यूक्लिडियन क्षेत्र: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 40: | Line 40: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 19/04/2023]] | [[Category:Created On 19/04/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 10:49, 27 April 2023
यह लेख क्रमित क्षेत्रों के बारे में है। बीजगणितीय संख्या क्षेत्रों के लिए जिनके पूर्णांकों की वलय में यूक्लिडियन एल्गोरिदम है, मानक-यूक्लिडियन क्षेत्र देखें। सांख्यिकीय यांत्रिकी में मॉडल के वर्ग के लिए, यूक्लिडियन क्षेत्र सिद्धांत देखें।
गणित में, यूक्लिडियन क्षेत्र एक क्रमित क्षेत्र K है जिसके लिए प्रत्येक गैर-ऋणात्मक तत्व एक वर्ग है जो कि K में x ≥ 0 है, जिसका तात्पर्य है कि K में कुछ y के लिए x = y2 है।
रचनात्मक संख्याएं एक यूक्लिडियन क्षेत्र बनाती हैं। यह सबसे छोटा यूक्लिडियन क्षेत्र है, क्योंकि प्रत्येक यूक्लिडियन क्षेत्र में यह एक क्रमित उपक्षेत्र के रूप में होता है। दूसरे शब्दों में, रचनात्मक संख्याएँ परिमेय संख्याओं के यूक्लिडियन संवरण का निर्माण करती हैं।
गुण
- प्रत्येक यूक्लिडियन क्षेत्र एक क्रमित पायथागॉरियन क्षेत्र है, लेकिन व्युत्क्रम सत्य नहीं है।[1]
- यदि E/F एक सीमित क्षेत्र विस्तार है, और E यूक्लिडियन है, तो F भी यूक्लिडियन है। यह ''गोइंग-डाउन प्रमेय'' डिलर-ड्रेस प्रमेय का परिणाम है।[2]
उदाहरण
- वास्तविक रचनात्मक संख्याएं, वे (हस्ताक्षरित) लंबाई जो रेखक (रूलर) और दिकसूचक निर्माणों द्वारा एक परिमेय खंड से निर्मित की जा सकती हैं, एक यूक्लिडियन क्षेत्र बनाती हैं।[3]
प्रत्येक वास्तविक संवृत्त क्षेत्र एक यूक्लिडियन क्षेत्र होता है। निम्नलिखित उदाहरण भी वास्तविक बंद क्षेत्र हैं।
- वास्तविक संख्याएँ सामान्य संक्रियाओं और क्रम के साथ एक यूक्लिडियन क्षेत्र बनाती हैं।
- वास्तविक बीजगणितीय संख्याओं का क्षेत्र एक यूक्लिडियन क्षेत्र है।
- अतिवास्तविक संख्या का क्षेत्र एक यूक्लिडियन क्षेत्र है।
प्रति उदाहरण
- परिमेय संख्याएँ सामान्य संक्रियाओं और क्रम के साथ एक यूक्लिडियन क्षेत्र नहीं बनता है। उदाहरण के लिए, में 2 वर्ग नहीं है क्योंकि 2 का वर्गमूल अपरिमेय है।[4] ऊपर दिए गए परिणाम के अनुसार, कोई भी बीजगणितीय संख्या क्षेत्र यूक्लिडियन नहीं हो सकता है।[2]
- सम्मिश्र संख्याएँ एक यूक्लिडियन क्षेत्र नहीं बनाते हैं क्योंकि उन्हें एक क्रमित क्षेत्र की संरचना नहीं दी जा सकती है।
यूक्लिडियन संवरण
क्रमित क्षेत्र K का यूक्लिडियन संवरण K के द्विघात संवरण में K का विस्तार है जो K के विस्तारित क्रम के साथ एक क्रमित क्षेत्र होने के संबंध में अधिकतम है।[5] यह K के बीजगणितीय संवरण का सबसे छोटा उपक्षेत्र भी है जो एक यूक्लिडियन क्षेत्र है और K का एक क्रमित विस्तार है।
संदर्भ
- Efrat, Ido (2006). Valuations, orderings, and Milnor K-theory. Mathematical Surveys and Monographs. Vol. 124. Providence, RI: American Mathematical Society. ISBN 0-8218-4041-X. Zbl 1103.12002.
- Lam, Tsit-Yuen (2005). Introduction to Quadratic Forms over Fields. Graduate Studies in Mathematics. Vol. 67. American Mathematical Society. ISBN 0-8218-1095-2. MR 2104929. Zbl 1068.11023.
- Martin, George E. (1998). Geometric Constructions. Undergraduate Texts in Mathematics. Springer-Verlag. ISBN 0-387-98276-0. Zbl 0890.51015.