पॉलिंग का इलेक्ट्रोन्यूट्रलिटी का सिद्धांत: Difference between revisions

From Vigyanwiki
(Created page with "{{distinguish|text=Pauling's electrostatic valence rule, the second of Pauling's rules for ionic crystals}} {{distinguish|Pauli exclusion principle}} इलेक्ट्...")
 
No edit summary
Line 1: Line 1:
{{distinguish|text=Pauling's electrostatic valence rule, the second of [[Pauling's rules]] for ionic crystals}}
{{distinguish|text=Pauling's electrostatic valence rule, the second of [[Pauling's rules]] for ionic crystals}}
{{distinguish|Pauli exclusion principle}}
{{distinguish|Pauli exclusion principle}}
इलेक्ट्रोन्यूट्रलिटी के पॉलिंग के सिद्धांत में कहा गया है कि एक स्थिर पदार्थ में प्रत्येक परमाणु का चार्ज शून्य के करीब होता है। इसे 1948 में [[लिनस पॉलिंग]] द्वारा तैयार किया गया था और बाद में संशोधित किया गया था।<ref name = "Pauling Nature Chemical bond">The Nature of the Chemical bond, L. Pauling, 1960, 3d edition, pp. 172-173, 270, 273, 547 Cornell University Press, {{ISBN|0-8014-0333-2}}</ref> इस सिद्धांत का उपयोग यह भविष्यवाणी करने के लिए किया गया है कि आणविक [[अनुनाद (रसायन विज्ञान)]] संरचनाओं का कौन सा सेट सबसे महत्वपूर्ण होगा, [[समन्वय परिसर]] की स्थिरता की व्याख्या करने के लिए और पीआई बांड के अस्तित्व की व्याख्या करने के लिए। , फास्फोरस या सल्फर ऑक्सीजन से बंधे; यह अभी भी समन्वय परिसरों के संदर्भ में लागू है।<ref>{{Housecroft2nd}}</ref><ref>R.H. Crabtree, The Organometallic Chemistry of the Transition Metals, 6th edition, John Wiley & Sons, (e-book), {{ISBN|9781118788240}}</ref> हालांकि, आधुनिक कम्प्यूटेशनल तकनीकों से संकेत मिलता है कि कई स्थिर यौगिकों में सिद्धांत की भविष्यवाणी की तुलना में अधिक चार्ज वितरण होता है (उनमें अधिक आयनिक चरित्र वाले बांड होते हैं)।<ref>{{cite book |last=Kaupp |first=Martin |editor1-last=Frenking |editor1-first=Gernot|editor2-last=Shaik |editor2-first=Sason|title=The Chemical Bond: Chemical Bonding Across the Periodic Table |publisher=Wiley -VCH |date=January 1, 2001 |pages=15–16 |chapter=Chapter 1: Chemical bonding of main group elements |isbn=978-3-527-33315-8}}</ref>
इलेक्ट्रोन्यूट्रलिटी के पॉलिंग के सिद्धांत में कहा गया है कि एक स्थिर पदार्थ में प्रत्येक परमाणु का आवेश शून्य के बराबर होता है। इसे 1948 में [[लिनस पॉलिंग]] द्वारा तैयार किया गया था और बाद में इसे संशोधित किया गया था।<ref name = "Pauling Nature Chemical bond">The Nature of the Chemical bond, L. Pauling, 1960, 3d edition, pp. 172-173, 270, 273, 547 Cornell University Press, {{ISBN|0-8014-0333-2}}</ref> इस सिद्धांत का उपयोग यह भविष्यवाणी करने के लिए किया गया है कि आणविक [[अनुनाद (रसायन विज्ञान)]] संरचनाओं का कौन सा सेट सबसे महत्वपूर्ण होगा, उपसहसंयोजक यौगिकों [[समन्वय परिसर|(समन्वय परिसर)]] की स्थिरता की व्याख्या करने के लिए और पाई बंध के अस्तित्व की व्याख्या करने के लिए आणविक [[अनुनाद (रसायन विज्ञान)]] संरचनाओं का कौन सा सेट सबसे महत्वपूर्ण होगा। फास्फोरस या सल्फर ऑक्सीजन से बंधे; यह अभी भी समन्वय परिसरों के संदर्भ में लागू है।<ref>{{Housecroft2nd}}</ref><ref>R.H. Crabtree, The Organometallic Chemistry of the Transition Metals, 6th edition, John Wiley & Sons, (e-book), {{ISBN|9781118788240}}</ref> हालांकि, आधुनिक कम्प्यूटेशनल तकनीकों से संकेत मिलता है कि कई स्थायी यौगिकों में सिद्धांत की भविष्यवाणी की तुलना में अधिक आवेश वितरण होता है (उनमें अधिक आयनिक गुण वाले बंध होते हैं)।<ref>{{cite book |last=Kaupp |first=Martin |editor1-last=Frenking |editor1-first=Gernot|editor2-last=Shaik |editor2-first=Sason|title=The Chemical Bond: Chemical Bonding Across the Periodic Table |publisher=Wiley -VCH |date=January 1, 2001 |pages=15–16 |chapter=Chapter 1: Chemical bonding of main group elements |isbn=978-3-527-33315-8}}</ref> हालांकि, आधुनिक कम्प्यूटेशनल तकनीकों से संकेत मिलता है कि कई स्थायी  यौगिकों में सिद्धांत की भविष्यवाणी की तुलना में अधिक आवेश वितरण होता है (उनमें अधिक आयनिक गुण वाले बंध होते हैं)। [4]




Line 8: Line 8:
: "... पदार्थों की इलेक्ट्रॉनिक संरचना ऐसी है कि प्रत्येक परमाणु के परिणामस्वरूप अनिवार्य रूप से शून्य परिणामी विद्युत आवेश होता है, लेवे की मात्रा लगभग +/- ½ से अधिक नहीं होती है, और ये परिणामी आवेश मुख्य रूप से सबसे अधिक इलेक्ट्रोपोसिटिव द्वारा धारण किए जाते हैं और इलेक्ट्रोनगेटिव परमाणु और इस तरह से वितरित किए जाते हैं जैसे कि इलेक्ट्रोस्टैटिक स्थिरता के अनुरूप।<ref name="Pauling1948">{{cite journal|last1=Pauling|first1=Linus|title=वैधता का आधुनिक सिद्धांत|journal=Journal of the Chemical Society (Resumed)|year=1948|volume=17 |pages=1461–1467|issn=0368-1769|doi=10.1039/jr9480001461|pmid=18893624|url=https://resolver.caltech.edu/CaltechAUTHORS:20150817-163856002 }}</ref> थोड़ा संशोधित संस्करण 1970 में प्रकाशित हुआ था:
: "... पदार्थों की इलेक्ट्रॉनिक संरचना ऐसी है कि प्रत्येक परमाणु के परिणामस्वरूप अनिवार्य रूप से शून्य परिणामी विद्युत आवेश होता है, लेवे की मात्रा लगभग +/- ½ से अधिक नहीं होती है, और ये परिणामी आवेश मुख्य रूप से सबसे अधिक इलेक्ट्रोपोसिटिव द्वारा धारण किए जाते हैं और इलेक्ट्रोनगेटिव परमाणु और इस तरह से वितरित किए जाते हैं जैसे कि इलेक्ट्रोस्टैटिक स्थिरता के अनुरूप।<ref name="Pauling1948">{{cite journal|last1=Pauling|first1=Linus|title=वैधता का आधुनिक सिद्धांत|journal=Journal of the Chemical Society (Resumed)|year=1948|volume=17 |pages=1461–1467|issn=0368-1769|doi=10.1039/jr9480001461|pmid=18893624|url=https://resolver.caltech.edu/CaltechAUTHORS:20150817-163856002 }}</ref> थोड़ा संशोधित संस्करण 1970 में प्रकाशित हुआ था:
: “स्थिर अणुओं और क्रिस्टल में इलेक्ट्रॉनिक संरचनाएं होती हैं जैसे कि प्रत्येक परमाणु का विद्युत आवेश शून्य के करीब होता है। शून्य के करीब का मतलब -1 और +1 के बीच है।<ref name = "Pauling GENCHEM">General Chemistry, Linus Pauling, 1988 p 192, Dover (reprint of 3d edition orig. pub. W.H. Freeman 1970), {{ISBN|0-486-65622-5}}</ref>
: “स्थिर अणुओं और क्रिस्टल में इलेक्ट्रॉनिक संरचनाएं होती हैं जैसे कि प्रत्येक परमाणु का विद्युत आवेश शून्य के करीब होता है। शून्य के करीब का मतलब -1 और +1 के बीच है।<ref name = "Pauling GENCHEM">General Chemistry, Linus Pauling, 1988 p 192, Dover (reprint of 3d edition orig. pub. W.H. Freeman 1970), {{ISBN|0-486-65622-5}}</ref>
पॉलिंग ने 1948 में अपने लिवरसिज व्याख्यान में कहा कि वह आयनिक बंधन के विचार से सिद्धांत के लिए नेतृत्व किया गया था। गैस चरण में, आणविक सीज़ियम फ्लोराइड में एक ध्रुवीय सहसंयोजक बंधन होता है। इलेक्ट्रोनगेटिविटी में बड़ा अंतर 9% की गणना सहसंयोजक चरित्र देता है। क्रिस्टल में (CsF में दोनों आयनों के 6-समन्वय के साथ NaCl संरचना है) यदि प्रत्येक बंधन में 9% सहसंयोजक चरित्र है तो Cs और F की कुल सहसंयोजकता 54% होगी। यह छह स्थितियों के बीच प्रतिध्वनित लगभग 50% सहसंयोजक चरित्र के एक बंधन द्वारा दर्शाया जाएगा और समग्र प्रभाव Cs पर चार्ज को लगभग + 0.5 और फ्लोराइड को -0.5 तक कम करना होगा। उसे यह उचित प्रतीत हुआ कि चूँकि CsF आयनिक यौगिकों में सबसे अधिक आयनिक यौगिक है, यदि सभी पदार्थों में नहीं तो अधिकांश में छोटे आवेश वाले परमाणु भी होंगे।<ref name="Pauling1948"/>
पॉलिंग ने 1948 में अपने लिवरसिज व्याख्यान में कहा कि वह आयनिक बंधन के विचार से सिद्धांत के लिए नेतृत्व किया गया था। गैस चरण में, आणविक सीज़ियम फ्लोराइड में एक ध्रुवीय सहसंयोजक बंधन होता है। इलेक्ट्रोनगेटिविटी में बड़ा अंतर 9% की गणना सहसंयोजक चरित्र देता है। क्रिस्टल में (CsF में दोनों आयनों के 6-समन्वय के साथ NaCl संरचना है) यदि प्रत्येक बंधन में 9% सहसंयोजक चरित्र है तो Cs और F की कुल सहसंयोजकता 54% होगी। यह छह स्थितियों के बीच प्रतिध्वनित लगभग 50% सहसंयोजक चरित्र के एक बंधन द्वारा दर्शाया जाएगा और समग्र प्रभाव Cs पर आवेश को लगभग + 0.5 और फ्लोराइड को -0.5 तक कम करना होगा। उसे यह उचित प्रतीत हुआ कि चूँकि CsF आयनिक यौगिकों में सबसे अधिक आयनिक यौगिक है, यदि सभी पदार्थों में नहीं तो अधिकांश में छोटे आवेश वाले परमाणु भी होंगे।<ref name="Pauling1948"/>




Line 23: Line 23:


=== परिसरों की स्थिरता ===
=== परिसरों की स्थिरता ===
हेक्सामाइन कोबाल्ट (III) कॉम्प्लेक्स [Co(NH<sub>3</sub>)<sub>6</sub>]<sup>3+</sup> का पूरा चार्ज सेंट्रल Co परमाणु पर होगा अगर अमोनिया के अणुओं के साथ बॉन्डिंग इलेक्ट्रोस्टैटिक थी। दूसरी ओर, एक सहसंयोजक लिंकेज धातु पर -3 का चार्ज और अमोनिया अणुओं में प्रत्येक नाइट्रोजन परमाणु पर +1 का कारण बनता है। इलेक्ट्रोन्यूट्रैलिटी सिद्धांत का उपयोग करते हुए यह धारणा बनाई जाती है कि Co-N बॉन्ड में 50% आयनिक वर्ण होगा, जिसके परिणामस्वरूप कोबाल्ट परमाणु पर शून्य चार्ज होगा। इलेक्ट्रोनगेटिविटी में अंतर के कारण एन-एच बांड 17% आयनिक वर्ण होगा और इसलिए 18 हाइड्रोजन परमाणुओं में से प्रत्येक पर 0.166 का चार्ज होगा। यह अनिवार्य रूप से 3+ आवेश को जटिल आयन की सतह पर समान रूप से फैलाता है।<ref name = "Pauling Nature Chemical bond"/>
हेक्सामाइन कोबाल्ट (III) कॉम्प्लेक्स [Co(NH<sub>3</sub>)<sub>6</sub>]<sup>3+</sup> का पूरा आवेश सेंट्रल Co परमाणु पर होगा अगर अमोनिया के अणुओं के साथ बॉन्डिंग इलेक्ट्रोस्टैटिक थी। दूसरी ओर, एक सहसंयोजक लिंकेज धातु पर -3 का आवेश और अमोनिया अणुओं में प्रत्येक नाइट्रोजन परमाणु पर +1 का कारण बनता है। इलेक्ट्रोन्यूट्रैलिटी सिद्धांत का उपयोग करते हुए यह धारणा बनाई जाती है कि Co-N बॉन्ड में 50% आयनिक वर्ण होगा, जिसके परिणामस्वरूप कोबाल्ट परमाणु पर शून्य आवेश होगा। इलेक्ट्रोनगेटिविटी में अंतर के कारण एन-एच बांड 17% आयनिक वर्ण होगा और इसलिए 18 हाइड्रोजन परमाणुओं में से प्रत्येक पर 0.166 का आवेश होगा। यह अनिवार्य रूप से 3+ आवेश को जटिल आयन की सतह पर समान रूप से फैलाता है।<ref name = "Pauling Nature Chemical bond"/>




===π-सी, पी, और एस === के ऑक्सो यौगिकों में बंधन
===π-सी, पी, और एस === के ऑक्सो यौगिकों में बंधन
पॉलिंग ने 1952 के एक पेपर में इलेक्ट्रोन्यूट्रलिटी के सिद्धांत को यह सुझाव देने के लिए लागू किया कि पाई बॉन्डिंग मौजूद है, उदाहरण के लिए, 4 Si-O बांड वाले अणुओं में।<ref name="Pauling1952">{{cite journal|last1=Pauling|first1=Linus|title=ऑक्सीजन एसिड और संबंधित पदार्थों में इंटरटॉमिक डिस्टेंस और बॉन्ड कैरेक्टर|journal=The Journal of Physical Chemistry|volume=56|issue=3|year=1952|pages=361–365|issn=0022-3654|doi=10.1021/j150495a016}}</ref> ऐसे अणुओं में ऑक्सीजन परमाणु सिलिकॉन परमाणु के साथ ध्रुवीय सहसंयोजक बंधन बनाते हैं क्योंकि उनकी इलेक्ट्रोनगेटिविटी (इलेक्ट्रॉन वापस लेने की शक्ति) सिलिकॉन की तुलना में अधिक थी। पॉलिंग ने वैद्युतीयऋणात्मकता में अंतर के कारण सिलिकॉन परमाणु पर निर्मित आवेश की गणना +2 की। इलेक्ट्रोन्यूट्रलिटी सिद्धांत ने पॉलिंग को इस निष्कर्ष पर पहुँचाया कि O से Si तक चार्ज ट्रांसफर d-ऑर्बिटल्स का उपयोग करके एक π-बॉन्ड बनाते हुए होना चाहिए और उन्होंने गणना की कि यह π-बॉन्डिंग Si-O बॉन्ड को छोटा करने के लिए जिम्मेदार है।
पॉलिंग ने 1952 के एक पेपर में इलेक्ट्रोन्यूट्रलिटी के सिद्धांत को यह सुझाव देने के लिए लागू किया कि पाई बॉन्डिंग मौजूद है, उदाहरण के लिए, 4 Si-O बांड वाले अणुओं में।<ref name="Pauling1952">{{cite journal|last1=Pauling|first1=Linus|title=ऑक्सीजन एसिड और संबंधित पदार्थों में इंटरटॉमिक डिस्टेंस और बॉन्ड कैरेक्टर|journal=The Journal of Physical Chemistry|volume=56|issue=3|year=1952|pages=361–365|issn=0022-3654|doi=10.1021/j150495a016}}</ref> ऐसे अणुओं में ऑक्सीजन परमाणु सिलिकॉन परमाणु के साथ ध्रुवीय सहसंयोजक बंधन बनाते हैं क्योंकि उनकी इलेक्ट्रोनगेटिविटी (इलेक्ट्रॉन वापस लेने की शक्ति) सिलिकॉन की तुलना में अधिक थी। पॉलिंग ने वैद्युतीयऋणात्मकता में अंतर के कारण सिलिकॉन परमाणु पर निर्मित आवेश की गणना +2 की। इलेक्ट्रोन्यूट्रलिटी सिद्धांत ने पॉलिंग को इस निष्कर्ष पर पहुँचाया कि O से Si तक आवेश ट्रांसफर d-ऑर्बिटल्स का उपयोग करके एक π-बॉन्ड बनाते हुए होना चाहिए और उन्होंने गणना की कि यह π-बॉन्डिंग Si-O बॉन्ड को छोटा करने के लिए जिम्मेदार है।


== सन्निकट आवेश नियम ==
== सन्निकट आवेश नियम ==
अनुनाद संरचना एक महत्वपूर्ण योगदान देगी या नहीं यह निर्धारित करने के लिए आसन्न चार्ज नियम पॉलिंग का एक और सिद्धांत था।<ref name = "Pauling Nature Chemical bond"/>पहली बार 1932 में प्रकाशित, इसने कहा कि संरचनाएं जो आसन्न परमाणुओं पर समान चिह्न के आरोप लगाती हैं, प्रतिकूल होंगी।<ref>L Pauling, The Electronic Structure of the Normal Nitrous Oxide Molecule, Proceedings of the National Academy of Sciences, 1932, 18, 498</ref><ref name="PaulingBrockway1937">{{cite journal|last1=Pauling|first1=Linus|last2=Brockway|first2=L. O.|title=आसन्न आवेश नियम और मिथाइल एज़ाइड, मिथाइल नाइट्रेट और फ्लोरीन नाइट्रेट की संरचना|journal=Journal of the American Chemical Society|volume=59|issue=1|year=1937|pages=13–20|issn=0002-7863|doi=10.1021/ja01280a005}}</ref>
अनुनाद संरचना एक महत्वपूर्ण योगदान देगी या नहीं यह निर्धारित करने के लिए आसन्न आवेश नियम पॉलिंग का एक और सिद्धांत था।<ref name = "Pauling Nature Chemical bond"/>पहली बार 1932 में प्रकाशित, इसने कहा कि संरचनाएं जो आसन्न परमाणुओं पर समान चिह्न के आरोप लगाती हैं, प्रतिकूल होंगी।<ref>L Pauling, The Electronic Structure of the Normal Nitrous Oxide Molecule, Proceedings of the National Academy of Sciences, 1932, 18, 498</ref><ref name="PaulingBrockway1937">{{cite journal|last1=Pauling|first1=Linus|last2=Brockway|first2=L. O.|title=आसन्न आवेश नियम और मिथाइल एज़ाइड, मिथाइल नाइट्रेट और फ्लोरीन नाइट्रेट की संरचना|journal=Journal of the American Chemical Society|volume=59|issue=1|year=1937|pages=13–20|issn=0002-7863|doi=10.1021/ja01280a005}}</ref>





Revision as of 08:35, 10 April 2023

इलेक्ट्रोन्यूट्रलिटी के पॉलिंग के सिद्धांत में कहा गया है कि एक स्थिर पदार्थ में प्रत्येक परमाणु का आवेश शून्य के बराबर होता है। इसे 1948 में लिनस पॉलिंग द्वारा तैयार किया गया था और बाद में इसे संशोधित किया गया था।[1] इस सिद्धांत का उपयोग यह भविष्यवाणी करने के लिए किया गया है कि आणविक अनुनाद (रसायन विज्ञान) संरचनाओं का कौन सा सेट सबसे महत्वपूर्ण होगा, उपसहसंयोजक यौगिकों (समन्वय परिसर) की स्थिरता की व्याख्या करने के लिए और पाई बंध के अस्तित्व की व्याख्या करने के लिए आणविक अनुनाद (रसायन विज्ञान) संरचनाओं का कौन सा सेट सबसे महत्वपूर्ण होगा। फास्फोरस या सल्फर ऑक्सीजन से बंधे; यह अभी भी समन्वय परिसरों के संदर्भ में लागू है।[2][3] हालांकि, आधुनिक कम्प्यूटेशनल तकनीकों से संकेत मिलता है कि कई स्थायी यौगिकों में सिद्धांत की भविष्यवाणी की तुलना में अधिक आवेश वितरण होता है (उनमें अधिक आयनिक गुण वाले बंध होते हैं)।[4] हालांकि, आधुनिक कम्प्यूटेशनल तकनीकों से संकेत मिलता है कि कई स्थायी  यौगिकों में सिद्धांत की भविष्यवाणी की तुलना में अधिक आवेश वितरण होता है (उनमें अधिक आयनिक गुण वाले बंध होते हैं)। [4]


इतिहास

पॉलिंग ने पहली बार अपने 1948 के लिवरिज पुरस्कार (एक व्यापक श्रेणी के पेपर में जिसमें अणुओं में ऑक्सीकरण अवस्थाओं की गणना पर उनके विचार भी शामिल थे) में परमाणुओं की आवश्यक विद्युतीयता के बारे में अपनी धारणा व्यक्त की:

"... पदार्थों की इलेक्ट्रॉनिक संरचना ऐसी है कि प्रत्येक परमाणु के परिणामस्वरूप अनिवार्य रूप से शून्य परिणामी विद्युत आवेश होता है, लेवे की मात्रा लगभग +/- ½ से अधिक नहीं होती है, और ये परिणामी आवेश मुख्य रूप से सबसे अधिक इलेक्ट्रोपोसिटिव द्वारा धारण किए जाते हैं और इलेक्ट्रोनगेटिव परमाणु और इस तरह से वितरित किए जाते हैं जैसे कि इलेक्ट्रोस्टैटिक स्थिरता के अनुरूप।[5] थोड़ा संशोधित संस्करण 1970 में प्रकाशित हुआ था:
“स्थिर अणुओं और क्रिस्टल में इलेक्ट्रॉनिक संरचनाएं होती हैं जैसे कि प्रत्येक परमाणु का विद्युत आवेश शून्य के करीब होता है। शून्य के करीब का मतलब -1 और +1 के बीच है।[6]

पॉलिंग ने 1948 में अपने लिवरसिज व्याख्यान में कहा कि वह आयनिक बंधन के विचार से सिद्धांत के लिए नेतृत्व किया गया था। गैस चरण में, आणविक सीज़ियम फ्लोराइड में एक ध्रुवीय सहसंयोजक बंधन होता है। इलेक्ट्रोनगेटिविटी में बड़ा अंतर 9% की गणना सहसंयोजक चरित्र देता है। क्रिस्टल में (CsF में दोनों आयनों के 6-समन्वय के साथ NaCl संरचना है) यदि प्रत्येक बंधन में 9% सहसंयोजक चरित्र है तो Cs और F की कुल सहसंयोजकता 54% होगी। यह छह स्थितियों के बीच प्रतिध्वनित लगभग 50% सहसंयोजक चरित्र के एक बंधन द्वारा दर्शाया जाएगा और समग्र प्रभाव Cs पर आवेश को लगभग + 0.5 और फ्लोराइड को -0.5 तक कम करना होगा। उसे यह उचित प्रतीत हुआ कि चूँकि CsF आयनिक यौगिकों में सबसे अधिक आयनिक यौगिक है, यदि सभी पदार्थों में नहीं तो अधिकांश में छोटे आवेश वाले परमाणु भी होंगे।[5]


सिद्धांत के अनुप्रयोग

हाइड्रोजन साइनाइड द्वारा अपनाई गई संरचना की व्याख्या

हाइड्रोजन साइनाइड, एचसीएन और सीएनएच के लिए दो संभावित संरचनाएं हैं, केवल हाइड्रोजन परमाणु की स्थिति के अनुसार भिन्न हैं। नाइट्रोजन, CNH से जुड़ी हाइड्रोजन के साथ संरचना, कार्बन पर -1 और नाइट्रोजन पर +1 के औपचारिक शुल्क की ओर ले जाती है, जिसकी आंशिक रूप से नाइट्रोजन की इलेक्ट्रोनगेटिविटी द्वारा भरपाई की जाएगी और पॉलिंग ने एच, एन और सी पर शुद्ध शुल्क की गणना की - 0.79, +0.75 और +0.04 क्रमशः। इसके विपरीत कार्बन से बंधी हाइड्रोजन वाली संरचना, एचसीएन में कार्बन और नाइट्रोजन पर 0 का औपचारिक शुल्क होता है, और नाइट्रोजन की वैद्युतीयऋणात्मकता का प्रभाव एच, सी और एन +0.04, +0.17 और -0.21 पर शुल्क बनाता है।[6]ट्रिपल बंधुआ संरचना इसलिए इष्ट है।

अनुनाद संरचनाओं (कैनोनिकल्स) का सापेक्ष योगदान

एक उदाहरण के रूप में साइनेट आयन (OCN) को तीन अनुनाद (रसायन विज्ञान) संरचनाएं सौंपी जा सकती हैं:-

<रसायन शीर्षक = सायनेट अनुनाद संरचनाएं

आरेख में सबसे दाहिनी संरचना में नाइट्रोजन परमाणु पर -2 का आवेश है। इलेक्ट्रोन्यूट्रलिटी के सिद्धांत को लागू करते हुए इसे केवल एक मामूली योगदानकर्ता के रूप में पहचाना जा सकता है। इसके अतिरिक्त चूंकि सबसे अधिक विद्युतीय परमाणु को ऋणात्मक आवेश वहन करना चाहिए, तो बाईं ओर ट्रिपल बंधुआ संरचना का प्रमुख योगदानकर्ता होने की भविष्यवाणी की जाती है।[7]


परिसरों की स्थिरता

हेक्सामाइन कोबाल्ट (III) कॉम्प्लेक्स [Co(NH3)6]3+ का पूरा आवेश सेंट्रल Co परमाणु पर होगा अगर अमोनिया के अणुओं के साथ बॉन्डिंग इलेक्ट्रोस्टैटिक थी। दूसरी ओर, एक सहसंयोजक लिंकेज धातु पर -3 का आवेश और अमोनिया अणुओं में प्रत्येक नाइट्रोजन परमाणु पर +1 का कारण बनता है। इलेक्ट्रोन्यूट्रैलिटी सिद्धांत का उपयोग करते हुए यह धारणा बनाई जाती है कि Co-N बॉन्ड में 50% आयनिक वर्ण होगा, जिसके परिणामस्वरूप कोबाल्ट परमाणु पर शून्य आवेश होगा। इलेक्ट्रोनगेटिविटी में अंतर के कारण एन-एच बांड 17% आयनिक वर्ण होगा और इसलिए 18 हाइड्रोजन परमाणुओं में से प्रत्येक पर 0.166 का आवेश होगा। यह अनिवार्य रूप से 3+ आवेश को जटिल आयन की सतह पर समान रूप से फैलाता है।[1]


===π-सी, पी, और एस === के ऑक्सो यौगिकों में बंधन पॉलिंग ने 1952 के एक पेपर में इलेक्ट्रोन्यूट्रलिटी के सिद्धांत को यह सुझाव देने के लिए लागू किया कि पाई बॉन्डिंग मौजूद है, उदाहरण के लिए, 4 Si-O बांड वाले अणुओं में।[8] ऐसे अणुओं में ऑक्सीजन परमाणु सिलिकॉन परमाणु के साथ ध्रुवीय सहसंयोजक बंधन बनाते हैं क्योंकि उनकी इलेक्ट्रोनगेटिविटी (इलेक्ट्रॉन वापस लेने की शक्ति) सिलिकॉन की तुलना में अधिक थी। पॉलिंग ने वैद्युतीयऋणात्मकता में अंतर के कारण सिलिकॉन परमाणु पर निर्मित आवेश की गणना +2 की। इलेक्ट्रोन्यूट्रलिटी सिद्धांत ने पॉलिंग को इस निष्कर्ष पर पहुँचाया कि O से Si तक आवेश ट्रांसफर d-ऑर्बिटल्स का उपयोग करके एक π-बॉन्ड बनाते हुए होना चाहिए और उन्होंने गणना की कि यह π-बॉन्डिंग Si-O बॉन्ड को छोटा करने के लिए जिम्मेदार है।

सन्निकट आवेश नियम

अनुनाद संरचना एक महत्वपूर्ण योगदान देगी या नहीं यह निर्धारित करने के लिए आसन्न आवेश नियम पॉलिंग का एक और सिद्धांत था।[1]पहली बार 1932 में प्रकाशित, इसने कहा कि संरचनाएं जो आसन्न परमाणुओं पर समान चिह्न के आरोप लगाती हैं, प्रतिकूल होंगी।[9][10]


संदर्भ

  1. 1.0 1.1 1.2 The Nature of the Chemical bond, L. Pauling, 1960, 3d edition, pp. 172-173, 270, 273, 547 Cornell University Press, ISBN 0-8014-0333-2
  2. Housecroft, C. E.; Sharpe, A. G. (2004). Inorganic Chemistry (2nd ed.). Prentice Hall. ISBN 978-0-13-039913-7.
  3. R.H. Crabtree, The Organometallic Chemistry of the Transition Metals, 6th edition, John Wiley & Sons, (e-book), ISBN 9781118788240
  4. Kaupp, Martin (January 1, 2001). "Chapter 1: Chemical bonding of main group elements". In Frenking, Gernot; Shaik, Sason (eds.). The Chemical Bond: Chemical Bonding Across the Periodic Table. Wiley -VCH. pp. 15–16. ISBN 978-3-527-33315-8.
  5. 5.0 5.1 Pauling, Linus (1948). "वैधता का आधुनिक सिद्धांत". Journal of the Chemical Society (Resumed). 17: 1461–1467. doi:10.1039/jr9480001461. ISSN 0368-1769. PMID 18893624.
  6. 6.0 6.1 General Chemistry, Linus Pauling, 1988 p 192, Dover (reprint of 3d edition orig. pub. W.H. Freeman 1970), ISBN 0-486-65622-5
  7. John Kotz, Paul Treichel, John Townsend, David Treichel, 7th Edition, 2009, Chemistry & Chemical Reactivity , pp. 378-379, Thomson Brooks/Cole, ISBN 978-0495387039
  8. Pauling, Linus (1952). "ऑक्सीजन एसिड और संबंधित पदार्थों में इंटरटॉमिक डिस्टेंस और बॉन्ड कैरेक्टर". The Journal of Physical Chemistry. 56 (3): 361–365. doi:10.1021/j150495a016. ISSN 0022-3654.
  9. L Pauling, The Electronic Structure of the Normal Nitrous Oxide Molecule, Proceedings of the National Academy of Sciences, 1932, 18, 498
  10. Pauling, Linus; Brockway, L. O. (1937). "आसन्न आवेश नियम और मिथाइल एज़ाइड, मिथाइल नाइट्रेट और फ्लोरीन नाइट्रेट की संरचना". Journal of the American Chemical Society. 59 (1): 13–20. doi:10.1021/ja01280a005. ISSN 0002-7863.