप्तता दोनों अवधारणाओं के शास्त्रीय दृष्टिकोण के प्रमुख पहलू हैं। अवधारणाओं के शास्त्रीय सिद्धांत के तहत, कैसे मानव मन एक श्रेणी X का प्रतिनिधित्व करता है, व्यक्तिगत रूप से आवश्यक शर्तों के एक सेट को जन्म देता है जो X को परिभाषित करता है। साथ में, ये व्यक्तिगत रूप से आवश्यक शर्तें X होने के लिए पर्याप्त हैं। [9]यह अवधारणाओं के संभाव्य सिद्धांत के विपरीत है, जिसमें कहा गया है कि कोई परिभाषित विशेषता आवश्यक या पर्याप्त नहीं है, बल्कि यह कि श्रेणियां एक परिवार के पेड़ की संरचना के समान हैं।

एक साथ आवश्यकता और पर्याप्तता

यह कहना कि P, Q के लिए आवश्यक और पर्याप्त है, दो बातें कहना है:

  1. क्यू के लिए पी आवश्यक है, , और यह कि P, Q के लिए पर्याप्त है, .
  2. समतुल्य, यह कहना समझा जा सकता है कि P और Q दूसरे के लिए आवश्यक हैं, , जिसे यह भी कहा जा सकता है कि प्रत्येक दूसरे के लिए पर्याप्त है या इसका तात्पर्य है।

कोई भी, और इस प्रकार, इन मामलों में से सभी को बयान पी द्वारा सारांशित कर सकता है यदि और केवल यदि क्यू, जिसे द्वारा दर्शाया गया है , जबकि मामले हमें बताते हैं के समान है .

उदाहरण के लिए, ग्राफ़ सिद्धांत में एक ग्राफ़ G को द्विदलीय ग्राफ़ कहा जाता है यदि इसके प्रत्येक कोने को काले या सफेद रंग को इस तरह से निर्दिष्ट करना संभव है कि G के प्रत्येक किनारे पर प्रत्येक रंग का एक अंत बिंदु हो। और किसी भी ग्राफ़ के द्विदलीय होने के लिए, यह एक आवश्यक और पर्याप्त शर्त है कि इसमें कोई विषम-लंबाई चक्र (ग्राफ़ सिद्धांत) न हो। इस प्रकार, यह पता लगाना कि किसी ग्राफ में कोई विषम चक्र है या नहीं, यह बताता है कि क्या यह द्विदलीय है और इसके विपरीत। एक दार्शनिक[10] इस स्थिति की इस प्रकार विशेषताएँ हो सकती हैं: हालाँकि विषम चक्रों की द्विदलीयता और अनुपस्थिति की अवधारणाएँ तीव्रता में भिन्न होती हैं, उनका समान विस्तार (शब्दार्थ) होता है।[11] गणित में, प्रमेयों को अक्सर इस रूप में कहा जाता है कि P सत्य है यदि और केवल यदि Q सत्य है। क्योंकि, जैसा कि पिछले खंड में बताया गया है, एक के लिए दूसरे की आवश्यकता पहले वाले के लिए दूसरे की पर्याप्तता के बराबर है, उदा। तार्किक समानता है , यदि P, Q के लिए आवश्यक और पर्याप्त है, तो Q, P के लिए आवश्यक और पर्याप्त है। हम लिख सकते हैं और कहते हैं कि कथन P सत्य है यदि और केवल यदि Q, सत्य है और Q सत्य है यदि और केवल यदि P सत्य है तो समतुल्य हैं।

यह भी देखें

संदर्भ

  1. 1.0 1.1 "[M06] Necessity and sufficiency". philosophy.hku.hk. Retrieved 2019-12-02.
  2. Bloch, Ethan D. (2011). Proofs and Fundamentals: A First Course in Abstract Mathematics. Springer. pp. 8–9. ISBN 978-1-4419-7126-5.
  3. Confusion-of-Necessary (2019-05-15). "पर्याप्त स्थिति के साथ आवश्यक का भ्रम". www.txstate.edu (in English). Retrieved 2019-12-02.
  4. Betz, Frederick (2011). Managing Science: Methodology and Organization of Research. New York: Springer. p. 247. ISBN 978-1-4419-7487-7.
  5. Manktelow, K. I. (1999). तर्क और सोच. East Sussex, UK: Psychology Press. ISBN 0-86377-708-2.
  6. Asnina, Erika; Osis, Janis & Jansone, Asnate (2013). "सामयिक संबंधों की औपचारिक विशिष्टता". Databases and Information Systems VII. 249 (Databases and Information Systems VII): 175. doi:10.3233/978-1-61499-161-8-175.
  7. Devlin, Keith (2004), Sets, Functions and Logic / An Introduction to Abstract Mathematics (3rd ed.), Chapman & Hall, pp. 22–23, ISBN 978-1-58488-449-1
  8. 8.0 8.1 8.2 8.3 "आवश्यक शर्तों और पर्याप्त शर्तों की अवधारणा". www.sfu.ca. Retrieved 2019-12-02.
  9. https://iep.utm.edu/classical-theory-of-concepts/[bare URL]
  10. Stanford University primer, 2006.
  11. "Meanings, in this sense, are often called intensions, and things designated, extensions. Contexts in which extension is all that matters are, naturally, called extensional, while contexts in which extension is not enough are intensional. Mathematics is typically extensional throughout." Stanford University primer, 2006.


बाहरी संबंध