दुर्बल हाइपर आवेश: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{distinguish|उच्च आवेश|क्षीण आवेश }} | {{distinguish|उच्च आवेश|क्षीण आवेश }} | ||
{{Flavour quantum numbers}} | {{Flavour quantum numbers}} | ||
[[कण भौतिकी]] के विद्युत् दुर्बल पारस्परिक क्रिया के [[मानक मॉडल (गणितीय सूत्रीकरण)]] में, दुर्बल उच्च आवेश एक क्वांटम संख्या है जो विद्युत आवेश और [[कमजोर आइसोस्पिन|दुर्बल समभारिक]] के तीसरे घटक से संबंधित है। इसे प्रायः <math>Y_\mathsf{W}</math> द्वारा निरूपित किया जाता है और यह [[गेज समरूपता]] U(1) के अनुरूप है। | [[कण भौतिकी]] के विद्युत् दुर्बल पारस्परिक क्रिया के [[मानक मॉडल (गणितीय सूत्रीकरण)]] में, दुर्बल उच्च आवेश एक क्वांटम संख्या है जो विद्युत आवेश और [[कमजोर आइसोस्पिन|दुर्बल समभारिक]] के तीसरे घटक से संबंधित है। इसे प्रायः <math>Y_\mathsf{W}</math> द्वारा निरूपित किया जाता है और यह [[गेज समरूपता]] U(1) के अनुरूप है।<ref name="Tully-2012-Nutsh" /><ref name="Glashow-1961-02-NucPh" /> | ||
यह [[संरक्षण कानून (भौतिकी)|संरक्षण नियम (भौतिकी)]] है (केवल वे शब्द जो समग्र रूप से दुर्बल -उच्च आवेश निष्प्रभावी हैं, लैग्रैंगियन में अनुमति है)। हालाँकि, एक अन्योन्यक्रिया हिग्स क्षेत्र के साथ है। चूँकि [[हिग्स फील्ड|हिग्स क्षेत्र]] [[ वैक्यूम उम्मीद मूल्य |निर्वात प्रत्याशित मूल्य]] अशून्य है, कण इस क्षेत्र के साथ हर समय निर्वात में भी परस्पर क्रिया करते हैं। दुर्बल उच्च आवेश को पहली बार 1961 में [[शेल्डन ग्लासो]] द्वारा प्रस्तुत किया गया था। यह उनके दुर्बल उच्च आवेश(और दुर्बल समभारिक {{math|''T''<sub>3</sub>}}) को बदल देता है। उनमें से केवल एक विशिष्ट संयोजन, <math>~Q = T_3 + \tfrac{1}{2}\, Y_\mathsf{W}</math> (विद्युत आवेश), संरक्षित है। | यह [[संरक्षण कानून (भौतिकी)|संरक्षण नियम (भौतिकी)]] है (केवल वे शब्द जो समग्र रूप से दुर्बल -उच्च आवेश निष्प्रभावी हैं, लैग्रैंगियन में अनुमति है)। हालाँकि, इसमें एक अन्योन्यक्रिया हिग्स क्षेत्र के साथ है। चूँकि [[हिग्स फील्ड|हिग्स क्षेत्र]] [[ वैक्यूम उम्मीद मूल्य |निर्वात प्रत्याशित मूल्य]] अशून्य है, कण इस क्षेत्र के साथ हर समय निर्वात में भी परस्पर क्रिया करते हैं। दुर्बल उच्च आवेश को पहली बार 1961 में [[शेल्डन ग्लासो]] द्वारा प्रस्तुत किया गया था। यह उनके दुर्बल उच्च आवेश (और दुर्बल समभारिक {{math|''T''<sub>3</sub>}}) को बदल देता है। उनमें से केवल एक विशिष्ट संयोजन, <math>~Q = T_3 + \tfrac{1}{2}\, Y_\mathsf{W}</math> (विद्युत आवेश), संरक्षित है। | ||
गणितीय रूप से, दुर्बल उच्च आवेश, प्रबल अन्योन्य क्रिया के उच्च आवेश के लिए गेल-मान-निशिजिमा सूत्र के समान दिखाई देता है (जो दुर्बल पारस्परिक क्रिया में संरक्षित नहीं है और लेप्टान के लिए शून्य है)। | गणितीय रूप से, दुर्बल उच्च आवेश, प्रबल अन्योन्य क्रिया के उच्च आवेश के लिए गेल-मान-निशिजिमा सूत्र के समान दिखाई देता है (जो दुर्बल पारस्परिक क्रिया में संरक्षित नहीं है और लेप्टान के लिए शून्य है)। | ||
विद्युत् दुर्बल सिद्धांत में SU(2) परिवर्तन परिभाषा के अनुसार U(1) परिवर्तनों के साथ संचार करता है और इसलिए SU(2) | विद्युत् दुर्बल सिद्धांत में SU(2) परिवर्तन परिभाषा के अनुसार U(1) परिवर्तनों के साथ संचार करता है और इसलिए SU(2) द्वि-आवृत्ति (उदाहरण के लिए बाएं हाथ के ऊपर और नीचे क्वार्क) के तत्वों के लिए U(1) आवेश बराबर होना चाहिए। यही कारण है कि U(1) की पहचान U(1)<sub>em</sub> से नहीं की जा सकती है और इसमें दुर्बल उच्च आवेश प्रस्तुत करना अनिवार्य होता है।<ref name=Tully-2012-Nutsh/><ref name=Glashow-1961-02-NucPh/> | ||
दुर्बल उच्च आवेश को पहली बार 1961 में [[शेल्डन ग्लासो]] द्वारा प्रस्तुत किया गया था।<ref name=Glashow-1961-02-NucPh/><ref name=Hoddeson-Brown-Riordan-etal-1997/><ref name=Quigg-2015-10-19-ARevNuPaSc/> | दुर्बल उच्च आवेश को पहली बार 1961 में [[शेल्डन ग्लासो]] द्वारा प्रस्तुत किया गया था।<ref name=Glashow-1961-02-NucPh/><ref name=Hoddeson-Brown-Riordan-etal-1997/><ref name=Quigg-2015-10-19-ARevNuPaSc/> | ||
Line 15: | Line 15: | ||
{{see also|वेनबर्ग कोण}} | {{see also|वेनबर्ग कोण}} | ||
दुर्बल उच्च आवेश | दुर्बल उच्च आवेश [[ विद्युत |विद्युत]] गेज समूह के U(1) घटक का [[चार्ज (भौतिकी)|आवेश (भौतिकी)]] है, {{gaps|SU(2)|×|U(1)}} और इससे जुड़े [[क्वांटम क्षेत्र]] {{math|B}} W<sup>3</sup> [[विद्युत् दुर्बल क्वांटम क्षेत्र]] के साथ मिश्रित होता है जिससे अवेक्षित किया हुआ उत्पादन किया जा सके। | ||
गेज बोसोन और क्वांटम [[विद्युत् गतिकी]] का | गेज बोसोन और क्वांटम [[विद्युत् गतिकी]] का फोटॉन दुर्बल उच्च आवेश संबंध को संतुष्ट करता है | ||
दुर्बल उच्च आवेश संबंध को संतुष्ट करता है | |||
::<math> Q = T_3 + \tfrac{1}{2} Y_\text{W} ~,</math> | ::<math> Q = T_3 + \tfrac{1}{2} Y_\text{W} ~,</math> | ||
जहां {{mvar|Q}} विद्युत आवेश है (प्रारंभिक आवेश इकाइयों में) और {{mvar|T}}{{sub|3}} दुर्बल समभारिक (SU(2) घटक) का तीसरा घटक है। | जहां {{mvar|Q}} विद्युत आवेश है (प्रारंभिक आवेश इकाइयों में) और {{mvar|T}}{{sub|3}} दुर्बल समभारिक (SU(2) घटक) का तीसरा घटक है। | ||
Line 78: | Line 76: | ||
| align="center"; | −{{sfrac|2|3}} | | align="center"; | −{{sfrac|2|3}} | ||
|} | |} | ||
जहाँ बाएँ और दाएँ हाथ वाले | जहाँ बाएँ और दाएँ हाथ वाले विरोधी-फर्मियन क्रमशः बाएँ और दाएँ [[चिरायता (भौतिकी)]] ([[हेलिसिटी (कण भौतिकी)]] से अलग) हैं। | ||
विरोधी-फर्मियन के लिए दुर्बल उच्च आवेश संबंधित फर्मियन के विपरीत है क्योंकि विद्युत आवेश और दुर्बल समभारिक का तीसरा घटक [[चार्ज संयुग्मन|आवेश संयुग्मन]] के तहत विपरीत साइन करता है। दुर्बल उच्च आवेश को पहली बार 1961 में [[शेल्डन ग्लासो]] द्वारा प्रस्तुत किया गया था। | विरोधी-फर्मियन के लिए दुर्बल उच्च आवेश संबंधित फर्मियन के विपरीत है क्योंकि विद्युत आवेश और दुर्बल समभारिक का तीसरा घटक [[चार्ज संयुग्मन|आवेश संयुग्मन]] के तहत विपरीत साइन करता है। दुर्बल उच्च आवेश को पहली बार 1961 में [[शेल्डन ग्लासो]] द्वारा प्रस्तुत किया गया था। | ||
Line 118: | Line 116: | ||
| +1 | | +1 | ||
|} | |} | ||
[[File:Electroweak.svg|212x212px|right|thumb|दुर्बल समभारिक का पैटर्न, {{mvar| T}}{{sub|3}}, और कमज़ोर उच्च आवेश , {{mvar| Y}}{{sub|W}}, ज्ञात प्राथमिक कणों का, विद्युत आवेश दिखा रहा है, {{mvar| Q }}, वेनबर्ग कोण के साथ। निष्प्रभावी हिग्स क्षेत्र (परिक्रमा) विद्युत दुर्बल समरूपता को तोड़ता है और उन्हें द्रव्यमान देने के लिए अन्य कणों के साथ संपर्क करता है। हिग्स क्षेत्र के तीन घटक विशाल W और Z बोसोन का हिस्सा बन गए।]]प्रत्येक गेज बोसॉन के लिए -समभारिक और + आवेश का योग शून्य है; परिणामस्वरूप, सभी विद्युत् दुर्बल बल गेज बोसोन हैं | [[File:Electroweak.svg|212x212px|right|thumb|दुर्बल समभारिक का पैटर्न, {{mvar| T}}{{sub|3}}, और कमज़ोर उच्च आवेश, {{mvar| Y}}{{sub|W}}, ज्ञात प्राथमिक कणों का, विद्युत आवेश दिखा रहा है, {{mvar| Q }}, वेनबर्ग कोण के साथ। निष्प्रभावी हिग्स क्षेत्र (परिक्रमा) विद्युत दुर्बल समरूपता को तोड़ता है और उन्हें द्रव्यमान देने के लिए अन्य कणों के साथ संपर्क करता है। हिग्स क्षेत्र के तीन घटक विशाल W और Z बोसोन का हिस्सा बन गए।]]प्रत्येक गेज बोसॉन के लिए -समभारिक और + आवेश का योग शून्य है; परिणामस्वरूप, सभी विद्युत् दुर्बल बल गेज बोसोन हैं | ||
:: <math>\, Y_\text{W} = 0 ~.</math> [[मानक मॉडल]] में उच्च आवेश समनुदेशन सभी विसंगतियों को | :: <math>\, Y_\text{W} = 0 ~.</math> [[मानक मॉडल]] में उच्च आवेश समनुदेशन सभी विसंगतियों को निष्क्रिय करने की आवश्यकता के द्वारा दोहरी अस्पष्टता तक निर्धारित किए जाते हैं। | ||
=== वैकल्पिक आधा स्केल === | === वैकल्पिक आधा स्केल === | ||
Line 131: | Line 129: | ||
:<math>\tfrac{1}{2}X + Y_{\rm W} = \tfrac{5}{2}(B - L) \,</math> | :<math>\tfrac{1}{2}X + Y_{\rm W} = \tfrac{5}{2}(B - L) \,</math> | ||
जहां [[एक्स (चार्ज)|एक्स (आवेश )]][[ महा एकीकरण सिद्धांत |उच्च एकीकरण सिद्धांत]] में एक संरक्षित क्वांटम संख्या है। दुर्बल उच्च आवेश को पहली बार 1961 में [[शेल्डन ग्लासो]] द्वारा प्रस्तुत किया गया था। चूंकि दुर्बल उच्च आवेश को | जहां [[एक्स (चार्ज)|एक्स (आवेश )]][[ महा एकीकरण सिद्धांत |उच्च एकीकरण सिद्धांत]] में एक संरक्षित क्वांटम संख्या है। दुर्बल उच्च आवेश को पहली बार 1961 में [[शेल्डन ग्लासो]] द्वारा प्रस्तुत किया गया था। चूंकि दुर्बल उच्च आवेश को सदैव मानक मॉडल और ज्यादातर विस्तारण के भीतर संरक्षित किया जाता है, इसका तात्पर्य यह है कि बेरिऑन संख्या - लिप्टन संख्या भी सदैव संरक्षित रहता है। | ||
=== न्यूट्रॉन क्षय === | === न्यूट्रॉन क्षय === | ||
:{{math|{{SubatomicParticle|neutron|link=yes}} → {{SubatomicParticle|proton|link=yes}} + {{SubatomicParticle|electron}} + {{SubatomicParticle|electron antineutrino}}}} | :{{math|{{SubatomicParticle|neutron|link=yes}} → {{SubatomicParticle|proton|link=yes}} + {{SubatomicParticle|electron}} + {{SubatomicParticle|electron antineutrino}}}} | ||
इसलिए न्यूट्रॉन क्षय बेरिऑन संख्या {{mvar|B}} को और [[लेपटन संख्या]] {{mvar|L}} को अलग से संरक्षित करता है, इसलिए | इसलिए न्यूट्रॉन क्षय बेरिऑन संख्या {{mvar|B}} को और [[लेपटन संख्या]] {{mvar|L}} को अलग से संरक्षित करता है, इसलिए{{nobr| {{mvar|B}} − {{mvar|L}} }}अंतर भी संरक्षित है। | ||
===प्रोटोन क्षय=== | ===प्रोटोन क्षय=== | ||
[[प्रोटॉन क्षय]] कई [[महा एकीकरण सिद्धांत|उच्च एकीकरण सिद्धांत]] की | [[प्रोटॉन क्षय]] कई [[महा एकीकरण सिद्धांत|उच्च एकीकरण सिद्धांत]] की पूर्व संकल्पना है। | ||
:{| style="border: none; padding-left:3em; text-align:center;" | :{| style="border: none; padding-left:3em; text-align:center;" | ||
|- style="height: 2em;" | |- style="height: 2em;" |
Revision as of 16:45, 25 April 2023
Flavour in particle physics |
---|
Flavour quantum numbers |
|
Related quantum numbers |
|
Combinations |
|
Flavour mixing |
कण भौतिकी के विद्युत् दुर्बल पारस्परिक क्रिया के मानक मॉडल (गणितीय सूत्रीकरण) में, दुर्बल उच्च आवेश एक क्वांटम संख्या है जो विद्युत आवेश और दुर्बल समभारिक के तीसरे घटक से संबंधित है। इसे प्रायः द्वारा निरूपित किया जाता है और यह गेज समरूपता U(1) के अनुरूप है।[1][2]
यह संरक्षण नियम (भौतिकी) है (केवल वे शब्द जो समग्र रूप से दुर्बल -उच्च आवेश निष्प्रभावी हैं, लैग्रैंगियन में अनुमति है)। हालाँकि, इसमें एक अन्योन्यक्रिया हिग्स क्षेत्र के साथ है। चूँकि हिग्स क्षेत्र निर्वात प्रत्याशित मूल्य अशून्य है, कण इस क्षेत्र के साथ हर समय निर्वात में भी परस्पर क्रिया करते हैं। दुर्बल उच्च आवेश को पहली बार 1961 में शेल्डन ग्लासो द्वारा प्रस्तुत किया गया था। यह उनके दुर्बल उच्च आवेश (और दुर्बल समभारिक T3) को बदल देता है। उनमें से केवल एक विशिष्ट संयोजन, (विद्युत आवेश), संरक्षित है।
गणितीय रूप से, दुर्बल उच्च आवेश, प्रबल अन्योन्य क्रिया के उच्च आवेश के लिए गेल-मान-निशिजिमा सूत्र के समान दिखाई देता है (जो दुर्बल पारस्परिक क्रिया में संरक्षित नहीं है और लेप्टान के लिए शून्य है)।
विद्युत् दुर्बल सिद्धांत में SU(2) परिवर्तन परिभाषा के अनुसार U(1) परिवर्तनों के साथ संचार करता है और इसलिए SU(2) द्वि-आवृत्ति (उदाहरण के लिए बाएं हाथ के ऊपर और नीचे क्वार्क) के तत्वों के लिए U(1) आवेश बराबर होना चाहिए। यही कारण है कि U(1) की पहचान U(1)em से नहीं की जा सकती है और इसमें दुर्बल उच्च आवेश प्रस्तुत करना अनिवार्य होता है।[1][2]
दुर्बल उच्च आवेश को पहली बार 1961 में शेल्डन ग्लासो द्वारा प्रस्तुत किया गया था।[2][3][4]
परिभाषा
दुर्बल उच्च आवेश विद्युत गेज समूह के U(1) घटक का आवेश (भौतिकी) है, SU(2)×U(1) और इससे जुड़े क्वांटम क्षेत्र B W3 विद्युत् दुर्बल क्वांटम क्षेत्र के साथ मिश्रित होता है जिससे अवेक्षित किया हुआ उत्पादन किया जा सके।
गेज बोसोन और क्वांटम विद्युत् गतिकी का फोटॉन दुर्बल उच्च आवेश संबंध को संतुष्ट करता है
जहां Q विद्युत आवेश है (प्रारंभिक आवेश इकाइयों में) और T3 दुर्बल समभारिक (SU(2) घटक) का तीसरा घटक है।
पुनर्व्यवस्थित, दुर्बल उच्च आवेश को स्पष्ट रूप से परिभाषित किया जा सकता है:
Fermion family |
Left-chiral fermions | Right-chiral fermions | ||||||
---|---|---|---|---|---|---|---|---|
Electric charge Q |
Weak isospin T3 |
Weak hyper- charge YW |
Electric charge Q |
Weak isospin T3 |
Weak hyper- charge YW | |||
Leptons | ν e, ν μ, ν τ |
0 | +1/2 | −1 | νR May not exist |
0 | 0 | 0 |
e− , μ− , τ− |
−1 | −1/2 | −1 | e− R, μ− R, τ− R |
−1 | 0 | −2 | |
Quarks | u , c , t |
+2/3 | +1/2 | +1/3 | u R, c R, t R |
+2/3 | 0 | +4/3 |
d, s, b | −1/3 | −1/2 | +1/3 | d R, s R, b R |
−1/3 | 0 | −2/3 |
जहाँ बाएँ और दाएँ हाथ वाले विरोधी-फर्मियन क्रमशः बाएँ और दाएँ चिरायता (भौतिकी) (हेलिसिटी (कण भौतिकी) से अलग) हैं।
विरोधी-फर्मियन के लिए दुर्बल उच्च आवेश संबंधित फर्मियन के विपरीत है क्योंकि विद्युत आवेश और दुर्बल समभारिक का तीसरा घटक आवेश संयुग्मन के तहत विपरीत साइन करता है। दुर्बल उच्च आवेश को पहली बार 1961 में शेल्डन ग्लासो द्वारा प्रस्तुत किया गया था।
Interaction mediated |
Boson | Electric charge Q |
Weak isospin T3 |
Weak hypercharge YW |
---|---|---|---|---|
Weak | W± |
±1 | ±1 | 0 |
Z0 |
0 | 0 | 0 | |
Electromagnetic | γ0 |
0 | 0 | 0 |
Strong | g |
0 | 0 | 0 |
Higgs | H0 |
0 | −1/2 | +1 |
प्रत्येक गेज बोसॉन के लिए -समभारिक और + आवेश का योग शून्य है; परिणामस्वरूप, सभी विद्युत् दुर्बल बल गेज बोसोन हैं
- मानक मॉडल में उच्च आवेश समनुदेशन सभी विसंगतियों को निष्क्रिय करने की आवश्यकता के द्वारा दोहरी अस्पष्टता तक निर्धारित किए जाते हैं।
वैकल्पिक आधा स्केल
सुविधा के लिए, दुर्बल उच्च आवेश को प्रायः आधे पैमाने पर दर्शाया जाता है, जिससे
जो समभारिक बहुक में कणों के औसत विद्युत आवेश के बराबर है।[6][7]
बेरिऑन और लेप्टान संख्या
दुर्बल उच्च आवेश B - L के माध्यम से संबंधित है:
जहां एक्स (आवेश )उच्च एकीकरण सिद्धांत में एक संरक्षित क्वांटम संख्या है। दुर्बल उच्च आवेश को पहली बार 1961 में शेल्डन ग्लासो द्वारा प्रस्तुत किया गया था। चूंकि दुर्बल उच्च आवेश को सदैव मानक मॉडल और ज्यादातर विस्तारण के भीतर संरक्षित किया जाता है, इसका तात्पर्य यह है कि बेरिऑन संख्या - लिप्टन संख्या भी सदैव संरक्षित रहता है।
न्यूट्रॉन क्षय
इसलिए न्यूट्रॉन क्षय बेरिऑन संख्या B को और लेपटन संख्या L को अलग से संरक्षित करता है, इसलिए B − L अंतर भी संरक्षित है।
प्रोटोन क्षय
प्रोटॉन क्षय कई उच्च एकीकरण सिद्धांत की पूर्व संकल्पना है।
इसलिए यह काल्पनिक प्रोटॉन क्षय B − L संरक्षण करेगा, भले ही यह व्यक्तिगत रूप से लेप्टान संख्या और बेरिऑन संख्या दोनों के संरक्षण का उल्लंघन करेगा।
यह भी देखें
- मानक मॉडल (गणितीय सूत्रीकरण)
- दुर्बल आवेश
संदर्भ
- ↑ 1.0 1.1 Tully, Christopher G. (2012). Elementary Particle Physics in a Nutshell. Princeton University Press. p. 87. doi:10.1515/9781400839353. ISBN 978-1-4008-3935-3.
- ↑ 2.0 2.1 2.2 Glashow, Sheldon L. (February 1961). "Partial-symmetries of weak interactions". Nuclear Physics (in English). 22 (4): 579–588. Bibcode:1961NucPh..22..579G. doi:10.1016/0029-5582(61)90469-2.
- ↑ Hoddeson, Lillian; Brown, Laurie; Riordan, Michael; Dresden, Max, eds. (1997-11-13). The rise of the Standard Model: A history of particle physics from 1964 to 1979 (1st ed.). Cambridge University Press. p. 14. doi:10.1017/cbo9780511471094. ISBN 978-0-521-57082-4.
- ↑ Quigg, Chris (2015-10-19). "Electroweak symmetry breaking in historical perspective". Annual Review of Nuclear and Particle Science (in English). 65 (1): 25–42. arXiv:1503.01756. Bibcode:2015ARNPS..65...25Q. doi:10.1146/annurev-nucl-102313-025537. ISSN 0163-8998.
- ↑ Lee, T.D. (1981). Particle Physics and Introduction to Field Theory. Boca Raton, FL / New York, NY: CRC Press / Harwood Academic Publishers. ISBN 978-3718600335 – via Archive.org.
- ↑ Peskin, Michael E.; Schroeder, Daniel V. (1995). An Introduction to Quantum Field Theory. Addison-Wesley Publishing Company. ISBN 978-0-201-50397-5.
- ↑ Anderson, M.R. (2003). The Mathematical Theory of Cosmic Strings. CRC Press. p. 12. ISBN 0-7503-0160-0.
Cite error: <ref>
tag with name "Cheng-Li-2006-GaThElPP" defined in <references>
is not used in prior text.
<ref>
tag with name "Donoghue-Golowich-Holstein-1994-DynSM" defined in <references>
is not used in prior text.