नेगल बिंदु: Difference between revisions
(Created page with "{{short description|Triangle center; intersection of all three of a triangle's splitters}} Image:Extouch Triangle and Nagel Point.svg|thumb|325px| {{legend-line|solid #33333...") |
No edit summary |
||
Line 4: | Line 4: | ||
{{legend-line|solid orange|[[Excircle]]s, tangent to the sides of {{math|△''ABC''}} at {{mvar|T{{sub|A}}, T{{sub|B}}, T{{sub|C}}}}}} | {{legend-line|solid orange|[[Excircle]]s, tangent to the sides of {{math|△''ABC''}} at {{mvar|T{{sub|A}}, T{{sub|B}}, T{{sub|C}}}}}} | ||
{{legend-line|solid red|[[Extouch triangle]] {{math|△''T{{sub|A}}T{{sub|B}}T{{sub|C}}''}}}} | {{legend-line|solid red|[[Extouch triangle]] {{math|△''T{{sub|A}}T{{sub|B}}T{{sub|C}}''}}}} | ||
{{legend-line|solid #1e90ff|Splitters of the perimeter {{mvar|{{overline|AT}}{{sub|A}}, {{overline|BT}}{{sub|B}}, {{overline|CT}}{{sub|C}}}}; intersect at the '''Nagel point''' {{mvar|N}}}}]][[ज्यामिति]] में, नागल बिंदु (ईसाई हेनरिक वॉन नागल के नाम पर) एक त्रिभुज केंद्र है, जो दिए गए [[त्रिकोण]] से जुड़े बिंदुओं में से एक है, जिसकी परिभाषा त्रिभुज के स्थान या | {{legend-line|solid #1e90ff|Splitters of the perimeter {{mvar|{{overline|AT}}{{sub|A}}, {{overline|BT}}{{sub|B}}, {{overline|CT}}{{sub|C}}}}; intersect at the '''Nagel point''' {{mvar|N}}}}]][[ज्यामिति]] में, नागल बिंदु (ईसाई हेनरिक वॉन नागल के नाम पर) एक त्रिभुज केंद्र है, जो दिए गए [[त्रिकोण]] से जुड़े बिंदुओं में से एक है, जिसकी परिभाषा त्रिभुज के स्थान या मापदंड पर निर्भर नहीं करती है। यह त्रिभुज के तीनों विखंडन (ज्यामिति) की समवर्ती रेखाओं का बिंदु है। | ||
== निर्माण == | == निर्माण == | ||
एक त्रिकोण | एक त्रिकोण {{math|△''ABC''}} दिया, होने देना {{mvar|T{{sub|A}}, T{{sub|B}}, T{{sub|C}}}} [[एक्सटच त्रिकोण]] है जिसमें द {{mvar|A}}-[[excircle|बाह्यवृत्त]] रेखा {{mvar|BC}} से मिलता है, {{mvar|B}}-[[excircle|बाह्यवृत्त]] रेखा {{mvar|CA}} से मिलता है , और यह {{mvar|C}}-बाह्यवृत्त क्रमशः रेखा {{mvar|AB}}, मिलता है । रेखाएं {{mvar|AT{{sub|A}}, BT{{sub|B}}, CT{{sub|C}}}} त्रिभुज {{math|△''ABC''}} के नागल बिंदु {{mvar|N}} में मिलती हैं | ||
बिंदु | बिंदु {{mvar|T{{sub|A}}}} का एक और निर्माण {{mvar|A}} को प्रारंभ '''शुरू''' करना है और त्रिकोण {{math|△''ABC''}} के चारों ओर इसकी परिधि का पता लगाना है, और इसी तरह {{mvar|T{{sub|B}}}} और {{mvar|T{{sub|C}}}} के लिए इस निर्माण के कारण, नागल बिंदु को कभी-कभी समद्विभाजित परिधि बिंदु और खंड भी कहा जाता है {{mvar|{{overline|AT}}{{sub|A}}, {{overline|BT}}{{sub|B}}, {{overline|CT}}{{sub|C}}}} को त्रिभुज का विभाजक (ज्यामिति) कहा जाता है। | ||
नागल बिंदु का एक आसान निर्माण '''मौजूद''' उपथित है। एक त्रिभुज के प्रत्येक शीर्ष से प्रारंभ '''शुरू''' होकर, यह विपरीत किनारे की लंबाई से दोगुनी लंबाई ले जाने के लिए पर्याप्त है। हम तीन रेखाएँ प्राप्त करते हैं जो नागल बिंदु पर मिलती हैं।<ref>{{Cite web|title=नागल बिंदु का प्रारंभिक निर्माण|url=https://hal.archives-ouvertes.fr/hal-02558108|last=Dussau|first=Xavier|date=|website=HAL|url-status=live|archive-url=|archive-date=|access-date=}}</ref> | |||
<br /> | <br /> | ||
[[File:Easynagel.gif|center|thumb|485x485px|नागल बिंदु का आसान निर्माण]] | [[File:Easynagel.gif|center|thumb|485x485px|नागल बिंदु का आसान निर्माण]] | ||
Line 29: | Line 30: | ||
== बैरीसेंट्रिक निर्देशांक == | == बैरीसेंट्रिक निर्देशांक == | ||
नागल बिंदु की गैर-सामान्यीकृत [[बैरीसेंट्रिक समन्वय प्रणाली]] हैं <math> (s-a:s-b:s-c) </math> | नागल बिंदु की गैर-सामान्यीकृत [[बैरीसेंट्रिक समन्वय प्रणाली]] हैं <math> (s-a:s-b:s-c) </math> जहाँ <math>s = \tfrac{a+b+c}{2}</math> संदर्भ त्रिभुज {{math|△''ABC''}} की अर्ध-परिधि है . | ||
== [[ट्रिलिनियर निर्देशांक]] == | == [[ट्रिलिनियर निर्देशांक]] == | ||
नागल बिंदु के त्रिरेखीय निर्देशांक हैं<ref name="Gallatly">{{cite book | नागल बिंदु के त्रिरेखीय निर्देशांक हैं जैसा<ref name="Gallatly">{{cite book | ||
| author = Gallatly, William | | author = Gallatly, William | ||
| title = The Modern Geometry of the Triangle | | title = The Modern Geometry of the Triangle | ||
Line 40: | Line 41: | ||
| publisher = Hodgson | | publisher = Hodgson | ||
| location = London}} | | location = London}} | ||
</ref> | </ref> | ||
:<math>\csc^2\left(\frac{A}{2}\right)\,:\,\csc^2\left(\frac{B}{2}\right)\,:\,\csc^2\left(\frac{C}{2}\right)</math> | :<math>\csc^2\left(\frac{A}{2}\right)\,:\,\csc^2\left(\frac{B}{2}\right)\,:\,\csc^2\left(\frac{C}{2}\right)</math> | ||
Line 49: | Line 50: | ||
== इतिहास == | == इतिहास == | ||
नागल बिंदु का नाम उन्नीसवीं सदी के जर्मन गणितज्ञ क्रिश्चियन हेनरिक वॉन नागल के नाम पर रखा गया है, जिन्होंने 1836 में इसके बारे में लिखा था। | नागल बिंदु का नाम उन्नीसवीं सदी के जर्मन गणितज्ञ क्रिश्चियन हेनरिक वॉन नागल के नाम पर रखा गया है, जिन्होंने 1836 में इसके बारे में लिखा था। | ||
इस बिंदु के अध्ययन में प्रारंभिक योगदान [[अगस्त लियोपोल्ड क्रेले]] और [[कार्ल गुस्ताव जैकब जैकोबी]] द्वारा भी किया गया था।<ref>{{cite journal | इस बिंदु के अध्ययन में प्रारंभिक योगदान [[अगस्त लियोपोल्ड क्रेले]] और [[कार्ल गुस्ताव जैकब जैकोबी]] द्वारा भी किया गया था।<ref>{{cite journal | ||
| author = Baptist, Peter | | author = Baptist, Peter | ||
Line 59: | Line 61: | ||
| mr = 0936136 }}</ref> | | mr = 0936136 }}</ref> | ||
'''<br />स बिंदु के अध्ययन में प्रारंभिक योगदान [[अगस्त लियोपोल्ड क्रेले]] और [[कार्ल गुस्ताव जैकब जैकोबी|कार्ल गुस्ता]]''' | |||
== यह भी देखें == | == यह भी देखें == | ||
* [[मैंडार्ट इनलिप्से]] | * [[मैंडार्ट इनलिप्से]] |
Revision as of 10:11, 22 April 2023
ज्यामिति में, नागल बिंदु (ईसाई हेनरिक वॉन नागल के नाम पर) एक त्रिभुज केंद्र है, जो दिए गए त्रिकोण से जुड़े बिंदुओं में से एक है, जिसकी परिभाषा त्रिभुज के स्थान या मापदंड पर निर्भर नहीं करती है। यह त्रिभुज के तीनों विखंडन (ज्यामिति) की समवर्ती रेखाओं का बिंदु है।
निर्माण
एक त्रिकोण △ABC दिया, होने देना TA, TB, TC एक्सटच त्रिकोण है जिसमें द A-बाह्यवृत्त रेखा BC से मिलता है, B-बाह्यवृत्त रेखा CA से मिलता है , और यह C-बाह्यवृत्त क्रमशः रेखा AB, मिलता है । रेखाएं ATA, BTB, CTC त्रिभुज △ABC के नागल बिंदु N में मिलती हैं
बिंदु TA का एक और निर्माण A को प्रारंभ शुरू करना है और त्रिकोण △ABC के चारों ओर इसकी परिधि का पता लगाना है, और इसी तरह TB और TC के लिए इस निर्माण के कारण, नागल बिंदु को कभी-कभी समद्विभाजित परिधि बिंदु और खंड भी कहा जाता है ATA, BTB, CTC को त्रिभुज का विभाजक (ज्यामिति) कहा जाता है।
नागल बिंदु का एक आसान निर्माण मौजूद उपथित है। एक त्रिभुज के प्रत्येक शीर्ष से प्रारंभ शुरू होकर, यह विपरीत किनारे की लंबाई से दोगुनी लंबाई ले जाने के लिए पर्याप्त है। हम तीन रेखाएँ प्राप्त करते हैं जो नागल बिंदु पर मिलती हैं।[1]
अन्य त्रिकोण केन्द्रों से संबंध
नागल बिंदु गेरगोन बिंदु का समस्थानिक संयुग्म है। नागल बिंदु, केन्द्रक और अंतःकेंद्र एक रेखा पर संरेख होते हैं जिसे नागल रेखा कहा जाता है। मध्य मध्य त्रिकोण का नागल बिंदु है;[2][3] समतुल्य रूप से, नागल बिंदु प्रतिपूरक त्रिभुज का अंत:केंद्र है। किसी त्रिभुज का मिश्रित रेखीय अंतःवृत्त, मिश्रित रैखिक स्पर्श बिंदु और विपरीत शीर्ष को मिलाने वाली रेखाओं का संगामिति बिंदु होता है।
बैरीसेंट्रिक निर्देशांक
नागल बिंदु की गैर-सामान्यीकृत बैरीसेंट्रिक समन्वय प्रणाली हैं जहाँ संदर्भ त्रिभुज △ABC की अर्ध-परिधि है .
ट्रिलिनियर निर्देशांक
नागल बिंदु के त्रिरेखीय निर्देशांक हैं जैसा[4]
या, समतुल्य, पक्ष की लंबाई के संदर्भ में
इतिहास
नागल बिंदु का नाम उन्नीसवीं सदी के जर्मन गणितज्ञ क्रिश्चियन हेनरिक वॉन नागल के नाम पर रखा गया है, जिन्होंने 1836 में इसके बारे में लिखा था।
इस बिंदु के अध्ययन में प्रारंभिक योगदान अगस्त लियोपोल्ड क्रेले और कार्ल गुस्ताव जैकब जैकोबी द्वारा भी किया गया था।[5]
स बिंदु के अध्ययन में प्रारंभिक योगदान अगस्त लियोपोल्ड क्रेले और कार्ल गुस्ता
यह भी देखें
संदर्भ
- ↑ Dussau, Xavier. "नागल बिंदु का प्रारंभिक निर्माण". HAL.
{{cite web}}
: CS1 maint: url-status (link) - ↑ Anonymous (1896). "Problem 73". Problems for Solution: Geometry. American Mathematical Monthly. 3 (12): 329. doi:10.2307/2970994. JSTOR 2970994.
- ↑ "Why is the Incenter the Nagel Point of the Medial Triangle?". Polymathematics.
- ↑ Gallatly, William (1913). The Modern Geometry of the Triangle (2nd ed.). London: Hodgson. p. 20.
- ↑ Baptist, Peter (1987). "Historische Anmerkungen zu Gergonne- und Nagel-Punkt". Sudhoffs Archiv für Geschichte der Medizin und der Naturwissenschaften. 71 (2): 230–233. MR 0936136.
बाहरी संबंध
- Nagel Point from Cut-the-knot
- Nagel Point, Clark Kimberling
- Weisstein, Eric W. "Nagel Point". MathWorld.
- Spieker Conic and generalization of Nagel line at Dynamic Geometry Sketches Generalizes Spieker circle and associated Nagel line.