विचलन फलन: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (8 revisions imported from alpha:विचलन_फलन) |
(No difference)
|
Revision as of 12:10, 29 April 2023
ऊष्मप्रवैगिकी में, विचलन फलन को किसी भी उष्मागतिकीय गुण के लिए आदर्श गैस के लिए गणना की गई गुण और प्रजातियों की गुण के बीच अंतर के रूप में परिभाषित किया जाता है क्योंकि यह एक निर्दिष्ट तापमान T और दबाव P के लिए वास्तविक संसार में उपस्थित है। सामान्य विचलन फलनों में तापीय धारिता , एन्ट्रापी और आंतरिक ऊर्जा सम्मिलित हैं।
विचलन फलनों का उपयोग वास्तविक द्रव व्यापक गुणों (अर्थात गुण जो दो स्थितिों के बीच अंतर के रूप में गणना किए जाते हैं) की गणना करने के लिए किया जाता है। एक विचलन फलन वास्तविक स्थिति के बीच, परिमित मात्रा या गैर-शून्य दबाव और तापमान पर, और सामान्यतः शून्य दबाव या अनंत मात्रा और तापमान पर आदर्श स्थिति के बीच अंतर देता है।
उदाहरण के लिए, दो बिंदुओं h(v1,T1) और h(v2,T2) के बीच तापीय धारिता परिवर्तन का मूल्यांकन करने के लिए और हम पहले T = T1 पर आयतन v1 और अनंत आयतन के बीच तापीय धारिता विचलन फलन की गणना करते हैं, फिर उसमें T1 से T2 तापमान परिवर्तन के कारण आदर्श गैस एन्थैल्पी परिवर्तन जोड़ते हैं, फिर उसमें v2 और अनंत आयतन के बीच विचलन फलन मान घटाते हैं। .
विचलन फलनों की गणना एक ऐसे फलन को एकीकृत करके की जाती है जो स्थिति के समीकरण और उसके व्युत्पन्न पर निर्भर करता है।
सामान्य भाव
एन्थैल्पी H, एंट्रॉपी S और गिब्स मुक्त ऊर्जा G के लिए सामान्य अभिव्यक्ति द्वारा दिया जाता है[1]
स्थिति के पेंग-रॉबिन्सन समीकरण के लिए विचलन फलन
स्थिति का पेंग-रॉबिन्सन समीकरण तीन अन्योन्याश्रित स्थिति गुण दबाव P, तापमान T, और मोल आयतन Vm से संबंधित है। स्थिति गुणों से (P, Vm, T), कोई थैलेपी प्रति मोल (निरूपित H) और एंट्रॉपी प्रति मोल (S) के लिए विचलन फलन की गणना कर सकता है:[2]
जहाँ को स्थिति, के पेंग-रॉबिन्सन समीकरण में परिभाषित किया गया है, Trकम तापमान है, Prकम दबाव है, Z संपीड्यता कारक है, और
सामान्यतः, तीन में से दो स्थिति गुणों (P, Vm, T) को जानता है, और तीसरे को सीधे विचाराधीन राज्य के समीकरण से गणना करनी चाहिए। तीसरी स्थिति के गुण की गणना करने के लिए, प्रजातियों के लिए महत्वपूर्ण तापमान Tc, महत्वपूर्ण दबाव Pc, और एसेंट्रिक कारक ω के लिए तीन स्थिरांक जानना आवश्यक है। किन्तु एक बार जब ये स्थिरांक ज्ञात हो जाते हैं, तो उपरोक्त सभी भावों का मूल्यांकन करना संभव है और इस प्रकार एन्थैल्पी और एन्ट्रॉपी विचलन का निर्धारण किया जा सकता है।
संदर्भ