संकुचन मानचित्रण: Difference between revisions

From Vigyanwiki
No edit summary
Line 69: Line 69:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 24/04/2023]]
[[Category:Created On 24/04/2023]]
[[Category:Vigyan Ready]]

Revision as of 14:57, 28 April 2023

गणित में, मैट्रिक स्थान (M, d) पर एक संक्षेपण आरेखण, या संक्षेपण या संकुचक एक फलन f है जिसकी गुणवत्ता यह है कि कोई ऐसी वास्तविक संख्या है जो सभी x और y के लिए M में इस प्रकार अवस्थित होती है कि :

k के ऐसे सबसे छोटे मान को f का 'लिप्सचिट्ज़ स्थिरांक' कहा जाता है। संविदात्मक मानचित्रों को कभी-कभी 'लिप्सचिट्ज़ियन मानचित्र' कहा जाता है। यदि उपरोक्त शर्त को k ≤ 1 के लिए पूरा किया जाता है तो मैपिंग को गैर-विस्तारशील मैप कहा जाता है।

सामान्यतः, मीट्रिक रिक्त स्थान के बीच मानचित्रों के लिए अनुबंधित मानचित्रण का विचार परिभाषित किया जा सकता है। इस प्रकार, यदि (एम,-डी) और (एन,-डी') दो मीट्रिक स्थान हैं, तो एक स्थिरांक होने पर एक संविदात्मक मानचित्रण है ऐसा है कि एम में सभी एक्स और वाई के लिए

सत्य है।

प्रत्येक संकुचन मानचित्रण लिप्सचिट्ज़ निरंतर है और इसलिए समान रूप से निरंतर लिप्सचिट्ज़ निरंतर फलन के लिए, स्थिरांक k अब आवश्यक रूप से 1 से कम नहीं है।

एक संकुचन मानचित्रण में अधिकतम एक नियत बिंदु होता है। इसके अतिरिक्त, बानाच नियत-बिन्दु प्रमेय कहता है कि एक खाली सेट पर प्रत्येक संकुचन मानचित्रण | गैर-रिक्त पूर्ण मीट्रिक स्थान में एक अद्वितीय निश्चित बिंदु होता है, और एम में किसी भी एक्स के लिए पुनरावृत्त फलन अनुक्रम x, f (x), f ( f (x)), f (f (f (x))) निश्चित बिंदु पर अभिसरण करता है। यह अवधारणा पुनरावृत्त फलन प्रणाली के लिए बहुत उपयोगी है जहां अभिसरण प्रमाण संकुचन मानचित्रण तकनीक का उपयोग करता है। साधारण अंतर समीकरणो के समाधान के अस्तित्व को प्रमाणित करने के लिए बानाच का निश्चित-बिंदु प्रमेय भी लागू किया जाता है, और व्युत्क्रम फलन प्रमेय के एक प्रमाण में प्रयोग किया जाता है।[1]

गतिशील प्रोग्रामिंग समस्याओं में संकुचन मानचित्रण महत्वपूर्ण भूमिका निभाते हैं।[2][3]


दृढ़तः गैर-विस्तृत मानचित्रण

एक गैर-विस्तारशील मानचित्रण जिसके लिए होता है, वह हिल्बर्ट स्थान में किसी दृढ़तः गैर-विस्तारशील मानचित्रण में सामान्यीकृत किया जा सकता है यदि निम्नलिखित सभी x और y के लिए यह सत्य होता है। हिल्बर्ट अंतरिक्ष में दृढ़ता से गैर-विस्तृत मानचित्रण के लिए सामान्यीकृत किया जा सकता है यदि निम्न में सभी x और y के लिए है :

जहाँ

.

यह के साथ औसत संक्रियाओ का.एक विशेष परिप्रेक्ष्य है। [4] कॉची-श्वार्ज़ असमानता के माध्यम से कोई दृढ़ता से गैर-विस्तृत मानचित्रण सदैव गैर-विस्तृत होता है।

दृढ़ता से गैर-विस्तृत मानचित्रों का वर्ग अवमुख संयोजनों के अंतर्गत बंद होती है, परंतु समष्टियों के अंतर्गत बंद नहीं होती हैं।[5] यह श्रेणी उचित, घन, निचले-अर्धसंचालित फलनों के समीपस्थ मानचित्रण को सम्मिलित करती है, इसलिए इसमें गैर-रिक्त बंद घन समुच्चय पर लंबकोणीय प्रक्षेप भी सम्मिलित होता है। अवमुख समुच्चयों पर लंबकोणीय प्रक्षेप भी सम्मिलित है। कार्यात्मक विश्लेषण में अधिकतम मोनोटोनिक फलन के विलयन समुच्चय के बराबर दृढ़ता से गैर-विस्तार संक्रियाओ का वर्ग है।[6] आश्चर्यजनक रूप से, जबकि गैर-विस्तृत मानचित्रों की पुनरावृति में एक निश्चित बिंदु खोजने की कोई प्रत्याभुति नहीं है, दृढ़ गैर-विस्तारता एक निश्चित बिंदु पर अभिसरण प्रमाण तकनीकों के लिए पर्याप्त है, बशर्ते एक निश्चित बिंदु उपलब्ध हो। अधिक सटीक रूप से कहें तों :

यदि , फिर किसी प्रारंभिक बिंदु के लिए , पुनरावृत्त

एक निश्चित बिंदु पर अभिसरण देता है . यह अभिसरण एक अनंत-आयामी समायोजन में कमजोर अभिसरण हो सकता है।[5]


उपसंकुचन मानचित्र

उपसंकुचन मानचित्र या उपसंकुचन एक मीट्रिक स्थान (M, d) पर एक मानचित्र f इस प्रकार है कि:

यदि एक उपसंकुचन f की छवि का संकुचित स्थान है, तो f का एक निश्चित बिंदु है।[7]


स्थानीय रूप से अवमुख स्थान

स्थानीय रूप से अवमुख स्थान (ई,-पी) में अर्ध-साधारण के एक समुच्चय पी द्वारा दिए गए सांस्थितिक स्थान के साथ, किसी भी पी-∈-पी के लिए एक मानचित्र एफ के रूप में पी-संकुचन को परिभाषित किया जा सकता है जैसे कि कुछ p <1 ऐसा कि p(f(x) − f(y))kp p(xy). यदि f सभी p ∈ P के लिए एक p-संकुचन है और (E, P) क्रमिक रूप से पूर्ण है, तो f का एक निश्चित बिंदु है, जिसे किसी अनुक्रम xn+1 = f (xn) की सीमा के रूप में दर्शाया गया है , और यदि (E, P) हॉसडॉर्फ स्थान है, तो निश्चित बिंदु अद्वितीय है।[8]


यह भी देखें

संदर्भ

  1. Shifrin, Theodore (2005). बहुभिन्नरूपी गणित. Wiley. pp. 244–260. ISBN 978-0-471-52638-4.
  2. Denardo, Eric V. (1967). "डायनेमिक प्रोग्रामिंग के सिद्धांत में संकुचन मानचित्रण". SIAM Review. 9 (2): 165–177. Bibcode:1967SIAMR...9..165D. doi:10.1137/1009030.
  3. Stokey, Nancy L.; Lucas, Robert E. (1989). आर्थिक गतिशीलता में पुनरावर्ती तरीके. Cambridge: Harvard University Press. pp. 49–55. ISBN 978-0-674-75096-8.
  4. Combettes, Patrick L. (2004). "गैर-विस्तार औसत ऑपरेटरों की रचनाओं के माध्यम से मोनोटोन समावेशन को हल करना". Optimization. 53 (5–6): 475–504. doi:10.1080/02331930412331327157.
  5. 5.0 5.1 Bauschke, Heinz H. (2017). उत्तल विश्लेषण और हिल्बर्ट स्पेस में मोनोटोन ऑपरेटर थ्योरी. New York: Springer.
  6. Combettes, Patrick L. (July 2018). "उत्तल अनुकूलन में मोनोटोन ऑपरेटर सिद्धांत". Mathematical Programming. B170: 177–206. arXiv:1802.02694. Bibcode:2018arXiv180202694C. doi:10.1007/s10107-018-1303-3. S2CID 49409638.
  7. Goldstein, A.A. (1967). रचनात्मक वास्तविक विश्लेषण. Harper’s Series in Modern Mathematics. New York-Evanston-London: Harper and Row. p. 17. Zbl 0189.49703.
  8. Cain, G. L., Jr.; Nashed, M. Z. (1971). "स्थानीय रूप से उत्तल स्थानों में दो ऑपरेटरों के योग के लिए निश्चित बिंदु और स्थिरता". Pacific Journal of Mathematics. 39 (3): 581–592. doi:10.2140/pjm.1971.39.581.{{cite journal}}: CS1 maint: multiple names: authors list (link)


अग्रिम पठन

  • Bullo, Francesco (2022). Contraction Theory for Dynamical Systems. Kindle Direct Publishing. ISBN 979-8836646806.