रम्ब रेखा: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Arc crossing all meridians of longitude at the same angle}}
{{short description|Arc crossing all meridians of longitude at the same angle}}
{{Distinguish|रूम्ब संजाल}}
{{Distinguish|रूम्ब संजाल}}
{{for multi|चित्र संग्रह|रूम्ब रेखा|पट्ट खेल|रूम्ब लाइन (पट्ट खेल)}}
{{for multi|चित्र संग्रह|रूम्ब रेखा|बोर्डगेम|रूम्ब रेखा (बोर्डगेम)}}
{{More citations needed|date=अगस्त 2017}}
{{More citations needed|date=अगस्त 2017}}
{{Use dmy dates|date=October 2019}}
{{Use dmy dates|date=October 2019}}
[[File:Loxodrome.png|thumb|right|220px|एकदिश नौपथ, या रम्ब रेखा की छवि, जो [[उत्तरी ध्रुव]] की ओर बढ़ती है]][[ मार्गदर्शन ]]में, एक रूम्ब रेखा, रूम्ब ({{IPAc-en|r|ʌ|m}}), या एकदिश नौपथ एक [[चाप (ज्यामिति)]] है जो एक ही [[कोण]] पर देशांतर के सभी [[मेरिडियन (भूगोल)|भूमध्य रेखा]] को पार करता है, अर्थात, वास्तविक उत्तर के सापेक्ष मापा गया अपरिवर्ती [[असर (नेविगेशन)|दिक्कोण (दिक् चालन)]] वाला पथ।
[[File:Loxodrome.png|thumb|right|220px|एकदिश नौपथ, या रम्ब रेखा की छवि, जो [[उत्तरी ध्रुव]] की ओर बढ़ती है]][[ मार्गदर्शन |मार्गनिर्देशन]] में, एक रूम्ब रेखा, रूम्ब ({{IPAc-en|r|ʌ|m}}), या एकदिश नौपथ एक [[चाप (ज्यामिति)|चाप]] है जो एक ही [[कोण]] पर देशांतर के सभी [[मेरिडियन (भूगोल)|भूमध्य रेखाओं]] को पार करता है, अर्थात, वास्तविक उत्तर के सापेक्ष मापा गया अपरिवर्ती [[असर (नेविगेशन)|दिक्कोण]] वाला पथ है।


== परिचय ==
== परिचय ==
एक ग्लोब की सतह पर एक रूम्ब रेखा पाठ्यक्रम का पालन करने के प्रभाव पर प्रथम बार 1537 में [[पुर्तगाली लोग]] [[गणितज्ञ]] [[पेड्रो नून्स]] ने 1590 के दशक में [[थॉमस हैरियट]] द्वारा आगे के गणितीय विकास के साथ समुद्री लेखाचित्र की रक्षा में अपने ग्रंथ में चर्चा की थी।
एक भूमंडल की सतह पर एक रूम्ब रेखा अध्ययन का पालन करने के प्रभाव पर प्रथम बार 1537 में [[पुर्तगाली लोग|पुर्तगाली]] [[गणितज्ञ]] [[पेड्रो नून्स]] ने 1590 के दशक में [[थॉमस हैरियट]] द्वारा आगे के गणितीय विकास के साथ समुद्री रेखाचित्र की रक्षा में अपने ग्रंथ में चर्चा की थी।


एक रूम्ब रेखा की तुलना एक बड़े वृत्त से की जा सकती है, जो एक गोले की सतह पर दो बिंदुओं के मध्य की सबसे छोटी दूरी का मार्ग है। एक बड़े वृत्त पर, गंतव्य बिंदु का दिक्कोण स्थिर नहीं रहता है। अगर किसी को एक बृहत् वृत के साथ एक कार चलाना होता है तो वह चालन चक्र को स्थिर रखता है, परन्तु एक रूम्ब रेखा का पालन करने के लिए चक्र को घुमाना पड़ता है, जैसे-जैसे ध्रुव पास आते हैं, इसे और अधिक तीव्रता से घुमाते हैं। दूसरे शब्दों में, एक बड़ा वृत्त शून्य [[जियोडेसिक वक्रता|अल्पांतरी वक्रता]] के साथ स्थानीय रूप से सीधा होता है, जबकि एक रूम्ब रेखा में गैर-शून्य अल्पांतरी वक्रता होती है।
एक रूम्ब रेखा की तुलना एक बड़े वृत्त से की जा सकती है, जो एक वृत्त की सतह पर दो बिंदुओं के मध्य की सबसे छोटी दूरी का मार्ग है। एक बड़े वृत्त पर, गंतव्य बिंदु का दिक्कोण स्थिर नहीं रहता है। यदि किसी को एक बृहत् वृत के साथ एक मोटर गाड़ी चलानी होती है तो वह चालन चक्र को स्थिर रखता है, परन्तु एक रूम्ब रेखा का पालन करने के लिए पहिये को घुमाना पड़ता है, जैसे-जैसे स्तम्भ पास आते हैं, इसे और अधिक तीव्रता से घुमाते हैं। दूसरे शब्दों में, एक बड़ा वृत्त शून्य [[जियोडेसिक वक्रता|अल्पांतरी वक्रता]] के साथ स्थानीय रूप से "सीधा" होता है, जबकि एक रूम्ब रेखा में गैर-शून्य अल्पांतरी वक्रता होती है।


देशांतर के ध्रुववृत्त और अक्षांश के समानांतर रूम्ब रेखा के विशेष स्थिति प्रदान करते हैं, जहां उनके प्रतिच्छेदन के कोण क्रमशः 0° और 90° होते हैं। एक उत्तर-दक्षिण पंथ पर रूम्ब रेखा पाठ्यक्रम एक बृहत् वृत के साथ मेल खाता है, जैसा कि यह [[भूमध्य रेखा]] के साथ पूर्व-पश्चिम मार्ग पर होता है।
देशांतर के ध्रुववृत्त और अक्षांश के समानांतर रूम्ब रेखाओं की विशेष स्थितियां प्रदान करते हैं, जहां उनके प्रतिच्छेदन के कोण क्रमशः 0° और 90° होते हैं। एक उत्तर-दक्षिण पंथ पर रूम्ब रेखा अध्ययन एक बृहत् वृत के अनुरूप है, जैसा कि यह [[भूमध्य रेखा|भूमध्य रेखाओं]] के साथ पूर्व-पश्चिम मार्ग पर होता है।


[[मर्केटर प्रोजेक्शन|मर्केटर]] [[त्रिविम प्रक्षेपण|प्रक्षेप]] प्रतिचित्र पर, कोई भी रूम्ब रेखा एक सीधी रेखा है; इस तरह के प्रतिचित्र पर पृथ्वी पर किन्हीं दो बिंदुओं के मध्य बिना प्रतिचित्र के किनारे से हटे एक रूम्ब रेखा खींची जा सकती है। परन्तु सैद्धांतिक रूप से एक एकदिश नौपथ प्रतिचित्र के दाहिने किनारे से आगे बढ़ सकता है, जहां यह फिर उसी प्रवणता के साथ बाएं किनारे पर जारी रहता है (यह मानते हुए कि प्रतिचित्र बिल्कुल 360 डिग्री देशांतर को आच्छादित करता है)।
[[मर्केटर प्रोजेक्शन|मर्केटर]] [[त्रिविम प्रक्षेपण|प्रक्षेप]] मानचित्र पर, कोई भी रूम्ब रेखा एक सीधी रेखा है; इस तरह के प्रतिचित्र पर पृथ्वी पर किन्हीं दो बिंदुओं के मध्य बिना प्रतिचित्र के किनारे से हटे एक रूम्ब रेखा खींची जा सकती है। परन्तु सैद्धांतिक रूप से एक एकदिश नौपथ प्रतिचित्र के दाहिने किनारे से आगे बढ़ सकता है, जहां यह फिर उसी प्रवणता के साथ बाएं किनारे पर जारी रहता है (यह मानते हुए कि प्रतिचित्र बिल्कुल 360 डिग्री देशांतर को आच्छादित करता है)।


तिर्यक् कोणों पर मध्याह्न रेखाओं को काटने वाली रूंब रेखाएं एकदिश नौपथ वक्र हैं जो ध्रुवों की ओर सर्पिल होती हैं।<ref name="EOS" />मर्केटर प्रक्षेप पर [[उत्तरी ध्रुव]] और [[दक्षिणी ध्रुव]] अनंत पर होते हैं और इसलिए इन्हें कभी नहीं दर्शाया जाता है। हालांकि असीमित उच्च प्रतिचित्र पर पूर्ण एकदिश नौपथ में दो किनारों के मध्य असीम रूप से कई रेखा खंड सम्मिलित होंगे। त्रिविम प्रक्षेप प्रतिचित्र पर, एक एकदिश नौपथ एक [[समकोणीय सर्पिल]] है जिसका केंद्र उत्तर या दक्षिण ध्रुव है।
रूंब रेखाएं जो ध्रुववृत्तों को तिर्यक् कोणों पर काटती हैं, वे एकदिश नौपथ वक्र हैं जो ध्रुवों की ओर सर्पिल होती हैं।<ref name="EOS" />मर्केटर प्रक्षेप पर [[उत्तरी ध्रुव]] और [[दक्षिणी ध्रुव]] अनंत पर होते हैं और इसलिए इन्हें कभी नहीं दर्शाया जाता है। हालांकि असीमित उच्च मानचित्रों पर पूर्ण एकदिश नौपथ में दो किनारों के मध्य अनंततः कई रेखा खंड सम्मिलित होंगे। त्रिविम प्रक्षेप मानचित्र पर, एक एकदिश नौपथ एक [[समकोणीय सर्पिल]] है जिसका केंद्र उत्तर या दक्षिण ध्रुव है।


सभी एकदिश नौपथ एक [[भौगोलिक ध्रुव]] से दूसरे तक उत्तरोत्तर होते हैं। ध्रुवों के पास, वे लघुगणकीय सर्पिल होने के निकट हैं (जो कि वे एक [[त्रिविम प्रक्षेपण|त्रिविम प्रक्षेप]] पर हैं, नीचे देखें), इसलिए वे प्रत्येक ध्रुव के चारों ओर अनंत बार चक्कर लगाते हैं परन्तु एक सीमित दूरी में ध्रुव तक पहुंचते हैं। एक एकदिश नौपथ की ध्रुव-से-ध्रुव लंबाई (एक आदर्श क्षेत्र मानते हुए) भूमध्य रेखा (भूगोल) की लंबाई है जो वास्तविक उत्तर से दूर दिक्कोण के [[ कोज्या ]] से विभाजित होती है। एकदिश नौपथ को ध्रुवों पर परिभाषित नहीं किया गया है।
सभी एकदिश नौपथ एक ध्रुव से दूसरे ध्रुव की ओर सर्पिल होते हैं। ध्रुवों के पास, वे लघुगणकीय सर्पिल होने के निकट हैं (जो कि वे एक [[त्रिविम प्रक्षेपण]] पर हैं, नीचे देखें), इसलिए वे प्रत्येक ध्रुव के चारों ओर अनंत बार चक्कर लगाते हैं परन्तु एक सीमित दूरी में ध्रुव तक पहुंचते हैं। एक एकदिश नौपथ की ध्रुव-से-ध्रुव लंबाई (एक आदर्श क्षेत्र मानते हुए) भूमध्य रेखा (भूगोल) वास्तविक उत्तर से दूर दिक्कोण के [[ कोज्या |कोज्या]] से विभाजित ध्रुववृत्तों की लंबाई है। एकदिश नौपथ को ध्रुवों पर परिभाषित नहीं किया गया है।


== व्युत्पत्ति और ऐतिहासिक विवरण ==
== व्युत्पत्ति और ऐतिहासिक विवरण ==
एकदिश नौपथ शब्द प्राचीन यूनानी भाषा λοξός loxos से आया है: तिरछा + δρόμος ''drómos'': परिचालन (δραμεῖν drameîn से: चलाने के लिए)रूंब शब्द [[स्पेनिश भाषा]] या [[पुर्तगाली भाषा]] रूंबो/रुमो (पाठ्यक्रम या दिशा) और यूनानी समचतुर्भुज | ῥόμβος rhómbos, से आया है।<ref>''[http://www.thefreedictionary.com/rhumb Rhumb]'' at TheFreeDictionary</ref> रेम्बिन से।
एकदिश नौपथ शब्द प्राचीन यूनानी भाषा λοξός loxos से आया है: तिर्यक् + δρόμος ''drómos'': परिचालन (δραμεῖν drameîn से: चलाने के लिए) है। रूंब शब्द [[स्पेनिश भाषा|स्पेनी भाषा]] या [[पुर्तगाली भाषा]] रूंबो/रुमो (अध्ययन या दिशा) और यूनानी ῥόμβος rhómbos,<ref>''[http://www.thefreedictionary.com/rhumb Rhumb]'' at TheFreeDictionary</ref> से आया हो सकता है।


द ग्लोब एनसाइक्लोपीडिया ऑफ यूनिवर्सल इंफॉर्मेशन के 1878 संस्करण में एकदिश नौपथ रेखा का वर्णन इस प्रकार है:<ref name="Globe"/>
सार्वभौमिक सूचना का भूमंडल विश्वज्ञानकोष के 1878 संस्करण में एकदिश नौपथ रेखा का वर्णन इस प्रकार है:<ref name="Globe"/>


<blockquote>एकदिश नौपथ रेखा एक वक्र है जो किसी दिए गए सतह की वक्रता की रेखाओं की प्रणाली के प्रत्येक सदस्य को एक ही कोण पर काटती है। कम्पास के एक ही बिंदु की ओर जाने वाला जहाज एक ऐसी रेखा का वर्णन करता है जो सभी याम्योत्तरों को एक ही कोण पर काटती है। मर्केटर के प्रक्षेप (q.v.) में एकदिश नौपथ रेखाएँ स्पष्ट रूप से सीधी होती हैं।<ref name="Globe">Ross, J.M. (editor) (1878). ''[https://archive.org/details/globeencyclopae01rossgoog The Globe Encyclopaedia of Universal Information]'', Vol. IV, Edinburgh-Scotland, Thomas C. Jack, Grange Publishing Works, retrieved from [[Google Books]] 2009-03-18;</ref>
<blockquote>एकदिश नौपथ रेखा एक वक्र है जो किसी दिए गए सतह की वक्रता की रेखाओं की प्रणाली के प्रत्येक घटकों को एक ही कोण पर काटती है। दिक्सूचक के एक ही बिंदु की ओर जाने वाला पोत एक ऐसी रेखा का वर्णन करता है जो सभी याम्योत्तरों को एक ही कोण पर काटती है। मर्केटर के प्रक्षेप (q.v.) में एकदिश नौपथ रेखाएँ स्पष्ट रूप से सीधी होती हैं।<ref name="Globe">Ross, J.M. (editor) (1878). ''[https://archive.org/details/globeencyclopae01rossgoog The Globe Encyclopaedia of Universal Information]'', Vol. IV, Edinburgh-Scotland, Thomas C. Jack, Grange Publishing Works, retrieved from [[Google Books]] 2009-03-18;</ref>


एक मिथ्याबोध उत्पन्न हो सकती है क्योंकि जब यह शब्द प्रयोग में आया तो इसका कोई सटीक अर्थ नहीं था। यह [[इन्द्रोंसे लाइन|विंडरोज रेखा]] के लिए समान रूप से अच्छी तरह से अनुप्रयुक्त होता है क्योंकि यह एकदिश नौपथ के लिए किया जाता है क्योंकि यह शब्द केवल स्थानीय रूप से अनुप्रयुक्त होता है और इसका अर्थ केवल वही होता है जो एक नौसैनिक ने अपरिवर्ती दिक्कोण (दिक् चालन) के साथ पालने के लिए किया था, जो कि सभी अशुद्धियों के साथ होता है। इसलिए, जब [[पोर्टोलन|पत्तन दर्शिका]] उपयोग में थे, तो रूम्ब पत्तन दर्शिका पर सीधी रेखाओं पर अनुप्रयुक्त होता था, साथ ही मर्केटर रेखा चित्र पर सदैव सीधी रेखाओं के लिए भी अनुप्रयुक्त होता था। छोटी दूरी के लिए पोर्टोलन रूम्ब्स मर्केटर रूम्ब से सार्थक रूप से भिन्न नहीं होते हैं, परन्तु इन दिनों रूम्ब गणितीय रूप से सटीक एकदिश नौपथ का पर्याय बन गया है क्योंकि इसे पूर्वव्यापी रूप से पर्यायवाची बना दिया गया है।
एक मिथ्याबोध उत्पन्न हो सकता है क्योंकि शब्द "रूम्ब" का प्रयोग में आने पर इसका कोई सटीक अर्थ नहीं था। यह [[इन्द्रोंसे लाइन|विंडरोज रेखाओं]] के लिए समान रूप से अच्छी तरह से प्रयुक्त होता है क्योंकि यह एकदिश नौपथ के लिए किया जाता है क्योंकि यह शब्द केवल स्थानीय रूप से प्रयुक्त होता है और इसका अर्थ केवल वही होता है जो एक नाविक ने अपरिवर्ती दिक्कोण के साथ नौकायन करने के लिए जो कुछ भी किया है, जो कि सभी अशुद्धियों के साथ होता है। इसलिए, रूम्ब [[पोर्टोलन|पत्तन दर्शिका]] पर सीधी रेखाओं पर अनुप्रयुक्त होता था, जब पत्तन दर्शिका उपयोग में होते थे, साथ ही सदैव मर्केटर रेखाचित्र पर सीधी रेखाओं पर अनुप्रयुक्त होते था। छोटी दूरी के लिए पत्तन दर्शिका "रूम्ब" अर्थपूर्ण रूप से मर्केटर रूम्ब से भिन्न नहीं होते हैं, परन्तु इन दिनों "रूम्ब" गणितीय रूप से सटीक "एकदिश नौपथ" का पर्याय बन गया है क्योंकि इसे पूर्वव्यापी रूप से समानार्थी बना दिया गया है।


जैसा कि लियो बग्रो कहते हैं:<ref name="Bagrow2010">{{cite book|author=Leo Bagrow|title=कार्टोग्राफी का इतिहास|url=https://books.google.com/books?id=OBeB4tDmJv8C&pg=PA65|year=2010|publisher=Transaction Publishers|isbn=978-1-4128-2518-4|page=65}}</ref> शब्द ('रूम्ब रेखा') इस अवधि के समुद्र-रेखा चित्र पर गलत तरीके से अनुप्रयुक्त किया गया है, क्योंकि एक एकदिश नौपथ एक सटीक पाठ्यक्रम देता है, जब रेखा चित्र एक उपयुक्त प्रक्षेपण पर खींचा जाता है। मानचित्रमितीय जांच से पता चला है कि प्रारम्भिक रेखा चित्र में किसी प्रक्षेपण का उपयोग नहीं किया गया था, इसलिए हम 'पत्तन दर्शिका' नाम रखते हैं।
जैसा कि लियो बग्रो कहते हैं:<ref name="Bagrow2010">{{cite book|author=Leo Bagrow|title=कार्टोग्राफी का इतिहास|url=https://books.google.com/books?id=OBeB4tDmJv8C&pg=PA65|year=2010|publisher=Transaction Publishers|isbn=978-1-4128-2518-4|page=65}}</ref> शब्द ('रूम्ब रेखा') इस अवधि के समुद्र-रेखा चित्र पर गलत तरीके से अनुप्रयुक्त किया गया है, क्योंकि एक एकदिश नौपथ एक सटीक पाठ्यक्रम देता है, जब रेखा चित्र एक उपयुक्त प्रक्षेपण पर खींचा जाता है। मानचित्रमितीय जांच से पता चला है कि प्रारम्भिक रेखा चित्र में किसी प्रक्षेपण का उपयोग नहीं किया गया था, इसलिए हम 'पत्तन दर्शिका' नाम रखते हैं।
Line 34: Line 34:


:<math>\mathbf{r}(\lambda,\varphi) = (\cos{\lambda} \cdot \cos{\varphi})  \mathbf{i} + (\sin{\lambda} \cdot \cos{\varphi})  \mathbf{j} + (\sin{\varphi}) \mathbf{k} \, .</math>
:<math>\mathbf{r}(\lambda,\varphi) = (\cos{\lambda} \cdot \cos{\varphi})  \mathbf{i} + (\sin{\lambda} \cdot \cos{\varphi})  \mathbf{j} + (\sin{\varphi}) \mathbf{k} \, .</math>
लंबकोणीय इकाई  सदिश रिक्त स्थान दिगंशीय और गोले के ध्रुवीय दिशाओं में लिखा जा सकता है
लंबकोणीय इकाई  सदिश रिक्त स्थान दिगंशीय और वृत्त के ध्रुवीय दिशाओं में लिखा जा सकता है


:<math>\begin{align}
:<math>\begin{align}
Line 44: Line 44:
:<math>\boldsymbol{\hat\lambda} \cdot \boldsymbol{\hat\varphi} = \boldsymbol{\hat\lambda} \cdot \mathbf{r} = \boldsymbol{\hat\varphi} \cdot \mathbf{r} = 0 \, .</math>
:<math>\boldsymbol{\hat\lambda} \cdot \boldsymbol{\hat\varphi} = \boldsymbol{\hat\lambda} \cdot \mathbf{r} = \boldsymbol{\hat\varphi} \cdot \mathbf{r} = 0 \, .</math>


{{math|'''λ̂'''}} अपरिवर्ती के लिए {{mvar|φ}} अक्षांश के समानांतर का पता लगाता है, जबकि {{math|'''φ̂'''}} अपरिवर्ती के लिए {{mvar|λ}} देशांतर के एक भूमध्य रेखा का पता लगाता है, और साथ में वे गोले के लिए एक तल स्पर्शरेखा उत्पन्न करते हैं।
{{math|'''λ̂'''}} अपरिवर्ती के लिए {{mvar|φ}} अक्षांश के समानांतर का पता लगाता है, जबकि {{math|'''φ̂'''}} अपरिवर्ती के लिए {{mvar|λ}} देशांतर के एक भूमध्य रेखा का पता लगाता है, और साथ में वे वृत्त के लिए एक तल स्पर्शरेखा उत्पन्न करते हैं।


इकाई सदिश
इकाई सदिश
Line 112: Line 112:
=== रीमैन क्षेत्र पर ===
=== रीमैन क्षेत्र पर ===
{{main|Möbius transformation}}
{{main|Möbius transformation}}
पृथ्वी की सतह को गणितीय रूप से [[रीमैन क्षेत्र]] के रूप में समझा जा सकता है, अर्थात, गोले के एक जटिल तल के प्रक्षेपण के रूप में। इस मामले में, एकदिश नौपथ को मोबियस परिवर्तनों के कुछ वर्गों के रूप में समझा जा सकता है।
पृथ्वी की सतह को गणितीय रूप से [[रीमैन क्षेत्र]] के रूप में समझा जा सकता है, अर्थात, वृत्त के एक जटिल तल के प्रक्षेपण के रूप में। इस मामले में, एकदिश नौपथ को मोबियस परिवर्तनों के कुछ वर्गों के रूप में समझा जा सकता है।


=== गोलाकार ===
=== गोलाकार ===
Line 137: Line 137:
|url = http://ntv.spbstu.ru/fulltext/T3.198.2014_05.PDF
|url = http://ntv.spbstu.ru/fulltext/T3.198.2014_05.PDF
}}
}}
</ref> रूम्ब रेखा का मार्ग केवल दीर्घवृत्ताभ [[सममितीय अक्षांश]] का उपयोग करके पाया जाता है। इस पृष्ठ पर उपरोक्त सूत्रों में, गोले पर अक्षांश के लिए दीर्घवृत्ताभ पर अक्षांश#अनुरूप अक्षांश को प्रतिस्थापित करें। इसी तरह, दिगंश के छेदक द्वारा दीर्घवृत्ताकार याम्योत्तर चाप की लंबाई को गुणा करके दूरियां पाई जाती हैं।
</ref> रूम्ब रेखा का मार्ग केवल दीर्घवृत्ताभ [[सममितीय अक्षांश]] का उपयोग करके पाया जाता है। इस पृष्ठ पर उपरोक्त सूत्रों में, वृत्त पर अक्षांश के लिए दीर्घवृत्ताभ पर अक्षांश#अनुरूप अक्षांश को प्रतिस्थापित करें। इसी तरह, दिगंश के छेदक द्वारा दीर्घवृत्ताकार याम्योत्तर चाप की लंबाई को गुणा करके दूरियां पाई जाती हैं।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 17:22, 22 April 2023

एकदिश नौपथ, या रम्ब रेखा की छवि, जो उत्तरी ध्रुव की ओर बढ़ती है

मार्गनिर्देशन में, एक रूम्ब रेखा, रूम्ब (/rʌm/), या एकदिश नौपथ एक चाप है जो एक ही कोण पर देशांतर के सभी भूमध्य रेखाओं को पार करता है, अर्थात, वास्तविक उत्तर के सापेक्ष मापा गया अपरिवर्ती दिक्कोण वाला पथ है।

परिचय

एक भूमंडल की सतह पर एक रूम्ब रेखा अध्ययन का पालन करने के प्रभाव पर प्रथम बार 1537 में पुर्तगाली गणितज्ञ पेड्रो नून्स ने 1590 के दशक में थॉमस हैरियट द्वारा आगे के गणितीय विकास के साथ समुद्री रेखाचित्र की रक्षा में अपने ग्रंथ में चर्चा की थी।

एक रूम्ब रेखा की तुलना एक बड़े वृत्त से की जा सकती है, जो एक वृत्त की सतह पर दो बिंदुओं के मध्य की सबसे छोटी दूरी का मार्ग है। एक बड़े वृत्त पर, गंतव्य बिंदु का दिक्कोण स्थिर नहीं रहता है। यदि किसी को एक बृहत् वृत के साथ एक मोटर गाड़ी चलानी होती है तो वह चालन चक्र को स्थिर रखता है, परन्तु एक रूम्ब रेखा का पालन करने के लिए पहिये को घुमाना पड़ता है, जैसे-जैसे स्तम्भ पास आते हैं, इसे और अधिक तीव्रता से घुमाते हैं। दूसरे शब्दों में, एक बड़ा वृत्त शून्य अल्पांतरी वक्रता के साथ स्थानीय रूप से "सीधा" होता है, जबकि एक रूम्ब रेखा में गैर-शून्य अल्पांतरी वक्रता होती है।

देशांतर के ध्रुववृत्त और अक्षांश के समानांतर रूम्ब रेखाओं की विशेष स्थितियां प्रदान करते हैं, जहां उनके प्रतिच्छेदन के कोण क्रमशः 0° और 90° होते हैं। एक उत्तर-दक्षिण पंथ पर रूम्ब रेखा अध्ययन एक बृहत् वृत के अनुरूप है, जैसा कि यह भूमध्य रेखाओं के साथ पूर्व-पश्चिम मार्ग पर होता है।

मर्केटर प्रक्षेप मानचित्र पर, कोई भी रूम्ब रेखा एक सीधी रेखा है; इस तरह के प्रतिचित्र पर पृथ्वी पर किन्हीं दो बिंदुओं के मध्य बिना प्रतिचित्र के किनारे से हटे एक रूम्ब रेखा खींची जा सकती है। परन्तु सैद्धांतिक रूप से एक एकदिश नौपथ प्रतिचित्र के दाहिने किनारे से आगे बढ़ सकता है, जहां यह फिर उसी प्रवणता के साथ बाएं किनारे पर जारी रहता है (यह मानते हुए कि प्रतिचित्र बिल्कुल 360 डिग्री देशांतर को आच्छादित करता है)।

रूंब रेखाएं जो ध्रुववृत्तों को तिर्यक् कोणों पर काटती हैं, वे एकदिश नौपथ वक्र हैं जो ध्रुवों की ओर सर्पिल होती हैं।[1]मर्केटर प्रक्षेप पर उत्तरी ध्रुव और दक्षिणी ध्रुव अनंत पर होते हैं और इसलिए इन्हें कभी नहीं दर्शाया जाता है। हालांकि असीमित उच्च मानचित्रों पर पूर्ण एकदिश नौपथ में दो किनारों के मध्य अनंततः कई रेखा खंड सम्मिलित होंगे। त्रिविम प्रक्षेप मानचित्र पर, एक एकदिश नौपथ एक समकोणीय सर्पिल है जिसका केंद्र उत्तर या दक्षिण ध्रुव है।

सभी एकदिश नौपथ एक ध्रुव से दूसरे ध्रुव की ओर सर्पिल होते हैं। ध्रुवों के पास, वे लघुगणकीय सर्पिल होने के निकट हैं (जो कि वे एक त्रिविम प्रक्षेपण पर हैं, नीचे देखें), इसलिए वे प्रत्येक ध्रुव के चारों ओर अनंत बार चक्कर लगाते हैं परन्तु एक सीमित दूरी में ध्रुव तक पहुंचते हैं। एक एकदिश नौपथ की ध्रुव-से-ध्रुव लंबाई (एक आदर्श क्षेत्र मानते हुए) भूमध्य रेखा (भूगोल) वास्तविक उत्तर से दूर दिक्कोण के कोज्या से विभाजित ध्रुववृत्तों की लंबाई है। एकदिश नौपथ को ध्रुवों पर परिभाषित नहीं किया गया है।

व्युत्पत्ति और ऐतिहासिक विवरण

एकदिश नौपथ शब्द प्राचीन यूनानी भाषा λοξός loxos से आया है: तिर्यक् + δρόμος drómos: परिचालन (δραμεῖν drameîn से: चलाने के लिए) है। रूंब शब्द स्पेनी भाषा या पुर्तगाली भाषा रूंबो/रुमो (अध्ययन या दिशा) और यूनानी ῥόμβος rhómbos,[2] से आया हो सकता है।

सार्वभौमिक सूचना का भूमंडल विश्वज्ञानकोष के 1878 संस्करण में एकदिश नौपथ रेखा का वर्णन इस प्रकार है:[3]

एकदिश नौपथ रेखा एक वक्र है जो किसी दिए गए सतह की वक्रता की रेखाओं की प्रणाली के प्रत्येक घटकों को एक ही कोण पर काटती है। दिक्सूचक के एक ही बिंदु की ओर जाने वाला पोत एक ऐसी रेखा का वर्णन करता है जो सभी याम्योत्तरों को एक ही कोण पर काटती है। मर्केटर के प्रक्षेप (q.v.) में एकदिश नौपथ रेखाएँ स्पष्ट रूप से सीधी होती हैं।[3]

एक मिथ्याबोध उत्पन्न हो सकता है क्योंकि शब्द "रूम्ब" का प्रयोग में आने पर इसका कोई सटीक अर्थ नहीं था। यह विंडरोज रेखाओं के लिए समान रूप से अच्छी तरह से प्रयुक्त होता है क्योंकि यह एकदिश नौपथ के लिए किया जाता है क्योंकि यह शब्द केवल स्थानीय रूप से प्रयुक्त होता है और इसका अर्थ केवल वही होता है जो एक नाविक ने अपरिवर्ती दिक्कोण के साथ नौकायन करने के लिए जो कुछ भी किया है, जो कि सभी अशुद्धियों के साथ होता है। इसलिए, रूम्ब पत्तन दर्शिका पर सीधी रेखाओं पर अनुप्रयुक्त होता था, जब पत्तन दर्शिका उपयोग में होते थे, साथ ही सदैव मर्केटर रेखाचित्र पर सीधी रेखाओं पर अनुप्रयुक्त होते था। छोटी दूरी के लिए पत्तन दर्शिका "रूम्ब" अर्थपूर्ण रूप से मर्केटर रूम्ब से भिन्न नहीं होते हैं, परन्तु इन दिनों "रूम्ब" गणितीय रूप से सटीक "एकदिश नौपथ" का पर्याय बन गया है क्योंकि इसे पूर्वव्यापी रूप से समानार्थी बना दिया गया है।

जैसा कि लियो बग्रो कहते हैं:[4] शब्द ('रूम्ब रेखा') इस अवधि के समुद्र-रेखा चित्र पर गलत तरीके से अनुप्रयुक्त किया गया है, क्योंकि एक एकदिश नौपथ एक सटीक पाठ्यक्रम देता है, जब रेखा चित्र एक उपयुक्त प्रक्षेपण पर खींचा जाता है। मानचित्रमितीय जांच से पता चला है कि प्रारम्भिक रेखा चित्र में किसी प्रक्षेपण का उपयोग नहीं किया गया था, इसलिए हम 'पत्तन दर्शिका' नाम रखते हैं।

गणितीय विवरण

त्रिज्या 1 के वृत्त के लिए, दिगंशीय कोण λ, ध्रुवीय कोण π/2φπ/2 (अक्षांश के अनुरूप यहां परिभाषित), और कार्तीय इकाई सदिश # मानक आधार में एक सदिश का प्रतिनिधित्व करना i, j, और k का उपयोग त्रिज्या सदिश लिखने के लिए किया जा सकता है r जैसा

लंबकोणीय इकाई सदिश रिक्त स्थान दिगंशीय और वृत्त के ध्रुवीय दिशाओं में लिखा जा सकता है

जिसकी अदिश गुणनफल ज्यामितीय परिभाषा है

λ̂ अपरिवर्ती के लिए φ अक्षांश के समानांतर का पता लगाता है, जबकि φ̂ अपरिवर्ती के लिए λ देशांतर के एक भूमध्य रेखा का पता लगाता है, और साथ में वे वृत्त के लिए एक तल स्पर्शरेखा उत्पन्न करते हैं।

इकाई सदिश

एक स्थिर कोण है β इकाई सदिश के साथ φ̂ किसी के लिए λ और φ, क्योंकि उनका अदिश गुणनफल है

एक एकदिश नौपथ को वृत्त पर एक वक्र के रूप में परिभाषित किया जाता है जिसमें एक स्थिर कोण होता है β देशांतर के सभी याम्योत्तरों के साथ, और इसलिए इकाई सदिश के समानांतर होना चाहिए β̂. नतीजतन, एक अंतर लंबाई ds एकदिश नौपथ के साथ एक अंतर विस्थापन उत्पन्न करेगा