काल्पनिक समय: Difference between revisions
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
== उत्पत्ति == | == उत्पत्ति == | ||
गणित में, काल्पनिक इकाई <math>i</math> का वर्गमूल है <math>-1</math>, जैसे <math>i^2</math> को -1 के रूप में परिभाषित किया गया है। एक | गणित में, काल्पनिक इकाई <math>i</math> का वर्गमूल है <math>-1</math>, जैसे <math>i^2</math> को -1 के रूप में परिभाषित किया गया है। एक संख्या जो '''<math>i</math>''' का प्रत्यक्ष गुणक है एक काल्पनिक संख्या के रूप में जाना जाता है।<ref name="Penrose2004"> | ||
{{cite book |last=Penrose |first=Roger |author-link=Roger_Penrose |date=2004 |title=The Road to Reality |url=https://books.google.com/books?id=csaaQgAACAAJ |location= |publisher=[[Jonathan Cape]] |page= |isbn=9780224044479}}</ref>{{rp|Chp 4}} | {{cite book |last=Penrose |first=Roger |author-link=Roger_Penrose |date=2004 |title=The Road to Reality |url=https://books.google.com/books?id=csaaQgAACAAJ |location= |publisher=[[Jonathan Cape]] |page= |isbn=9780224044479}}</ref>{{rp|Chp 4}} | ||
कुछ भौतिक सिद्धांतों में, समय की अवधि को गुणा किया जाता | कुछ भौतिक सिद्धांतों में, समय की अवधि को i से इस तरह गुणा किया जाता है। गणितीय रूप से, एक काल्पनिक समय अवधि <math display="inline">\tau</math> वास्तविक समय <math display="inline"> t</math> से <math display="inline">\pi/2</math> द्वारा एक वर्तिका क्रमावर्तन के माध्यम से सम्मिश्र समतल <math display="inline">\tau = it</math> में प्राप्त की जा सकती है।<ref name="Penrose2004" />{{rp|769}} | ||
[[स्टीफन हॉकिंग]] ने अपनी पुस्तक [[संक्षेप में ब्रह्मांड]] में काल्पनिक समय की अवधारणा को लोकप्रिय बनाया। | [[स्टीफन हॉकिंग]] ने अपनी पुस्तक [[संक्षेप में ब्रह्मांड|द यूनिवर्स इन अ नटशेल]] में काल्पनिक समय की अवधारणा को लोकप्रिय बनाया। | ||
{{quote|"कोई यह सोच सकता है कि इसका | {{quote|"कोई यह सोच सकता है कि इसका अर्थ यह है कि काल्पनिक संख्या केवल एक गणितीय खेल है जिसका वास्तविक दुनिया से कोई लेना-देना नहीं है। [[सकारात्मकता | प्रत्यक्षवादी दर्शन]] के दृष्टिकोण से, हालांकि, कोई यह निर्धारित नहीं कर सकता कि वास्तविक क्या है। केवल एक ही कर सकता है पता लगाएं कि कौन से गणितीय प्रतिरूप उस ब्रह्मांड का वर्णन करते हैं जिसमें हम रहते हैं। यह पता चला है कि काल्पनिक समय से जुड़ा एक गणितीय प्रतिरूप न केवल उन प्रभावों की भविष्यवाणी करता है जिन्हें हमने पहले ही देखा है बल्कि उन प्रभावों की भी भविष्यवाणी करता है जिन्हें हम मापने में सक्षम नहीं हैं फिर भी अन्य कारणों से विश्वास करते हैं। तो क्या है वास्तविक और क्या काल्पनिक है? क्या भेद सिर्फ हमारे मन में है?"||[[स्टीफन हॉकिंग]]<ref name="Hawking2001">{{cite book |last=Hawking |first=Stephen W. |author-link=Stephen Hawking |title=The Universe in a Nutshell |publisher=[[Bantam Books]] |date=November 2001 |location=United States & Canada |pages=58–61, 63, 82–85, 90–94, 99, 196 |isbn=9780553802023 |ol=7850510M |url=https://openlibrary.org/books/OL7850510M/The_Universe_in_a_Nutshell#bookPreview}}</ref>{{rp|59}}}} | ||
वास्तव में, संख्याओं के लिए [[वास्तविक संख्या]] और काल्पनिक संख्या केवल एक ऐतिहासिक दुर्घटना है, बहुत कुछ परिमेय संख्या और अपरिमेय संख्या की तरह: | वास्तव में, संख्याओं के लिए [[वास्तविक संख्या]] और काल्पनिक संख्या केवल एक ऐतिहासिक दुर्घटना है, बहुत कुछ परिमेय संख्या और अपरिमेय संख्या की तरह: | ||
{{quote|"...'वास्तविक'' और ''काल्पनिक'' शब्द उस युग के सुरम्य अवशेष हैं जब [[ | {{quote|"...'वास्तविक'' और ''काल्पनिक'' शब्द उस युग के सुरम्य अवशेष हैं जब [[समिश्र संख्या]] की प्रकृति को ठीक से समझा नहीं गया था।'||[[Harold Scott MacDonald Coxeter|एच.एस.एम. कॉक्सेटर]]<ref>{{cite book |last=Coxeter |first=H.S.M. |author-link=Harold Scott MacDonald Coxeter |date=1949 |title=The Real Projective Plane |url=https://archive.org/details/in.ernet.dli.2015.212962/page/n197 |location=New York |publisher=[[McGraw-Hill Book Company]] |page=187 footnote}}</ref>}} | ||
== ब्रह्माण्ड विज्ञान में == | == ब्रह्माण्ड विज्ञान में == | ||
=== व्युत्पत्ति === | === व्युत्पत्ति === | ||
[[सापेक्षता के सिद्धांत]] द्वारा अपनाए गए [[मिन्कोव्स्की [[ अंतरिक्ष समय ]]]] | [[सापेक्षता के सिद्धांत]] द्वारा अपनाए गए [[मिन्कोव्स्की [[ अंतरिक्ष समय |अंतरिक्ष समय]]]] प्रतिरूप में, अंतरिक्ष समय को चार आयामी सतह या [[कई गुना|बहुविध]] के रूप में दर्शाया गया है। त्रि-आयामी अंतरिक्ष में दूरी के चार-आयामी समतुल्य को अंतरिक्ष-समय अंतराल कहा जाता है। यह मानते हुए कि एक विशिष्ट समय अवधि को वास्तविक संख्या के रूप में उसी तरह दर्शाया जाता है जैसे अंतरिक्ष में दूरी, एक अंतराल <math>d</math> सापेक्षतावादी अंतरिक्ष समय में सामान्य सूत्र द्वारा दिया जाता है लेकिन समय के साथ नकारात्मक होता है: | ||
<math display="block">d^2 = x^2 + y^2 + z^2 - t^2</math> | <math display="block">d^2 = x^2 + y^2 + z^2 - t^2</math> | ||
जहाँ <math>x</math>, <math>y</math> और <math>z</math> प्रत्येक स्थानिक अक्ष के साथ दूरी हैं और <math>t</math> समय अक्ष के साथ समय या दूरी की अवधि है ( | जहाँ <math>x</math>, <math>y</math> और <math>z</math> प्रत्येक स्थानिक अक्ष के साथ दूरी हैं और <math>t</math> समय अक्ष के साथ समय या दूरी की अवधि है (अनुशासनपूर्वक, समय समन्वय <math>(ct)^2</math> है जहाँ <math>c</math> [[प्रकाश की गति]] है, हालाँकि हम पारंपरिक रूप से ऐसी इकाइयाँ <math>c=1</math> चुनते हैं)। | ||
गणितीय रूप से यह लेखन के बराबर है | गणितीय रूप से यह लेखन के बराबर है | ||
<math display="block">d^2 = x^2 + y^2 + z^2 + (it)^2</math> | <math display="block">d^2 = x^2 + y^2 + z^2 + (it)^2</math> | ||
इस संदर्भ में, <math>i</math> या तो ऊपर के रूप में अंतरिक्ष और वास्तविक समय के बीच संबंध की एक विशेषता के रूप में स्वीकार किया जा सकता है, या इसे वैकल्पिक रूप से समय में ही | इस संदर्भ में, <math>i</math> या तो ऊपर के रूप में अंतरिक्ष और वास्तविक समय के बीच संबंध की एक विशेषता के रूप में स्वीकार किया जा सकता है, या इसे वैकल्पिक रूप से समय में ही सम्मिलित किया जा सकता है, जैसे कि समय का मूल्य स्वयं एक काल्पनिक संख्या है, जिसे <math>\tau</math> द्वारा दर्शाया गया है। {{cn|date=January 2023|reason=this is the critical statement}} फिर समीकरण को सामान्यीकृत रूप में फिर से लिखा जा सकता है: <math display="block">d^2 = x^2 + y^2 + z^2 + \tau^2</math> | ||
इसी प्रकार इसके चार सदिश तब इस प्रकार लिखे जा सकते हैं <math display="block">( x_0, x_1, x_2, x_3 )</math> जहाँ दूरियों को | इसी प्रकार इसके चार सदिश तब इस प्रकार लिखे जा सकते हैं <math display="block">( x_0, x_1, x_2, x_3 )</math> जहाँ दूरियों को <math>x_n</math> निरूपित किया जाता है, और <math>x_0 = ict</math> जहाँ <math>c</math> प्रकाश की गति है और समय काल्पनिक है। | ||
=== ब्रह्मांड विज्ञान के लिए आवेदन === | === ब्रह्मांड विज्ञान के लिए आवेदन === | ||
हॉकिंग ने 1971 में कुछ स्थितियों में एक काल्पनिक | हॉकिंग ने 1971 में कुछ स्थितियों में एक काल्पनिक आव्यूह में समय अंतराल को घुमाने की उपयोगिता पर ध्यान दिया।<ref>{{cite journal |last=Hawking |first=S. W. |author-link=Stephen_Hawking |title=क्वांटम गुरुत्व और पथ अभिन्न|journal=[[Phys. Rev. D]] |volume=18 |issue=6 |date=1978-09-15 |pages=1747–1753 |doi=10.1103/PhysRevD.18.1747 |bibcode=1978PhRvD..18.1747H |url=https://journals.aps.org/prd/abstract/10.1103/PhysRevD.18.1747 |access-date=2023-01-25 |url-access=subscription|quote=It is convenient to rotate the time interval on this timelike tube between the two surfaces into the complex plane so that it becomes purely imaginary.}}</ref> | ||
हालांकि, वास्तविक भौतिक समय और ऐसे | [[भौतिक [[ब्रह्मांड]] विज्ञान]] में, काल्पनिक समय को ब्रह्मांड के कुछ प्रतिरूपों में सम्मिलित किया जा सकता है जो [[सामान्य सापेक्षता]] के समीकरणों के समाधान हैं। विशेष रूप से, काल्पनिक समय गुरुत्वीय विलक्षणताओं को सुचारू करने में मदद कर सकता है, जहां ज्ञात भौतिक नियम टूट जाते हैं, विलक्षणता को दूर करने और इस तरह के टूटने से बचने के लिए (हार्टल-हॉकिंग स्तिथि देखें)। उदाहरण के लिए, [[महा विस्फोट]] सामान्य समय में [[[[गुरुत्वाकर्षण विलक्षणता]]]] के रूप में प्रकट होता है, लेकिन जब काल्पनिक समय के साथ प्रतिरूपण किया जाता है, तो विलक्षणता को हटाया जा सकता है और महा विस्फोट चार-आयामी अंतरिक्ष समय में किसी अन्य बिंदु की तरह कार्य करता है। अंतरिक्ष समय के लिए कोई भी सीमा विलक्षणता का एक रूप है, जहां अंतरिक्ष समय की सहज प्रकृति टूट जाती है।<ref name="Penrose2004" />{{rp|769-772}} इस तरह की सभी विलक्षणताओं को ब्रह्मांड से हटा दिए जाने के बाद, इसकी कोई सीमा नहीं हो सकती है और स्टीफन हॉकिंग ने अनुमान लगाया कि ब्रह्मांड के लिए सीमा परिस्थिति यह है कि इसकी कोई सीमा नहीं है।<ref name="Hawking2001" />{{rp|85}} | ||
हालांकि, वास्तविक भौतिक समय और ऐसे प्रतिरूपों में सम्मिलित काल्पनिक समय के बीच संबंध की अप्रमाणित प्रकृति ने आलोचनाएं बढ़ा दी हैं।<ref>{{cite journal |last1=Deltete |first1=Robert J.|last2=Guy |first2=Reed A. |title=काल्पनिक समय से उभर रहा है|journal=[[Synthese]] |date=Aug 1996 |volume=108 |issue=2 |pages=185–203 |doi=10.1007/BF00413497|s2cid=44131608 |url=https://link.springer.com/article/10.1007/BF00413497 |access-date=2023-01-25 |url-access=subscription}}</ref> [[रोजर पेनरोज़]] ने ध्यान दिया है कि महा विस्फोट के काल्पनिक समय के साथ रीमैनियन बहुविध (अक्सर इस संदर्भ में यूक्लिडियन आव्यूह के रूप में संदर्भित) से एक काल्पनिक लोरेंट्ज़ियन मापीय वास्तविक समय के साथ विकसित ब्रह्मांड के लिए एक संक्रमण होने की आवश्यकता है। इसके अलावा, आधुनिक अवलोकनों से पता चलता है कि ब्रह्माण्ड खुला है और कभी भी एक बड़े संकट के रूप में वापस नहीं आएगा। अगर यह सच प्रमाणित होता है, तो समय की सीमा अभी भी बनी हुई है।<ref name="Penrose2004" />{{rp|769-772}} | |||
== परिमाण सांख्यिकीय यांत्रिकी में == | == परिमाण सांख्यिकीय यांत्रिकी में == | ||
{{refimprove|section|date=November 2017}} | {{refimprove|section|date=November 2017}} | ||
सांख्यिकीय यांत्रिकी के समीकरणों के [[फूरियर रूपांतरण]] को लेकर परिमाण क्षेत्र के समीकरण प्राप्त किए जा सकते हैं। चूंकि किसी | सांख्यिकीय यांत्रिकी के समीकरणों के [[फूरियर रूपांतरण]] को लेकर परिमाण क्षेत्र के समीकरण प्राप्त किए जा सकते हैं। चूंकि किसी फलन का फूरियर रूपांतरण सामान्यतः इसके व्युत्क्रम के रूप में दिखाई देता है, सांख्यिकीय यांत्रिकी के [[बिंदु कण]], फूरियर रूपांतरण के अनुसार, [[क्वांटम क्षेत्र सिद्धांत|परिमाण क्षेत्र सिद्धांत]] के असीम रूप से विस्तारित [[क्वांटम हार्मोनिक ऑसिलेटर्स|परिमाण प्रसंवादी दोलक]] बन जाते हैं।<ref> | ||
{{cite web |url=http://www.wiese.itp.unibe.ch/lectures/fieldtheory.pdf |title=Quantum Field Theory |last=Wiese |first=Uwe-Jens |date=2007-08-21 |website=Institute for Theoretical Physics |publisher=University of Bern |access-date=2023-01-25 |page=63}}</ref> निर्दिष्ट प्रारंभिक स्थितियों या सीमा | {{cite web |url=http://www.wiese.itp.unibe.ch/lectures/fieldtheory.pdf |title=Quantum Field Theory |last=Wiese |first=Uwe-Jens |date=2007-08-21 |website=Institute for Theoretical Physics |publisher=University of Bern |access-date=2023-01-25 |page=63}}</ref> निर्दिष्ट प्रारंभिक स्थितियों या सीमा स्थितियों के साथ एक कार्यक्षेत्र पर परिभाषित एक अमानवीय रैखिक [[अंतर ऑपरेटर|अंतरीय संचालक]] का ग्रीन का कार्य, इसकी आवेग (भौतिकी) प्रतिक्रिया है, और गणितीय रूप से हम सांख्यिकीय यांत्रिकी के बिंदु कणों को डिराक डेल्टा फलन के रूप में परिभाषित करते हैं, जिसे आवेग कहना है। एक सीमित तापमान पर <math>T</math>, ग्रीन के कार्यों की अवधि के साथ काल्पनिक समय में आवधिक कार्य <math display="inline"> 2\beta = 2/T</math> हैं। इसलिए, उनके फूरियर रूपांतरणों में मत्सुबारा आवृत्ति नामक आवृत्तियों का केवल एक असतत सम्मुच्चय होता है। | ||
[[संक्रमण आयाम]] में सांख्यिकीय यांत्रिकी और परिमाण क्षेत्र सिद्धांत के बीच संबंध भी देखा जाता है <math display="inline">\langle F\mid e^{-itH}\mid I\rangle </math> | [[संक्रमण आयाम]] में सांख्यिकीय यांत्रिकी और परिमाण क्षेत्र सिद्धांत के बीच संबंध भी देखा जाता है एक प्रारंभिक अवस्था <math display="inline">\langle F\mid e^{-itH}\mid I\rangle </math> के बीच {{math|''I''}} और एक अंतिम स्थिति {{math|''F''}}, जहाँ {{math|''H''}} उस प्रणाली का [[हैमिल्टनियन (क्वांटम यांत्रिकी)|हैमिल्टनियन (परिमाण यांत्रिकी)]] है। विभाजन फलन <math display="inline"> Z = \operatorname{Tr} e^{-\beta H}</math> के साथ इसकी तुलना करने पर पता चलता है कि विभाजन फलन <math display="inline"> t = \beta/i</math> को प्रतिस्थापित करके संक्रमण आयाम से प्राप्त किया जा सकता है। यह सांख्यिकीय गुणों और संक्रमण आयामों दोनों का मूल्यांकन करके दो बार काम करने की आवश्यकता से बचा जाता है। | ||
अंत में, एक | अंत में, एक वर्तिका क्रमावर्तन का उपयोग करके कोई भी दिखा सकता है कि यूक्लिडियन परिमाण क्षेत्र सिद्धांत (डी + 1) -डिमेंशनल अंतरिक्ष समय डी-विमितीय दिक् में [[ क्वांटम सांख्यिकीय यांत्रिकी | परिमाण सांख्यिकीय यांत्रिकी]] के अतिरिक्त और कुछ नहीं है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 11:50, 26 April 2023
काल्पनिक समय समय का एक गणितीय प्रतिनिधित्व है जो विशेष सापेक्षता और परिमाण यांत्रिकी के कुछ दृष्टिकोणों में प्रकट होता है। यह परिमाण यांत्रिकी को सांख्यिकीय यांत्रिकी और कुछ ब्रह्माण्ड विज्ञान सिद्धांतों से जोड़ने में उपयोग करता है।[citation needed]
गणितीय रूप से, काल्पनिक समय वास्तविक समय है जो एक वर्तिका क्रमावर्तन से पारित होता है ताकि इसके निर्देशांक काल्पनिक इकाई i से गुणा हो जाएं। काल्पनिक समय इस अर्थ में काल्पनिक नहीं है कि यह अवास्तविक या बना-बनाया है (कहने के अलावा, अपरिमेय संख्याएँ तर्क को धता बताती हैं), यह केवल गणितज्ञों द्वारा काल्पनिक संख्याओं के रूप में व्यक्त किया जाता है।
उत्पत्ति
गणित में, काल्पनिक इकाई का वर्गमूल है , जैसे को -1 के रूप में परिभाषित किया गया है। एक संख्या जो का प्रत्यक्ष गुणक है एक काल्पनिक संख्या के रूप में जाना जाता है।[1]: Chp 4
कुछ भौतिक सिद्धांतों में, समय की अवधि को i से इस तरह गुणा किया जाता है। गणितीय रूप से, एक काल्पनिक समय अवधि वास्तविक समय से द्वारा एक वर्तिका क्रमावर्तन के माध्यम से सम्मिश्र समतल में प्राप्त की जा सकती है।[1]: 769
स्टीफन हॉकिंग ने अपनी पुस्तक द यूनिवर्स इन अ नटशेल में काल्पनिक समय की अवधारणा को लोकप्रिय बनाया।
"कोई यह सोच सकता है कि इसका अर्थ यह है कि काल्पनिक संख्या केवल एक गणितीय खेल है जिसका वास्तविक दुनिया से कोई लेना-देना नहीं है। प्रत्यक्षवादी दर्शन के दृष्टिकोण से, हालांकि, कोई यह निर्धारित नहीं कर सकता कि वास्तविक क्या है। केवल एक ही कर सकता है पता लगाएं कि कौन से गणितीय प्रतिरूप उस ब्रह्मांड का वर्णन करते हैं जिसमें हम रहते हैं। यह पता चला है कि काल्पनिक समय से जुड़ा एक गणितीय प्रतिरूप न केवल उन प्रभावों की भविष्यवाणी करता है जिन्हें हमने पहले ही देखा है बल्कि उन प्रभावों की भी भविष्यवाणी करता है जिन्हें हम मापने में सक्षम नहीं हैं फिर भी अन्य कारणों से विश्वास करते हैं। तो क्या है वास्तविक और क्या काल्पनिक है? क्या भेद सिर्फ हमारे मन में है?"
वास्तव में, संख्याओं के लिए वास्तविक संख्या और काल्पनिक संख्या केवल एक ऐतिहासिक दुर्घटना है, बहुत कुछ परिमेय संख्या और अपरिमेय संख्या की तरह:
"...'वास्तविक और काल्पनिक शब्द उस युग के सुरम्य अवशेष हैं जब समिश्र संख्या की प्रकृति को ठीक से समझा नहीं गया था।'
ब्रह्माण्ड विज्ञान में
व्युत्पत्ति
सापेक्षता के सिद्धांत द्वारा अपनाए गए [[मिन्कोव्स्की अंतरिक्ष समय]] प्रतिरूप में, अंतरिक्ष समय को चार आयामी सतह या बहुविध के रूप में दर्शाया गया है। त्रि-आयामी अंतरिक्ष में दूरी के चार-आयामी समतुल्य को अंतरिक्ष-समय अंतराल कहा जाता है। यह मानते हुए कि एक विशिष्ट समय अवधि को वास्तविक संख्या के रूप में उसी तरह दर्शाया जाता है जैसे अंतरिक्ष में दूरी, एक अंतराल सापेक्षतावादी अंतरिक्ष समय में सामान्य सूत्र द्वारा दिया जाता है लेकिन समय के साथ नकारात्मक होता है:
गणितीय रूप से यह लेखन के बराबर है
ब्रह्मांड विज्ञान के लिए आवेदन
हॉकिंग ने 1971 में कुछ स्थितियों में एक काल्पनिक आव्यूह में समय अंतराल को घुमाने की उपयोगिता पर ध्यान दिया।[4]
[[भौतिक ब्रह्मांड विज्ञान]] में, काल्पनिक समय को ब्रह्मांड के कुछ प्रतिरूपों में सम्मिलित किया जा सकता है जो सामान्य सापेक्षता के समीकरणों के समाधान हैं। विशेष रूप से, काल्पनिक समय गुरुत्वीय विलक्षणताओं को सुचारू करने में मदद कर सकता है, जहां ज्ञात भौतिक नियम टूट जाते हैं, विलक्षणता को दूर करने और इस तरह के टूटने से बचने के लिए (हार्टल-हॉकिंग स्तिथि देखें)। उदाहरण के लिए, महा विस्फोट सामान्य समय में [[गुरुत्वाकर्षण विलक्षणता]] के रूप में प्रकट होता है, लेकिन जब काल्पनिक समय के साथ प्रतिरूपण किया जाता है, तो विलक्षणता को हटाया जा सकता है और महा विस्फोट चार-आयामी अंतरिक्ष समय में किसी अन्य बिंदु की तरह कार्य करता है। अंतरिक्ष समय के लिए कोई भी सीमा विलक्षणता का एक रूप है, जहां अंतरिक्ष समय की सहज प्रकृति टूट जाती है।[1]: 769–772 इस तरह की सभी विलक्षणताओं को ब्रह्मांड से हटा दिए जाने के बाद, इसकी कोई सीमा नहीं हो सकती है और स्टीफन हॉकिंग ने अनुमान लगाया कि ब्रह्मांड के लिए सीमा परिस्थिति यह है कि इसकी कोई सीमा नहीं है।[2]: 85
हालांकि, वास्तविक भौतिक समय और ऐसे प्रतिरूपों में सम्मिलित काल्पनिक समय के बीच संबंध की अप्रमाणित प्रकृति ने आलोचनाएं बढ़ा दी हैं।[5] रोजर पेनरोज़ ने ध्यान दिया है कि महा विस्फोट के काल्पनिक समय के साथ रीमैनियन बहुविध (अक्सर इस संदर्भ में यूक्लिडियन आव्यूह के रूप में संदर्भित) से एक काल्पनिक लोरेंट्ज़ियन मापीय वास्तविक समय के साथ विकसित ब्रह्मांड के लिए एक संक्रमण होने की आवश्यकता है। इसके अलावा, आधुनिक अवलोकनों से पता चलता है कि ब्रह्माण्ड खुला है और कभी भी एक बड़े संकट के रूप में वापस नहीं आएगा। अगर यह सच प्रमाणित होता है, तो समय की सीमा अभी भी बनी हुई है।[1]: 769–772
परिमाण सांख्यिकीय यांत्रिकी में
This section needs additional citations for verification. (November 2017) (Learn how and when to remove this template message) |
सांख्यिकीय यांत्रिकी के समीकरणों के फूरियर रूपांतरण को लेकर परिमाण क्षेत्र के समीकरण प्राप्त किए जा सकते हैं। चूंकि किसी फलन का फूरियर रूपांतरण सामान्यतः इसके व्युत्क्रम के रूप में दिखाई देता है, सांख्यिकीय यांत्रिकी के बिंदु कण, फूरियर रूपांतरण के अनुसार, परिमाण क्षेत्र सिद्धांत के असीम रूप से विस्तारित परिमाण प्रसंवादी दोलक बन जाते हैं।[6] निर्दिष्ट प्रारंभिक स्थितियों या सीमा स्थितियों के साथ एक कार्यक्षेत्र पर परिभाषित एक अमानवीय रैखिक अंतरीय संचालक का ग्रीन का कार्य, इसकी आवेग (भौतिकी) प्रतिक्रिया है, और गणितीय रूप से हम सांख्यिकीय यांत्रिकी के बिंदु कणों को डिराक डेल्टा फलन के रूप में परिभाषित करते हैं, जिसे आवेग कहना है। एक सीमित तापमान पर , ग्रीन के कार्यों की अवधि के साथ काल्पनिक समय में आवधिक कार्य हैं। इसलिए, उनके फूरियर रूपांतरणों में मत्सुबारा आवृत्ति नामक आवृत्तियों का केवल एक असतत सम्मुच्चय होता है।
संक्रमण आयाम में सांख्यिकीय यांत्रिकी और परिमाण क्षेत्र सिद्धांत के बीच संबंध भी देखा जाता है एक प्रारंभिक अवस्था के बीच I और एक अंतिम स्थिति F, जहाँ H उस प्रणाली का हैमिल्टनियन (परिमाण यांत्रिकी) है। विभाजन फलन के साथ इसकी तुलना करने पर पता चलता है कि विभाजन फलन को प्रतिस्थापित करके संक्रमण आयाम से प्राप्त किया जा सकता है। यह सांख्यिकीय गुणों और संक्रमण आयामों दोनों का मूल्यांकन करके दो बार काम करने की आवश्यकता से बचा जाता है।
अंत में, एक वर्तिका क्रमावर्तन का उपयोग करके कोई भी दिखा सकता है कि यूक्लिडियन परिमाण क्षेत्र सिद्धांत (डी + 1) -डिमेंशनल अंतरिक्ष समय डी-विमितीय दिक् में परिमाण सांख्यिकीय यांत्रिकी के अतिरिक्त और कुछ नहीं है।
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 Penrose, Roger (2004). The Road to Reality. Jonathan Cape. ISBN 9780224044479.
- ↑ 2.0 2.1 Hawking, Stephen W. (November 2001). The Universe in a Nutshell. United States & Canada: Bantam Books. pp. 58–61, 63, 82–85, 90–94, 99, 196. ISBN 9780553802023. OL 7850510M.
- ↑ Coxeter, H.S.M. (1949). The Real Projective Plane. New York: McGraw-Hill Book Company. p. 187 footnote.
- ↑ Hawking, S. W. (1978-09-15). "क्वांटम गुरुत्व और पथ अभिन्न". Phys. Rev. D. 18 (6): 1747–1753. Bibcode:1978PhRvD..18.1747H. doi:10.1103/PhysRevD.18.1747. Retrieved 2023-01-25.
It is convenient to rotate the time interval on this timelike tube between the two surfaces into the complex plane so that it becomes purely imaginary.
- ↑ Deltete, Robert J.; Guy, Reed A. (Aug 1996). "काल्पनिक समय से उभर रहा है". Synthese. 108 (2): 185–203. doi:10.1007/BF00413497. S2CID 44131608. Retrieved 2023-01-25.
- ↑ Wiese, Uwe-Jens (2007-08-21). "Quantum Field Theory" (PDF). Institute for Theoretical Physics. University of Bern. p. 63. Retrieved 2023-01-25.
अग्रिम पठन
- Hawking, Stephen W. (1998). A Brief History of Time (in English) (Tenth Anniversary Commemorative ed.). Bantam Books. p. 157. ISBN 978-0-553-10953-5.
- Gerald D. Mahan. Many-Particle Physics, Chapter 3
- A. Zee Quantum field theory in a nutshell, Chapter V.2
बाहरी संबंध
- The Beginning of Time — Lecture by Stephen Hawking which discusses imaginary time.
- Stephen Hawking's Universe: Strange Stuff Explained — PBS site on imaginary time.