गति का स्थिरांक: Difference between revisions

From Vigyanwiki
No edit summary
Line 119: Line 119:
*{{cite book | author=Griffiths, David J. | authorlink=David J. Griffiths | title=Introduction to Quantum Mechanics (2nd ed.) | publisher=Prentice Hall | year=2004 | isbn=0-13-805326-X | url-access=registration | url=https://archive.org/details/introductiontoel00grif_0 }}
*{{cite book | author=Griffiths, David J. | authorlink=David J. Griffiths | title=Introduction to Quantum Mechanics (2nd ed.) | publisher=Prentice Hall | year=2004 | isbn=0-13-805326-X | url-access=registration | url=https://archive.org/details/introductiontoel00grif_0 }}


{{DEFAULTSORT:Constant Of Motion}}[[Category: शास्त्रीय यांत्रिकी]]
{{DEFAULTSORT:Constant Of Motion}}


 
[[Category:Created On 29/03/2023|Constant Of Motion]]
 
[[Category:Machine Translated Page|Constant Of Motion]]
[[Category: Machine Translated Page]]
[[Category:Pages with script errors|Constant Of Motion]]
[[Category:Created On 29/03/2023]]
[[Category:Templates Vigyan Ready|Constant Of Motion]]
[[Category:Vigyan Ready]]
[[Category:शास्त्रीय यांत्रिकी|Constant Of Motion]]

Revision as of 11:37, 26 April 2023

यांत्रिकी में, गति का एक स्थिरांक गति के उपरान्त एक संरक्षण नियम है, जो गति पर एक बाधा को प्रभावी रूप से लागू करता है। हालाँकि, यह एक गणितीय बाधा है और गति के समीकरण का स्वाभाविक परिणाम है, न कि भौतिक बाधा (गणित) (जिसके लिए अतिरिक्त प्रतिबंध बलों की आवश्यकता होगी)। सामान्य उदाहरणों में ऊर्जा का संरक्षण, रैखिक संवेग का संरक्षण, कोणीय संवेग का संरक्षण और लाप्लास-रनगे-लेनज़ सदिश (विपरीत-वर्गाकार बल नियम) सम्मिलित हैं।

अनुप्रयोग

गति के स्थिरांक उपयोगी होते हैं क्योंकि वे गति के समीकरण को हल किए बिना गति के गुणों को प्राप्त करने की अनुमति देते हैं। सौभाग्यशाली स्तिथियों में, गति के प्रक्षेपवक्र को भी गति के स्थिरांक के अनुरूप इसोसरफेस के प्रतिच्छेदन (सम्मुच्चय सिद्धांत) के रूप में प्राप्त किया जा सकता है। उदाहरण के लिए, पॉइन्सॉट के निर्माण से पता चलता है कि एक कठोर शरीर का आघूर्ण बल-मुक्त घुमाव एक गोले (कुल कोणीय गति का संरक्षण) और एक दीर्घवृत्ताकार (ऊर्जा का संरक्षण) का प्रतिच्छेदन है, एक प्रक्षेपवक्र जो अन्यथा प्राप्त करना और कल्पना करना कठिन हो सकता है। इसलिए, यांत्रिकी में गति के स्थिरांक का अभिज्ञान एक महत्वपूर्ण उद्देश्य है।

गति के स्थिरांक का प्रयोग करने के तरीके

गति के स्थिरांक का प्रयोग करने के लिए कई तरीके हैं।

  • सबसे सरल लेकिन कम से कम व्यवस्थित दृष्टिकोण सहज (मानसिक) व्युत्पत्ति है, जिसमें एक मात्रा को स्थिर (संभवतः प्रायोगिक आंकड़ों के कारण) होने की परिकल्पना की जाती है और बाद में गति के उपरान्त गणितीय रूप से संरक्षित करने के लिए दिखाया जाता है।
  • हैमिल्टन-जैकोबी समीकरण गति के स्थिरांक का प्रयोग करने के लिए सामान्यतः प्रयोग की जाने वाली और सीधी विधि प्रदान करते हैं, विशेष रूप से जब हैमिल्टनियन यांत्रिकी आयतीय निर्देशांक में पहचानने योग्य कार्यात्मक रूपों को अधिग्रहण कर लेते हैं।
  • एक अन्य दृष्टिकोण यह पहचानना है कि एक संरक्षण नियम लग्रांजी यांत्रिकी की समरूपता से मेल खाता है। नोएदर का प्रमेय समरूपता से ऐसी मात्राएँ प्राप्त करने का एक व्यवस्थित तरीका प्रदान करता है। उदाहरण के लिए, ऊर्जा का संरक्षण समय की उत्पत्ति में बदलाव के अंतर्गत लैग्रैंगियन यांत्रिकी के आक्रमण से उत्पन्न होता है, रैखिक गति का संरक्षण अंतरिक्ष की उत्पत्ति (अनुवादात्मक समरूपता) और कोणीय गति में बदलाव के अंतर्गत लग्रांगियन यांत्रिकी के आक्रमण से उत्पन्न होता है। घूर्णन के अंतर्गत लग्रांजी यांत्रिकी के आक्रमण से कोणीय गति के परिणाम का संरक्षण। इसका उलटा भी सत्य है; लग्रांजी यांत्रिकी की प्रत्येक समरूपता गति के एक स्थिरांक से मेल खाती है, जिसे प्रायः संरक्षित आवेश या धारा कहा जाता है।
  • एक मात्रा गति का एक स्थिरांक है यदि इसका कुल समय व्युत्पन्न शून्य है
जो तब होता है जब हैमिल्टनियन के साथ का पोइसन ब्रैकेट समय के संबंध में इसके आंशिक व्युत्पन्न को घटाकर बराबर करता है[1]

एक अन्य उपयोगी परिणाम प्वासों की प्रमेय है, जिसमें कहा गया है कि यदि दो मात्राएँ और गति के स्थिरांक हैं, तो उनका पॉइसन वर्ग है।

स्वतंत्रता की n घात और गति के n स्थिरांक के साथ एक प्रणाली, जैसे कि गति के स्थिरांक की किसी भी जोड़ी का पॉइसन वर्ग विलुप्त हो जाता है और एक पूरी तरह से एकीकृत प्रणाली के रूप में जाना जाता है। गति के नियतांकों के ऐसे संग्रह को एक दूसरे के साथ अंतर्वलन (गणित) में कहा जाता है। एक संवृत निकाय के लिए (लग्रैंगियन यांत्रिकी स्पष्ट रूप से समय पर निर्भर नहीं है), प्रणाली की ऊर्जा गति की एक स्थिरांक है (एक लैग्रैंगियन यांत्रिकी)।

परिमाण यांत्रिकी में

एक अवलोकनीय मात्रा Q गति का स्थिरांक होगा यदि यह हैमिल्टनियन यांत्रिकी, H के साथ दिक्परिवर्तक है, और यह स्वयं समय पर स्पष्ट रूप से निर्भर नहीं करता है। यह है क्योंकि

जहाँ

दिक्परिवर्तक संबंध है।

व्युत्पत्ति

मान लीजिये कि कुछ अवलोकन योग्य मात्रा Q है जो स्थिति, गति और समय पर निर्भर करती है,

और यह भी कि एक तरंग फलन है जो श्रोडिंगर समीकरण का पालन करता है

Q के अपेक्षित मूल्य के व्युत्पन्न समय को उत्पाद नियम के उपयोग की आवश्यकता होती है, और इसके परिणाम होते हैं

तो अंत में,


टिप्पणी

परिमाण यांत्रिक प्रणाली की स्वेच्छाचारी स्थिति के लिए, यदि H और Q यात्रा करते हैं, अर्थात यदि

और Q स्पष्ट रूप से समय पर निर्भर नहीं है

लेकिन अगर हैमिल्टनियन का एक अभिलक्षणिक फलन है, भले ही

अभी भी ऐसा ही है

बशर्ते Q समय पर स्वतंत्र हो।

व्युत्पत्ति

तब से

तब

यही कारण है कि हैमिल्टनियन के अभिलक्षणिक अवस्था को स्थिर स्थिति भी कहा जाता है।

परिमाण अराजकता के लिए प्रासंगिकता

सामान्यतः, एक एकीकृत प्रणाली में ऊर्जा के अतिरिक्त गति के स्थिरांक होते हैं। इसके विपरीत, ऊर्जा एक गैर-अभिन्न प्रणाली में गति का एकमात्र स्थिरांक है; ऐसी प्रणालियों को अराजक कहा जाता है। सामान्यतः, एक शास्त्रीय यांत्रिक प्रणाली केवल परिमाण यांत्रिकी हो सकती है यदि यह पूर्णांक हो; 2006 तक, अराजक गतिशील प्रणालियों को परिमाणित करने के लिए कोई ज्ञात सुसंगत विधि नहीं है।

गति का अभिन्न अंग

गति के एक स्थिरांक को किसी दिए गए बल क्षेत्र में चरण स्थान के किसी भी कार्य के रूप में परिभाषित किया जा सकता है। चरण-स्थान निर्देशांक (स्थिति और वेग, या स्थिति और गति) और समय जो एक प्रक्षेपवक्र में स्थिर है। गति के स्थिरांक का एक उपसमुच्चय गति का अभिन्न अंग है, या पहला अभिन्न है, जिसे केवल चरण-स्थान निर्देशांक के किसी भी कार्य के रूप में परिभाषित किया गया है जो एक कक्षा के साथ स्थिर हैं। गति का प्रत्येक समाकल गति का एक नियतांक है, लेकिन विलोम सत्य नहीं है क्योंकि गति का एक नियतांक समय पर निर्भर हो सकता है।[2] गति के समाकलन के उदाहरण हैं कोणीय संवेग सदिश, , या समय पर निर्भरता के बिना एक हैमिल्टनियन, जैसे । एक ऐसे फलन का उदाहरण जो गति का एक स्थिरांक है लेकिन गति का अभिन्न अंग नहीं है, एक आयाम में स्थिर गति से गतिमान वस्तु के लिए फलन होगा।

डायराक प्रेक्षणीय

गेज सिद्धांतों से भौतिक जानकारी निकालने के लिए, कोई या तो गेज निश्चर वेधशालाओं का निर्माण करता है या गेज को ठीक करता है। एक विहित भाषा में, इसका मतलब सामान्यतः या तो ऐसे कार्यों का निर्माण करना होता है, जो प्रथम श्रेणी की बाधाओं को उत्पन्न करने वाले गेज के साथ बाधा सतह पर पोइसन-आवागमन करते हैं या प्रत्येक गेज कक्षा के भीतर बिंदुओं को एकल करके बाद के प्रवाह को ठीक करते हैं। इस तरह के गेज अपरिवर्तनीय प्रेक्षणीय इस प्रकार गेज जनित्र के 'गति के स्थिरांक' हैं और उन्हें डायराक वेधशालाओं के रूप में संदर्भित किया जाता है।

संदर्भ

  1. Landau, L.; Lifshitz, E. (1960). Mechanics. Pergamon Press. p. 135. ISBN 0 7506 2896 0.
  2. "Binney, J. and Tremaine, S.: Galactic Dynamics". Princeton University Press. Retrieved 2011-05-05.