कोणबिंदु फलन: Difference between revisions

From Vigyanwiki

Revision as of 12:10, 29 April 2023

परिमाण विद्युत् गतिकी में, कोणबिंदु फलन क्षोभ सिद्धांत (परिमाण यांत्रिकी) के अग्रणी क्रम के अतिरिक्त एक फोटॉन और एक इलेक्ट्रॉन (अतिसूक्ष्म परमाणु) के बीच युग्मन का वर्णन करता है। विशेष रूप से, यह एक कण अलघुकरणीय सहसंबंध फलन है जिसमें फर्मियन , एंटीफर्मियन , और सदिश क्षमता A सम्मिलित है।

परिभाषा

कोणबिंदु फलन प्रभावी क्रिया Seff के एक कार्यात्मक व्युत्पन्न के रूप में निम्न परिभाषित किया जा सकता है

कोणबिंदु फलन के लिए एक-विपाश सुधार। यह इलेक्ट्रॉन के विषम चुंबकीय क्षण में प्रमुख योगदान है।

प्रमुख (और पारम्परिक) योगदान गामा आव्यूह है, जो पत्र के चुनाव की व्याख्या करता है। कोणबिंदु फलन परिमाण विद्युत् गतिकी की समरूपता से बाधित है - लोरेंट्ज़ अपरिवर्तनीयता; माप अपरिवर्तनीयता या फोटॉन का फोटॉन ध्रुवीकरण, जैसा कि प्रतिपाल्य अस्मिता द्वारा व्यक्त किया गया है; और समता (भौतिकी) के तहत निश्चरता - निम्नलिखित रूप लेने के लिए:

जहाँ , बाहरी फोटॉन (चित्र के दाईं ओर) का आने वाला चार-संवेग है, और F1(q2) और F2(q2) आकृति गुणक (परिमाण क्षेत्र सिद्धांत) हैं जो केवल संवेग अंतरण q2

निर्भर करते हैं। वृक्ष स्तर (या अग्रणी क्रम) पर, F1(q2) = 1 और होता है। अग्रणी क्रम से अतिरिक्त, F1(0) में सुधार क्षेत्र शक्ति पुनर्सामान्यीकरण द्वारा निरस्त कर दिया गया है। आकृति गुणक F2(0) लैंडे जी-कारक के रूप में परिभाषित फ़र्मियन के विषम चुंबकीय क्षण से मेल खाता है:


संदर्भ

  • Gross, F. (1993). सापेक्षवादी क्वांटम यांत्रिकी और क्षेत्र सिद्धांत (1st ed.). Wiley-VCH. ISBN 978-0471591139.
  • पेस्किन, माइकल ई.; श्रोएडर, डेनियल वी. (1995). क्वांटम फील्ड थ्योरी का परिचय. अध्ययन: एडिसन-वेस्ले. ISBN 0-201-50397-2. {{cite book}}: Invalid |url-access=पंजीकरण (help)
  • वेनबर्ग, S. (2002), मूलाधार, फ़ील्ड्स का क्वांटम सिद्धांत, vol. I, कैम्ब्रिज यूनिवर्सिटी प्रेस, ISBN 0-521-55001-7 {{citation}}: Invalid |url-access=पंजीकरण (help)


बाहरी संबंध