एकवचन वितरण: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 34: | Line 34: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 21/03/2023]] | [[Category:Created On 21/03/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 17:04, 1 May 2023
संभाव्यता में, एक विलक्षण वितरण एक शून्य समूह पर केंद्रित संभाव्यता वितरण है, जहां उस समूह में प्रत्येक बिंदु की संभावना शून्य है।
अन्य नाम
इन वितरणों को कभी-कभी एकवचन निरंतर वितरण कहा जाता है, क्योंकि उनके संचयी वितरण कार्य एकवचन कार्य और निरंतर कार्य होते हैं।
गुण
लेबेस्ग माप के संबंध में इस तरह के वितरण बिल्कुल निरंतर नहीं हैं।
एक विलक्षण वितरण असतत संभाव्यता वितरण नहीं है क्योंकि प्रत्येक असतत बिंदु की शून्य संभावना है। दूसरी ओर, न तो इसकी कोई प्रायिकता घनत्व फलन है, क्योंकि ऐसे किसी भी फलन का लेबेस्ग समाकलन शून्य होगा।
सामान्यतः वितरण को असतत वितरण के रूप में वर्णित किया जा सकता है (संभाव्यता द्रव्यमान फलन के साथ), एक बिल्कुल निरंतर वितरण (संभाव्यता घनत्व के साथ), एकवचन वितरण (न तो), या इनके मिश्रण में विघटित किया जा सकता है।
उदाहरण
कैंटर वितरण एक उदाहरण है; इसका संचयी वितरण कार्य शैतान की सीढ़ी है। उच्च आयामों में कम जिज्ञासु उदाहरण दिखाई देते हैं। उदाहरण के लिए, ऊपरी और निचला फ़्रेचेट-होफ़डिंग सीमा दो आयामों में एकवचन वितरण हैं।
यह भी देखें
- एकल उपाय
- लेबेस्ग्यू का अपघटन प्रमेय
बाहरी संबंध