जाली स्थिरांक: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Physical dimensions of unit cells in a crystal}} Image:UnitCell.png|right|thumb|upright=1.3|α, β, γ द्वारा दी गई भुजाओ...")
 
No edit summary
Line 1: Line 1:
{{short description|Physical dimensions of unit cells in a crystal}}
{{short description|Physical dimensions of unit cells in a crystal}}
[[Image:UnitCell.png|right|thumb|upright=1.3|α, β, γ द्वारा दी गई भुजाओं के बीच लंबाई a, b, c और कोणों के साथ समानांतर चतुर्भुज का उपयोग करते हुए यूनिट सेल परिभाषा<ref>{{cite web|url=http://www.ccdc.cam.ac.uk/support/documentation/mercury_csd/portable/mercury_portable-4-70.html|title=Unit cell definition using parallelepiped with lengths ''a'', ''b'', ''c'' and angles between the sides given by ''α'', ''β'', ''γ''|archive-url=https://web.archive.org/web/20081004101125/http://www.ccdc.cam.ac.uk/support/documentation/mercury_csd/portable/mercury_portable-4-70.html |archive-date=4 October 2008}}</ref>]]एक जाली स्थिर या जाली पैरा[[मीटर]] भौतिक आयामों और कोणों में से एक है जो [[क्रिस्टल लैटिस]] में इकाई कोशिकाओं की ज्यामिति निर्धारित करता है, और क्रिस्टल में परमाणुओं के बीच की दूरी के समानुपाती होता है। एक साधारण क्यूबिक क्रिस्टल में केवल एक जाली स्थिरांक होता है, परमाणुओं के बीच की दूरी, लेकिन सामान्य रूप से तीन आयामों में जाली में छह जाली स्थिरांक होते हैं: तीन की लंबाई ''a'', ''b'', और ''c'' सेल किनारे एक शीर्ष पर मिलते हैं, और कोण ''α'', ''β'', और ''γ'' उन किनारों के बीच होते हैं।
[[Image:UnitCell.png|right|thumb|upright=1.3|α, β, γ द्वारा दी गई भुजाओं के बीच लंबाई a, b, c और कोणों के साथ समानांतर चतुर्भुज का उपयोग करते हुए यूनिट सेल परिभाषा<ref>{{cite web|url=http://www.ccdc.cam.ac.uk/support/documentation/mercury_csd/portable/mercury_portable-4-70.html|title=Unit cell definition using parallelepiped with lengths ''a'', ''b'', ''c'' and angles between the sides given by ''α'', ''β'', ''γ''|archive-url=https://web.archive.org/web/20081004101125/http://www.ccdc.cam.ac.uk/support/documentation/mercury_csd/portable/mercury_portable-4-70.html |archive-date=4 October 2008}}</ref>]]एक जालक स्थिरांकया जालक पैरा[[मीटर]] भौतिक आयामों और कोणों में से एक है जो [[Index.php?title=क्रिस्टल जालक|क्रिस्टल जालक]] में इकाई कोशिकाओं की ज्यामिति निर्धारित करता है, और क्रिस्टल में परमाणुओं के बीच की दूरी के समानुपाती होता है। एक साधारण क्यूबिक क्रिस्टल में केवल एक जालक स्थिरांक होता है, परमाणुओं के बीच की दूरी, लेकिन सामान्य रूप से तीन आयामों में जालक में छह जालक स्थिरांक होते हैं: तीन की लंबाई ''a'', ''b'', और ''c'' सेल किनारे एक शीर्ष पर मिलते हैं, और कोण ''α'', ''β'', और ''γ'' उन किनारों के बीच होते हैं।


क्रिस्टल जाली पैरामीटर ''ए'', ''बी'', और ''सी'' की लंबाई का आयाम है। तीन संख्याएं [[यूनिट सेल]] के आकार का प्रतिनिधित्व करती हैं, अर्थात, किसी दिए गए परमाणु से एक समान परमाणु की दूरी एक ही स्थिति में और एक पड़ोसी सेल में अभिविन्यास (बहुत सरल क्रिस्टल संरचनाओं को छोड़कर, यह जरूरी नहीं कि डिसेन्सेंस हो) निकटतम पड़ोसी)। उनकी एसआई इकाई मीटर है, और वे परंपरागत रूप से [[एंगस्ट्रॉम]] (ए) में निर्दिष्ट हैं; एक एंग्स्ट्रॉम 0.1 [[नैनोमीटर]] (एनएम), या 100 पीकोमेट्रेस (अपराह्न) है। विशिष्ट मान कुछ एंगस्ट्रॉम से शुरू होते हैं। कोण ''α'', ''β'', और ''γ'' आमतौर पर [[डिग्री (कोण)]] में निर्दिष्ट होते हैं।
क्रिस्टल जालक पैरामीटर ''ए'', ''बी'', और ''सी'' की लंबाई का आयाम है। तीन संख्याएं [[यूनिट सेल]] के आकार का प्रतिनिधित्व करती हैं, अर्थात, किसी दिए गए परमाणु से एक समान परमाणु की दूरी एक ही स्थिति में और एक पड़ोसी सेल में अभिविन्यास (बहुत सरल क्रिस्टल संरचनाओं को छोड़कर, यह जरूरी नहीं कि डिसेन्सेंस हो) निकटतम पड़ोसी)। उनकी एसआई इकाई मीटर है, और वे परंपरागत रूप से [[एंगस्ट्रॉम]] (ए) में निर्दिष्ट हैं; एक एंग्स्ट्रॉम 0.1 [[नैनोमीटर]] (एनएम), या 100 पीकोमेट्रेस (अपराह्न) है। विशिष्ट मान कुछ एंगस्ट्रॉम से शुरू होते हैं। कोण ''α'', ''β'', और ''γ'' आमतौर पर [[डिग्री (कोण)]] में निर्दिष्ट होते हैं।


== परिचय ==
== परिचय ==
ठोस अवस्था में एक [[रासायनिक पदार्थ]] [[क्रिस्टल]] का निर्माण कर सकता है जिसमें परमाणुओं, [[अणु]]ओं या [[आयन]]ों को संभव [[ क्रिस्टल प्रणाली ]] (जाली प्रकार) की एक छोटी परिमित संख्या में से एक के अनुसार अंतरिक्ष में व्यवस्थित किया जाता है, प्रत्येक जाली मापदंडों के काफी अच्छी तरह से परिभाषित सेट के साथ होता है। पदार्थ के लक्षण हैं। ये पैरामीटर आमतौर पर [[तापमान]], [[दबाव]] (या, अधिक सामान्यतः, क्रिस्टल के भीतर [[तनाव (यांत्रिकी)]] की स्थानीय स्थिति) पर निर्भर करते हैं।<ref name=colm2019>Francisco Colmenero (2019): "Negative area compressibility in oxalic acid dihydrate". ''Materials Letters'', volume 245, pages 25-28. {{doi|10.1016/j.matlet.2019.02.077}}</ref> [[विद्युत क्षेत्र]] और [[चुंबकीय क्षेत्र]], और इसकी [[आइसोटोप]] संरचना।<ref name=tell1971>Roland Tellgren and Ivar Olovsson (1971): "Hydrogen Bond Studies. XXXXVI. The Crystal Structures of Normal and Deuterated Sodium Hydrogen Oxalate Monohydrate NaHC2O4·H2O and NaDC2O4·D2O". ''Journal of Chemical Physics'', volume 54, issue 1. {{doi|10.1063/1.1674582}}</ref> जाली आमतौर पर अशुद्धियों, [[क्रिस्टल दोष]]ों और क्रिस्टल की सतह के पास विकृत होती है। मैनुअल में उद्धृत पैरामीटर मूल्यों को उन पर्यावरण चरों को निर्दिष्ट करना चाहिए, और आमतौर पर माप त्रुटियों से प्रभावित औसत होते हैं।
ठोस अवस्था में एक [[रासायनिक पदार्थ]] [[क्रिस्टल]] का निर्माण कर सकता है जिसमें परमाणुओं, [[अणु]]ओं या [[आयन]]ों को संभव [[ क्रिस्टल प्रणाली ]] (जालक प्रकार) की एक छोटी परिमित संख्या में से एक के अनुसार अंतरिक्ष में व्यवस्थित किया जाता है, प्रत्येक जालक मापदंडों के काफी अच्छी तरह से परिभाषित सेट के साथ होता है। पदार्थ के लक्षण हैं। ये पैरामीटर आमतौर पर [[तापमान]], [[दबाव]] (या, अधिक सामान्यतः, क्रिस्टल के भीतर [[तनाव (यांत्रिकी)]] की स्थानीय स्थिति) पर निर्भर करते हैं।<ref name="colm2019">Francisco Colmenero (2019): "Negative area compressibility in oxalic acid dihydrate". ''Materials Letters'', volume 245, pages 25-28. {{doi|10.1016/j.matlet.2019.02.077}}</ref> [[विद्युत क्षेत्र]] और [[चुंबकीय क्षेत्र]], और इसकी [[आइसोटोप]] संरचना।<ref name="tell1971">Roland Tellgren and Ivar Olovsson (1971): "Hydrogen Bond Studies. XXXXVI. The Crystal Structures of Normal and Deuterated Sodium Hydrogen Oxalate Monohydrate NaHC2O4·H2O and NaDC2O4·D2O". ''Journal of Chemical Physics'', volume 54, issue 1. {{doi|10.1063/1.1674582}}</ref> जालक आमतौर पर अशुद्धियों, [[क्रिस्टल दोष]]ों और क्रिस्टल की सतह के पास विकृत होती है। मैनुअल में उद्धृत पैरामीटर मूल्यों को उन पर्यावरण चरों को निर्दिष्ट करना चाहिए, और आमतौर पर माप त्रुटियों से प्रभावित औसत होते हैं।


क्रिस्टल प्रणाली के आधार पर, कुछ या सभी लंबाई समान हो सकती हैं, और कुछ कोणों के निश्चित मान हो सकते हैं। उन प्रणालियों में, केवल छह मापदंडों में से कुछ को निर्दिष्ट करने की आवश्यकता होती है। उदाहरण के लिए, [[ घन क्रिस्टल प्रणाली ]] में, सभी लंबाई बराबर होती है और सभी कोण 90° होते हैं, इसलिए केवल लंबाई दी जानी चाहिए। यह मामला हीरे का है, जिसमें है {{nowrap|1=''a'' = 3.57 [[angstrom|Å]] = 357 [[picometre|pm]]}} 300 [[केल्विन]] पर। इसी तरह, [[हेक्सागोनल क्रिस्टल प्रणाली]] में, a और b स्थिरांक बराबर होते हैं, और कोण 60°, 90°, और 90° होते हैं, इसलिए ज्यामिति केवल a और c स्थिरांक द्वारा निर्धारित की जाती है।
क्रिस्टल प्रणाली के आधार पर, कुछ या सभी लंबाई समान हो सकती हैं, और कुछ कोणों के निश्चित मान हो सकते हैं। उन प्रणालियों में, केवल छह मापदंडों में से कुछ को निर्दिष्ट करने की आवश्यकता होती है। उदाहरण के लिए, [[ घन क्रिस्टल प्रणाली ]] में, सभी लंबाई बराबर होती है और सभी कोण 90° होते हैं, इसलिए केवल लंबाई दी जानी चाहिए। यह मामला हीरे का है, जिसमें है {{nowrap|1=''a'' = 3.57 [[angstrom|Å]] = 357 [[picometre|pm]]}} 300 [[केल्विन]] पर। इसी तरह, [[हेक्सागोनल क्रिस्टल प्रणाली]] में, a और b स्थिरांक बराबर होते हैं, और कोण 60°, 90°, और 90° होते हैं, इसलिए ज्यामिति केवल a और c स्थिरांक द्वारा निर्धारित की जाती है।


एक क्रिस्टलीय पदार्थ के जाली पैरामीटर एक्स-रे विवर्तन या [[परमाणु बल माइक्रोस्कोप]] जैसी तकनीकों का उपयोग करके निर्धारित किए जा सकते हैं। उनका उपयोग नैनोमीटर रेंज के प्राकृतिक लंबाई मानक के रूप में किया जा सकता है।<ref name="automatic1998">{{cite journal|author=R. V. Lapshin|year=1998|title=टनलिंग माइक्रोस्कोप स्कैनर का स्वचालित पार्श्व अंशांकन|journal=Review of Scientific Instruments|volume=69|issue=9|pages=3268–3276|publisher=AIP|location=USA|issn=0034-6748|doi=10.1063/1.1149091|url=http://www.lapshin.fast-page.org/publications/R.%20V.%20Lapshin,%20Automatic%20lateral%20calibration%20of%20tunneling%20microscope%20scanners.pdf|bibcode=1998RScI...69.3268L}}</ref><ref name="real2019">{{cite journal|author=R. V. Lapshin|year=2019|title=Drift-insensitive distributed calibration of probe microscope scanner in nanometer range: Real mode|journal=Applied Surface Science|volume=470|pages=1122–1129|publisher=Elsevier B. V.|location=Netherlands|issn=0169-4332|doi=10.1016/j.apsusc.2018.10.149|arxiv=1501.06679|bibcode=2019ApSS..470.1122L}}</ref> विभिन्न संरचना के एक सब्सट्रेट पर एक क्रिस्टल परत के [[epitaxy]] में, तनाव और क्रिस्टल दोषों को कम करने के लिए जाली पैरामीटर का मिलान किया जाना चाहिए।
एक क्रिस्टलीय पदार्थ के जालक पैरामीटर एक्स-रे विवर्तन या [[परमाणु बल माइक्रोस्कोप]] जैसी तकनीकों का उपयोग करके निर्धारित किए जा सकते हैं। उनका उपयोग नैनोमीटर रेंज के प्राकृतिक लंबाई मानक के रूप में किया जा सकता है।<ref name="automatic1998">{{cite journal|author=R. V. Lapshin|year=1998|title=टनलिंग माइक्रोस्कोप स्कैनर का स्वचालित पार्श्व अंशांकन|journal=Review of Scientific Instruments|volume=69|issue=9|pages=3268–3276|publisher=AIP|location=USA|issn=0034-6748|doi=10.1063/1.1149091|url=http://www.lapshin.fast-page.org/publications/R.%20V.%20Lapshin,%20Automatic%20lateral%20calibration%20of%20tunneling%20microscope%20scanners.pdf|bibcode=1998RScI...69.3268L}}</ref><ref name="real2019">{{cite journal|author=R. V. Lapshin|year=2019|title=Drift-insensitive distributed calibration of probe microscope scanner in nanometer range: Real mode|journal=Applied Surface Science|volume=470|pages=1122–1129|publisher=Elsevier B. V.|location=Netherlands|issn=0169-4332|doi=10.1016/j.apsusc.2018.10.149|arxiv=1501.06679|bibcode=2019ApSS..470.1122L}}</ref> विभिन्न संरचना के एक सब्सट्रेट पर एक क्रिस्टल परत के [[epitaxy]] में, तनाव और क्रिस्टल दोषों को कम करने के लिए जालक पैरामीटर का मिलान किया जाना चाहिए।


== वॉल्यूम ==
== वॉल्यूम ==
यूनिट सेल की मात्रा की गणना जाली निरंतर लंबाई और कोणों से की जा सकती है। यदि यूनिट सेल साइड्स को वैक्टर के रूप में दर्शाया जाता है, तो वॉल्यूम ट्रिपल उत्पाद # वैक्टर का स्केलर ट्रिपल उत्पाद है। वॉल्यूम को अक्षर V द्वारा दर्शाया गया है। सामान्य इकाई सेल के लिए
यूनिट सेल की मात्रा की गणना जालक निरंतर लंबाई और कोणों से की जा सकती है। यदि यूनिट सेल साइड्स को वैक्टर के रूप में दर्शाया जाता है, तो वॉल्यूम ट्रिपल उत्पाद # वैक्टर का स्केलर ट्रिपल उत्पाद है। वॉल्यूम को अक्षर V द्वारा दर्शाया गया है। सामान्य इकाई सेल के लिए
:<math>V = a b c \sqrt{1+2\cos\alpha\cos\beta\cos\gamma - \cos^2\alpha - \cos^2\beta - \cos^2\gamma}.</math>
:<math>V = a b c \sqrt{1+2\cos\alpha\cos\beta\cos\gamma - \cos^2\alpha - \cos^2\beta - \cos^2\gamma}.</math>
साथ मोनोक्लिनिक लैटिस के लिए {{nowrap|1=''α'' = 90°}}, {{nowrap|1=''γ'' = 90°}}, यह करने के लिए सरल करता है
साथ मोनोक्लिनिक लैटिस के लिए {{nowrap|1=''α'' = 90°}}, {{nowrap|1=''γ'' = 90°}}, यह करने के लिए सरल करता है
Line 20: Line 20:




== जाली मिलान ==
== जालक मिलान ==


दो अलग-अलग अर्धचालक सामग्रियों के बीच जाली संरचनाओं का मिलान क्रिस्टल संरचना में बदलाव के बिना सामग्री में [[ऊर्जा अंतराल]] परिवर्तन के क्षेत्र को बनाने की अनुमति देता है। यह उन्नत [[प्रकाश उत्सर्जक डायोड]] और [[डायोड लेजर]] के निर्माण की अनुमति देता है।
दो अलग-अलग अर्धचालक सामग्रियों के बीच जालक संरचनाओं का मिलान क्रिस्टल संरचना में बदलाव के बिना सामग्री में [[ऊर्जा अंतराल]] परिवर्तन के क्षेत्र को बनाने की अनुमति देता है। यह उन्नत [[प्रकाश उत्सर्जक डायोड]] और [[डायोड लेजर]] के निर्माण की अनुमति देता है।


उदाहरण के लिए, [[गैलियम आर्सेनाइड]], [[एल्यूमीनियम गैलियम आर्सेनाइड]], और [[एल्यूमीनियम आर्सेनाइड]] में लगभग समान जाली स्थिरांक होते हैं, जिससे एक दूसरे पर लगभग मनमाने ढंग से मोटी परतें विकसित करना संभव हो जाता है।
उदाहरण के लिए, [[गैलियम आर्सेनाइड]], [[एल्यूमीनियम गैलियम आर्सेनाइड]], और [[एल्यूमीनियम आर्सेनाइड]] में लगभग समान जालक स्थिरांक होते हैं, जिससे एक दूसरे पर लगभग मनमाने ढंग से मोटी परतें विकसित करना संभव हो जाता है।


== जाली ग्रेडिंग ==
== जालक ग्रेडिंग ==
आमतौर पर, पिछली फिल्म या सब्सट्रेट पर उगाई जाने वाली विभिन्न सामग्रियों की फिल्मों को फिल्म के तनाव को कम करने के लिए पूर्व परत के जाली स्थिरांक से मिलान करने के लिए चुना जाता है।
आमतौर पर, पिछली फिल्म या सब्सट्रेट पर उगाई जाने वाली विभिन्न सामग्रियों की फिल्मों को फिल्म के तनाव को कम करने के लिए पूर्व परत के जालक स्थिरांक से मिलान करने के लिए चुना जाता है।


फिल्म के विकास के दौरान मिश्र धातु अनुपात के नियंत्रित परिवर्तन द्वारा जाली स्थिरांक को एक मान से दूसरे मान तक ग्रेड करना एक वैकल्पिक तरीका है। ग्रेडिंग परत की शुरुआत में अंतर्निहित जाली से मेल खाने का अनुपात होगा और परत के विकास के अंत में मिश्र धातु निम्नलिखित परत जमा करने के लिए वांछित अंतिम जाली से मेल खाएगी।
फिल्म के विकास के दौरान मिश्र धातु अनुपात के नियंत्रित परिवर्तन द्वारा जालक स्थिरांक को एक मान से दूसरे मान तक ग्रेड करना एक वैकल्पिक तरीका है। ग्रेडिंग परत की शुरुआत में अंतर्निहित जालक से मेल खाने का अनुपात होगा और परत के विकास के अंत में मिश्र धातु निम्नलिखित परत जमा करने के लिए वांछित अंतिम जालक से मेल खाएगी।


मिश्र धातु में परिवर्तन की दर परत तनाव के दंड को तौलकर निर्धारित की जानी चाहिए, और इसलिए एपिटाक्सी उपकरण में समय की लागत के खिलाफ घनत्व घनत्व।
मिश्र धातु में परिवर्तन की दर परत तनाव के दंड को तौलकर निर्धारित की जानी चाहिए, और इसलिए एपिटाक्सी उपकरण में समय की लागत के खिलाफ घनत्व घनत्व।
Line 35: Line 35:
उदाहरण के लिए, 1.9 eV से ऊपर बैंड गैप वाली [[ इंडियम गैलियम फास्फाइड ]] की परतों को इंडेक्स ग्रेडिंग के साथ गैलियम आर्सेनाइड [[ वेफर (अर्धचालक) ]] पर उगाया जा सकता है।
उदाहरण के लिए, 1.9 eV से ऊपर बैंड गैप वाली [[ इंडियम गैलियम फास्फाइड ]] की परतों को इंडेक्स ग्रेडिंग के साथ गैलियम आर्सेनाइड [[ वेफर (अर्धचालक) ]] पर उगाया जा सकता है।


== जाली स्थिरांक की सूची ==
== जालक स्थिरांक की सूची ==
{| class="wikitable"
{| class="wikitable"
|+Lattice constants for various materials at 300&nbsp;K
|+Lattice constants for various materials at 300&nbsp;K

Revision as of 17:02, 14 April 2023

α, β, γ द्वारा दी गई भुजाओं के बीच लंबाई a, b, c और कोणों के साथ समानांतर चतुर्भुज का उपयोग करते हुए यूनिट सेल परिभाषा[1]

एक जालक स्थिरांकया जालक पैरामीटर भौतिक आयामों और कोणों में से एक है जो क्रिस्टल जालक में इकाई कोशिकाओं की ज्यामिति निर्धारित करता है, और क्रिस्टल में परमाणुओं के बीच की दूरी के समानुपाती होता है। एक साधारण क्यूबिक क्रिस्टल में केवल एक जालक स्थिरांक होता है, परमाणुओं के बीच की दूरी, लेकिन सामान्य रूप से तीन आयामों में जालक में छह जालक स्थिरांक होते हैं: तीन की लंबाई a, b, और c सेल किनारे एक शीर्ष पर मिलते हैं, और कोण α, β, और γ उन किनारों के बीच होते हैं।

क्रिस्टल जालक पैरामीटर , बी, और सी की लंबाई का आयाम है। तीन संख्याएं यूनिट सेल के आकार का प्रतिनिधित्व करती हैं, अर्थात, किसी दिए गए परमाणु से एक समान परमाणु की दूरी एक ही स्थिति में और एक पड़ोसी सेल में अभिविन्यास (बहुत सरल क्रिस्टल संरचनाओं को छोड़कर, यह जरूरी नहीं कि डिसेन्सेंस हो) निकटतम पड़ोसी)। उनकी एसआई इकाई मीटर है, और वे परंपरागत रूप से एंगस्ट्रॉम (ए) में निर्दिष्ट हैं; एक एंग्स्ट्रॉम 0.1 नैनोमीटर (एनएम), या 100 पीकोमेट्रेस (अपराह्न) है। विशिष्ट मान कुछ एंगस्ट्रॉम से शुरू होते हैं। कोण α, β, और γ आमतौर पर डिग्री (कोण) में निर्दिष्ट होते हैं।

परिचय

ठोस अवस्था में एक रासायनिक पदार्थ क्रिस्टल का निर्माण कर सकता है जिसमें परमाणुओं, अणुओं या आयनों को संभव क्रिस्टल प्रणाली (जालक प्रकार) की एक छोटी परिमित संख्या में से एक के अनुसार अंतरिक्ष में व्यवस्थित किया जाता है, प्रत्येक जालक मापदंडों के काफी अच्छी तरह से परिभाषित सेट के साथ होता है। पदार्थ के लक्षण हैं। ये पैरामीटर आमतौर पर तापमान, दबाव (या, अधिक सामान्यतः, क्रिस्टल के भीतर तनाव (यांत्रिकी) की स्थानीय स्थिति) पर निर्भर करते हैं।[2] विद्युत क्षेत्र और चुंबकीय क्षेत्र, और इसकी आइसोटोप संरचना।[3] जालक आमतौर पर अशुद्धियों, क्रिस्टल दोषों और क्रिस्टल की सतह के पास विकृत होती है। मैनुअल में उद्धृत पैरामीटर मूल्यों को उन पर्यावरण चरों को निर्दिष्ट करना चाहिए, और आमतौर पर माप त्रुटियों से प्रभावित औसत होते हैं।

क्रिस्टल प्रणाली के आधार पर, कुछ या सभी लंबाई समान हो सकती हैं, और कुछ कोणों के निश्चित मान हो सकते हैं। उन प्रणालियों में, केवल छह मापदंडों में से कुछ को निर्दिष्ट करने की आवश्यकता होती है। उदाहरण के लिए, घन क्रिस्टल प्रणाली में, सभी लंबाई बराबर होती है और सभी कोण 90° होते हैं, इसलिए केवल लंबाई दी जानी चाहिए। यह मामला हीरे का है, जिसमें है a = 3.57 Å = 357 pm 300 केल्विन पर। इसी तरह, हेक्सागोनल क्रिस्टल प्रणाली में, a और b स्थिरांक बराबर होते हैं, और कोण 60°, 90°, और 90° होते हैं, इसलिए ज्यामिति केवल a और c स्थिरांक द्वारा निर्धारित की जाती है।

एक क्रिस्टलीय पदार्थ के जालक पैरामीटर एक्स-रे विवर्तन या परमाणु बल माइक्रोस्कोप जैसी तकनीकों का उपयोग करके निर्धारित किए जा सकते हैं। उनका उपयोग नैनोमीटर रेंज के प्राकृतिक लंबाई मानक के रूप में किया जा सकता है।[4][5] विभिन्न संरचना के एक सब्सट्रेट पर एक क्रिस्टल परत के epitaxy में, तनाव और क्रिस्टल दोषों को कम करने के लिए जालक पैरामीटर का मिलान किया जाना चाहिए।

वॉल्यूम

यूनिट सेल की मात्रा की गणना जालक निरंतर लंबाई और कोणों से की जा सकती है। यदि यूनिट सेल साइड्स को वैक्टर के रूप में दर्शाया जाता है, तो वॉल्यूम ट्रिपल उत्पाद # वैक्टर का स्केलर ट्रिपल उत्पाद है। वॉल्यूम को अक्षर V द्वारा दर्शाया गया है। सामान्य इकाई सेल के लिए

साथ मोनोक्लिनिक लैटिस के लिए α = 90°, γ = 90°, यह करने के लिए सरल करता है

ऑर्थोरोम्बिक, टेट्रागोनल और क्यूबिक लैटिस के साथ β = 90° फिर भी[6]


जालक मिलान

दो अलग-अलग अर्धचालक सामग्रियों के बीच जालक संरचनाओं का मिलान क्रिस्टल संरचना में बदलाव के बिना सामग्री में ऊर्जा अंतराल परिवर्तन के क्षेत्र को बनाने की अनुमति देता है। यह उन्नत प्रकाश उत्सर्जक डायोड और डायोड लेजर के निर्माण की अनुमति देता है।

उदाहरण के लिए, गैलियम आर्सेनाइड, एल्यूमीनियम गैलियम आर्सेनाइड, और एल्यूमीनियम आर्सेनाइड में लगभग समान जालक स्थिरांक होते हैं, जिससे एक दूसरे पर लगभग मनमाने ढंग से मोटी परतें विकसित करना संभव हो जाता है।

जालक ग्रेडिंग

आमतौर पर, पिछली फिल्म या सब्सट्रेट पर उगाई जाने वाली विभिन्न सामग्रियों की फिल्मों को फिल्म के तनाव को कम करने के लिए पूर्व परत के जालक स्थिरांक से मिलान करने के लिए चुना जाता है।

फिल्म के विकास के दौरान मिश्र धातु अनुपात के नियंत्रित परिवर्तन द्वारा जालक स्थिरांक को एक मान से दूसरे मान तक ग्रेड करना एक वैकल्पिक तरीका है। ग्रेडिंग परत की शुरुआत में अंतर्निहित जालक से मेल खाने का अनुपात होगा और परत के विकास के अंत में मिश्र धातु निम्नलिखित परत जमा करने के लिए वांछित अंतिम जालक से मेल खाएगी।

मिश्र धातु में परिवर्तन की दर परत तनाव के दंड को तौलकर निर्धारित की जानी चाहिए, और इसलिए एपिटाक्सी उपकरण में समय की लागत के खिलाफ घनत्व घनत्व।

उदाहरण के लिए, 1.9 eV से ऊपर बैंड गैप वाली इंडियम गैलियम फास्फाइड की परतों को इंडेक्स ग्रेडिंग के साथ गैलियम आर्सेनाइड वेफर (अर्धचालक) पर उगाया जा सकता है।

जालक स्थिरांक की सूची

Lattice constants for various materials at 300 K
Material Lattice constant (Å) Crystal structure Ref.
C (diamond) 3.567 Diamond (FCC) [7]
C (graphite) a = 2.461
c = 6.708
Hexagonal
Si 5.431020511 Diamond (FCC) [8][9]
Ge 5.658 Diamond (FCC) [8]
AlAs 5.6605 Zinc blende (FCC) [8]
AlP 5.4510 Zinc blende (FCC) [8]
AlSb 6.1355 Zinc blende (FCC) [8]
GaP 5.4505 Zinc blende (FCC) [8]
GaAs 5.653 Zinc blende (FCC) [8]
GaSb 6.0959 Zinc blende (FCC) [8]
InP 5.869 Zinc blende (FCC) [8]
InAs 6.0583 Zinc blende (FCC) [8]
InSb 6.479 Zinc blende (FCC) [8]
MgO 4.212 Halite (FCC) [10]
SiC a = 3.086
c = 10.053
Wurtzite [8]
CdS 5.8320 Zinc blende (FCC) [7]
CdSe 6.050 Zinc blende (FCC) [7]
CdTe 6.482 Zinc blende (FCC) [7]
ZnO a = 3.25
c = 5.2
Wurtzite (HCP) [11]
ZnO 4.580 Halite (FCC) [7]
ZnS 5.420 Zinc blende (FCC) [7]
PbS 5.9362 Halite (FCC) [7]
PbTe 6.4620 Halite (FCC) [7]
BN 3.6150 Zinc blende (FCC) [7]
BP 4.5380 Zinc blende (FCC) [7]
CdS a = 4.160
c = 6.756
Wurtzite [7]
ZnS a = 3.82
c = 6.26
Wurtzite [7]
AlN a = 3.112
c = 4.982
Wurtzite [8]
GaN a = 3.189
c = 5.185
Wurtzite [8]
InN a = 3.533
c = 5.693
Wurtzite [8]
LiF 4.03 Halite
LiCl 5.14 Halite
LiBr 5.50 Halite
LiI 6.01 Halite
NaF 4.63 Halite
NaCl 5.64 Halite
NaBr 5.97 Halite
NaI 6.47 Halite
KF 5.34 Halite
KCl 6.29 Halite
KBr 6.60 Halite
KI 7.07 Halite
RbF 5.65 Halite
RbCl 6.59 Halite
RbBr 6.89 Halite
RbI 7.35 Halite
CsF 6.02 Halite
CsCl 4.123 Caesium chloride
CsI 4.567 Caesium chloride
Al 4.046 FCC [12]
Fe 2.856 BCC [12]
Ni 3.499 FCC [12]
Cu 3.597 FCC [12]
Mo 3.142 BCC [12]
Pd 3.859 FCC [12]
Ag 4.079 FCC [12]
W 3.155 BCC [12]
Pt 3.912 FCC [12]
Au 4.065 FCC [12]
Pb 4.920 FCC [12]
V 3.0399 BCC
Nb 3.3008 BCC
Ta 3.3058 BCC
TiN 4.249 Halite
ZrN 4.577 Halite
HfN 4.392 Halite
VN 4.136 Halite
CrN 4.149 Halite
NbN 4.392 Halite
TiC 4.328 Halite [13]
ZrC0.97 4.698 Halite [13]
HfC0.99 4.640 Halite [13]
VC0.97 4.166 Halite [13]
NC0.99 4.470 Halite [13]
TaC0.99 4.456 Halite [13]
Cr3C2 a = 11.47
b = 5.545
c = 2.830
Orthorhombic [13]
WC a = 2.906
c = 2.837
Hexagonal [13]
ScN 4.52 Halite [14]
LiNbO3 a = 5.1483
c = 13.8631
Hexagonal [15]
KTaO3 3.9885 Cubic perovskite [15]
BaTiO3 a = 3.994
c = 4.034
Tetragonal perovskite [15]
SrTiO3 3.98805 Cubic perovskite [15]
CaTiO3 a = 5.381
b = 5.443
c = 7.645
Orthorhombic perovskite [15]
PbTiO3 a = 3.904
c = 4.152
Tetragonal perovskite [15]
EuTiO3 7.810 Cubic perovskite [15]
SrVO3 3.838 Cubic perovskite [15]
CaVO3 3.767 Cubic perovskite [15]
BaMnO3 a = 5.673
c = 4.71
Hexagonal [15]
CaMnO3 a = 5.27
b = 5.275
c = 7.464
Orthorhombic perovskite [15]
SrRuO3 a = 5.53
b = 5.57
c = 7.85
Orthorhombic perovskite [15]
YAlO3 a = 5.179
b = 5.329
c = 7.37
Orthorhombic perovskite [15]


संदर्भ

  1. "Unit cell definition using parallelepiped with lengths a, b, c and angles between the sides given by α, β, γ". Archived from the original on 4 October 2008.
  2. Francisco Colmenero (2019): "Negative area compressibility in oxalic acid dihydrate". Materials Letters, volume 245, pages 25-28. doi:10.1016/j.matlet.2019.02.077
  3. Roland Tellgren and Ivar Olovsson (1971): "Hydrogen Bond Studies. XXXXVI. The Crystal Structures of Normal and Deuterated Sodium Hydrogen Oxalate Monohydrate NaHC2O4·H2O and NaDC2O4·D2O". Journal of Chemical Physics, volume 54, issue 1. doi:10.1063/1.1674582
  4. R. V. Lapshin (1998). "टनलिंग माइक्रोस्कोप स्कैनर का स्वचालित पार्श्व अंशांकन" (PDF). Review of Scientific Instruments. USA: AIP. 69 (9): 3268–3276. Bibcode:1998RScI...69.3268L. doi:10.1063/1.1149091. ISSN 0034-6748.
  5. R. V. Lapshin (2019). "Drift-insensitive distributed calibration of probe microscope scanner in nanometer range: Real mode". Applied Surface Science. Netherlands: Elsevier B. V. 470: 1122–1129. arXiv:1501.06679. Bibcode:2019ApSS..470.1122L. doi:10.1016/j.apsusc.2018.10.149. ISSN 0169-4332.
  6. Dept. of Crystallography & Struc. Biol. CSIC (4 June 2015). "4. Direct and reciprocal lattices". Retrieved 9 June 2015.
  7. 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 "Lattice Constants". Argon National Labs (Advanced Photon Source). Retrieved 19 October 2014.
  8. 8.00 8.01 8.02 8.03 8.04 8.05 8.06 8.07 8.08 8.09 8.10 8.11 8.12 8.13 8.14 "Semiconductor NSM". Retrieved 19 October 2014.
  9. "Fundamental physical constants". physics.nist.gov. NIST. Retrieved 17 January 2020.
  10. "Substrates". Spi Supplies. Retrieved 17 May 2017.
  11. Hadis Morkoç and Ümit Özgur (2009). Zinc Oxide: Fundamentals, Materials and Device Technology. Weinheim: WILEY-VCH Verlag GmbH & Co.
  12. 12.00 12.01 12.02 12.03 12.04 12.05 12.06 12.07 12.08 12.09 12.10 Davey, Wheeler (1925). "Precision Measurements of the Lattice Constants of Twelve Common Metals". Physical Review. 25 (6): 753–761. Bibcode:1925PhRv...25..753D. doi:10.1103/PhysRev.25.753.
  13. 13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7 Toth, L.E. (1967). Transition Metal Carbides and Nitrides. New York: Academic Press.
  14. Saha, B. (2010). "Electronic structure, phonons, and thermal properties of ScN, ZrN, and HfN: A first-principles study" (PDF). Journal of Applied Physics. 107 (3): 033715–033715–8. Bibcode:2010JAP...107c3715S. doi:10.1063/1.3291117.
  15. 15.00 15.01 15.02 15.03 15.04 15.05 15.06 15.07 15.08 15.09 15.10 15.11 15.12 Goodenough, J. B.; Longo, M. "3.1.7 Data: Crystallographic properties of compounds with perovskite or perovskite-related structure, Table 2 Part 1". SpringerMaterials - The Landolt-Börnstein Database.


बाहरी संबंध