अक्ष विचलन: Difference between revisions
m (Abhishek moved page सिर का इशारा to अक्ष विचलन without leaving a redirect) |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Wobble of the axis of rotation}} | {{Short description|Wobble of the axis of rotation}} | ||
{{about| | {{about|भौतिकी में अवधारणा|खगोल विज्ञान में शब्द|खगोलीय पोषण|मैकेनिकल इंजीनियरिंग में शब्द|पोषण (इंजीनियरिंग)|अन्य उपयोग}} | ||
{{distinguish|nunation}} | {{distinguish|nunation}} | ||
[[File:Praezession.svg|thumb|170px|{{colorbox|green}}{{nbsp}}रोटेशन, {{colorbox|blue}}{{nbsp}}प्रसरण, और {{colorbox|red}}{{nbsp}}किसी ग्रह की वक्रता में पोषण]]न्यूटेशन ({{etymology|la|{{wikt-lang|la|nūtātiō}}|nodding, swaying}}) बड़े पैमाने पर [[अक्ष]]ीय रूप से सममित वस्तु, जैसे [[जाइरोस्कोप]], [[ग्रह]], या [[ गोली ]] बाहरी प्राक्षेपिकी, या एक तंत्र के एक इच्छित व्यवहार के रूप में रोटेशन की धुरी में एक रॉकिंग, लहराता या हिलता हुआ गति है। संदर्भ के उपयुक्त फ्रेम में इसे दूसरे यूलर कोण#यूलर घूर्णन में परिवर्तन के रूप में परिभाषित किया जा सकता है। यदि यह शरीर के बाहरी बलों के कारण नहीं होता है, तो इसे मुक्त पोषण या [[लियोनहार्ड यूलर]] पोषण कहा जाता है।<ref name=Lowrie/>एक शुद्ध पोषण एक घूर्णी अक्ष की गति है जैसे कि पहला यूलर कोण स्थिर है।{{citation needed|date=August 2012}} इसलिए यह देखा जा सकता है कि आरेख में गोलाकार लाल तीर पुरस्सरण और पोषण के संयुक्त प्रभावों को इंगित करता है, जबकि पुरस्सरण के अभाव में पोषण केवल ऊर्ध्वाधर (दूसरा यूलर कोण) से झुकाव को बदल देगा। हालांकि, अंतरिक्ष यान की गतिशीलता में, पुरस्सरण (पहले यूलर कोण में परिवर्तन) को कभी-कभी पोषण के रूप में संदर्भित किया जाता है।<ref>{{cite book|last=Kasdin|first=N. Jeremy|title=Engineering dynamics : a comprehensive introduction|date=2010|publisher=[[Princeton University Press]]|location=Princeton, N.J.|isbn=9780691135373|pages=526–527|author2=Paley, Derek A. }}</ref> | [[File:Praezession.svg|thumb|170px|{{colorbox|green}}{{nbsp}}रोटेशन, {{colorbox|blue}}{{nbsp}}प्रसरण, और {{colorbox|red}}{{nbsp}}किसी ग्रह की वक्रता में पोषण]]न्यूटेशन ({{etymology|la|{{wikt-lang|la|nūtātiō}}|nodding, swaying}}) बड़े पैमाने पर [[अक्ष]]ीय रूप से सममित वस्तु, जैसे [[जाइरोस्कोप]], [[ग्रह]], या [[ गोली ]] बाहरी प्राक्षेपिकी, या एक तंत्र के एक इच्छित व्यवहार के रूप में रोटेशन की धुरी में एक रॉकिंग, लहराता या हिलता हुआ गति है। संदर्भ के उपयुक्त फ्रेम में इसे दूसरे यूलर कोण#यूलर घूर्णन में परिवर्तन के रूप में परिभाषित किया जा सकता है। यदि यह शरीर के बाहरी बलों के कारण नहीं होता है, तो इसे मुक्त पोषण या [[लियोनहार्ड यूलर]] पोषण कहा जाता है।<ref name=Lowrie/>एक शुद्ध पोषण एक घूर्णी अक्ष की गति है जैसे कि पहला यूलर कोण स्थिर है।{{citation needed|date=August 2012}} इसलिए यह देखा जा सकता है कि आरेख में गोलाकार लाल तीर पुरस्सरण और पोषण के संयुक्त प्रभावों को इंगित करता है, जबकि पुरस्सरण के अभाव में पोषण केवल ऊर्ध्वाधर (दूसरा यूलर कोण) से झुकाव को बदल देगा। हालांकि, अंतरिक्ष यान की गतिशीलता में, पुरस्सरण (पहले यूलर कोण में परिवर्तन) को कभी-कभी पोषण के रूप में संदर्भित किया जाता है।<ref>{{cite book|last=Kasdin|first=N. Jeremy|title=Engineering dynamics : a comprehensive introduction|date=2010|publisher=[[Princeton University Press]]|location=Princeton, N.J.|isbn=9780691135373|pages=526–527|author2=Paley, Derek A. }}</ref> |
Revision as of 10:22, 10 April 2023
न्यूटेशन (from Latin nūtātiō 'nodding, swaying') बड़े पैमाने पर अक्षीय रूप से सममित वस्तु, जैसे जाइरोस्कोप, ग्रह, या गोली बाहरी प्राक्षेपिकी, या एक तंत्र के एक इच्छित व्यवहार के रूप में रोटेशन की धुरी में एक रॉकिंग, लहराता या हिलता हुआ गति है। संदर्भ के उपयुक्त फ्रेम में इसे दूसरे यूलर कोण#यूलर घूर्णन में परिवर्तन के रूप में परिभाषित किया जा सकता है। यदि यह शरीर के बाहरी बलों के कारण नहीं होता है, तो इसे मुक्त पोषण या लियोनहार्ड यूलर पोषण कहा जाता है।[1]एक शुद्ध पोषण एक घूर्णी अक्ष की गति है जैसे कि पहला यूलर कोण स्थिर है।[citation needed] इसलिए यह देखा जा सकता है कि आरेख में गोलाकार लाल तीर पुरस्सरण और पोषण के संयुक्त प्रभावों को इंगित करता है, जबकि पुरस्सरण के अभाव में पोषण केवल ऊर्ध्वाधर (दूसरा यूलर कोण) से झुकाव को बदल देगा। हालांकि, अंतरिक्ष यान की गतिशीलता में, पुरस्सरण (पहले यूलर कोण में परिवर्तन) को कभी-कभी पोषण के रूप में संदर्भित किया जाता है।[2]
एक कठोर शरीर में
यदि एक शीर्ष को एक क्षैतिज सतह पर एक झुकाव पर सेट किया जाता है और तेजी से घूमता है, तो इसकी घूर्णी धुरी ऊर्ध्वाधर के बारे में आगे बढ़ने लगती है। एक छोटे से अंतराल के बाद, शीर्ष एक गति में स्थिर हो जाता है जिसमें इसके घूर्णन अक्ष पर प्रत्येक बिंदु एक वृत्ताकार पथ का अनुसरण करता है। गुरुत्वाकर्षण का ऊर्ध्वाधर बल एक क्षैतिज टोक़ पैदा करता है τ सतह के साथ संपर्क के बिंदु के बारे में; शीर्ष इस टोक़ की दिशा में कोणीय वेग से घूमता है Ω ऐसा कि किसी भी क्षण
- (वेक्टर क्रॉस उत्पाद)
कहाँ L शिखर का तात्कालिक कोणीय संवेग है।[3] प्रारंभ में, हालांकि, कोई पुरस्सरण नहीं होता है, और शीर्ष का ऊपरी हिस्सा बग़ल में और नीचे की ओर गिरता है, जिससे झुकाव होता है। यह टॉर्क में असंतुलन को जन्म देता है जो कि प्रीसेशन शुरू करता है। गिरने में, शीर्ष उस झुकाव की मात्रा को पार कर जाता है जिस पर वह लगातार आगे बढ़ता है और फिर इस स्तर के बारे में दोलन करता है। इस दोलन को न्यूटेशन कहते हैं। यदि गति अवमंदित हो जाती है, तो दोलन तब तक मरेंगे जब तक कि गति एक स्थिर पुरस्सरण न हो जाए।[3][4] एक भारी सममित शीर्ष के मॉडल का उपयोग करके इसकी नोक के साथ शीर्ष और जाइरोस्कोप में न्यूटेशन की भौतिकी का पता लगाया जा सकता है। (एक सममित शीर्ष घूर्णी समरूपता के साथ एक है, या अधिक सामान्यतः एक जिसमें जड़ता के तीन प्रमुख क्षणों में से दो समान हैं।) प्रारंभ में, घर्षण के प्रभाव को नजरअंदाज कर दिया जाता है। शीर्ष की गति को तीन यूलर कोणों द्वारा वर्णित किया जा सकता है: झुकाव कोण θ शीर्ष और ऊर्ध्वाधर (द्वितीय यूलर कोण) की समरूपता अक्ष के बीच; दिगंश φ ऊर्ध्वाधर के बारे में शीर्ष (पहला यूलर कोण); और घूर्णन कोण ψ ऊपर की अपनी धुरी के बारे में (तीसरा यूलर कोण)। इस प्रकार, पुरस्सरण परिवर्तन है φ और पोषण में परिवर्तन है θ.[5] यदि शीर्ष में द्रव्यमान है M और इसका द्रव्यमान केंद्र की दूरी पर है l धुरी बिंदु से, समर्थन के तल के सापेक्ष इसकी गुरुत्वाकर्षण क्षमता है
एक समन्वय प्रणाली में जहां z अक्ष समरूपता का अक्ष है, शीर्ष में कोणीय वेग है ω1, ω2, ω3 और जड़ता के क्षण I1, I2, I3 के बारे में x, y, और z कुल्हाड़ियों। चूंकि हम एक सममित शीर्ष ले रहे हैं, हमारे पास है I1Lua error: not enough memory.=I2Lua error: not enough memory.. गतिज ऊर्जा है
यूलर कोणों के संदर्भ में, यह है
यदि Lagrangian Mechanics|Euler-Lagrange समीकरणों को इस प्रणाली के लिए हल किया जाता है, तो यह पाया जाता है कि गति दो स्थिरांकों पर निर्भर करती है aLua error: Internal error: The interpreter exited with status 1. और bLua error: Internal error: The interpreter exited with status 1. (प्रत्येक गति के एक स्थिरांक से संबंधित है)। पुरस्सरण की दर झुकाव से संबंधित है
झुकाव के लिए एक अंतर समीकरण द्वारा निर्धारित किया जाता है u = cos(θ)Lua error: Internal error: The interpreter exited with status 1. फॉर्म का
कहाँ fLua error: Internal error: The interpreter exited with status 1. एक घन समारोह है जो पैरामीटर पर निर्भर करता है aLua error: Internal error: The interpreter exited with status 1. और bLua error: Internal error: The interpreter exited with status 1. साथ ही स्थिरांक जो ऊर्जा और गुरुत्वाकर्षण बलाघूर्ण से संबंधित हैं। की जड़ें fLua error: Internal error: The interpreter exited with status 1. कोणों के कोज्या हैं जिस पर समय का व्युत्पन्न होता है θLua error: Internal error: The interpreter exited with status 1. शून्य है। इनमें से एक भौतिक कोण से संबंधित नहीं है; अन्य दो झुकाव कोण पर ऊपरी और निचली सीमा निर्धारित करते हैं, जिसके बीच जाइरोस्कोप दोलन करता है।[6]
खगोल विज्ञान
Lua error: Internal error: The interpreter exited with status 1.
एक ग्रह का नटेशन इसलिए होता है क्योंकि अन्य पिंडों के गुरुत्वाकर्षण प्रभाव के कारण समय के साथ इसकी अक्षीय पुरस्सरण गति अलग-अलग हो जाती है, जिससे गति स्थिर नहीं रहती है। अंग्रेजी खगोलशास्त्री जेम्स ब्रैडली ने 1728 में पृथ्वी के घूर्णन |पृथ्वी की धुरी के पोषण की खोज की।
पृथ्वी
Lua error: Internal error: The interpreter exited with status 1. Lua error: Internal error: The interpreter exited with status 1.
न्यूटेशन क्रांतिवृत्त तल के संबंध में पृथ्वी के अक्षीय झुकाव को सूक्ष्मता से बदलता है, अक्षांश के वृत्त को स्थानांतरित करता है # अक्षांश के प्रमुख वृत्त जो पृथ्वी के झुकाव (उष्णकटिबंधीय वृत्त और ध्रुवीय वृत्त) द्वारा परिभाषित होते हैं।
पृथ्वी के मामले में, ज्वारीय बल के प्रमुख स्रोत सूर्य और चंद्रमा हैं, जो लगातार एक दूसरे के सापेक्ष स्थान बदलते रहते हैं और इस प्रकार पृथ्वी की धुरी में पोषण का कारण बनते हैं। पृथ्वी के पोषण के सबसे बड़े घटक की अवधि 18.6 वर्ष है, जो कि चंद्र आसंधि|चंद्रमा की कक्षीय संधियों के पुरस्सरण के समान है।[1] हालांकि, अन्य महत्वपूर्ण आवधिक शर्तें हैं जिनका परिणाम की वांछित सटीकता के आधार पर हिसाब लगाया जाना चाहिए। एक गणितीय विवरण (समीकरणों का समुच्चय) जो पोषण का प्रतिनिधित्व करता है, कहलाता हैTemplate:By who पोषण का सिद्धांत।Lua error: Internal error: The interpreter exited with status 1. सिद्धांत में, डेटा के लिए सबसे अच्छा फिट प्राप्त करने के लिए मापदंडों को अधिक या कम तदर्थ विधि में समायोजित किया जाता है। सरल कठोर शरीर गतिकी सर्वश्रेष्ठ सिद्धांत नहीं देते हैं; किसी को पृथ्वी की विकृतियों के लिए हिसाब देना होगा, जिसमें एस्थेनोस्फीयर और कोर-मेंटल सीमा में परिवर्तन शामिल हैं।[7] पोषण की मुख्य अवधि चंद्रमा की नोडल रेखा के प्रतिगमन के कारण होती है और इसकी अवधि 6798 दिन (18.61 वर्ष) होती है। यह देशांतर में प्लस या माइनस 17″ और अक्षीय झुकाव में 9.2″ तक पहुंचता है।[8] अन्य सभी शर्तें बहुत छोटी हैं; अगले सबसे बड़े, 183 दिनों (0.5 वर्ष) की अवधि के साथ, क्रमशः 1.3″ और 0.6″ आयाम हैं। 0.0001″ से बड़े सभी शब्दों की अवधि (लगभग उतनी ही सटीक रूप से जितनी उपलब्ध तकनीक माप सकती है) 5.5 और 6798 दिनों के बीच होती है; किसी कारण से (समुद्री ज्वार की अवधि के साथ) वे 34.8 से 91 दिनों की सीमा से बचने लगते हैं, इसलिए यह प्रथागत हैLua error: Internal error: The interpreter exited with status 1. पोषण को लंबी अवधि और छोटी अवधि की शर्तों में विभाजित करने के लिए। लंबी अवधि की शर्तों की गणना और पंचांगों में उल्लेख किया जाता है, जबकि छोटी अवधि की शर्तों के कारण अतिरिक्त सुधार आमतौर पर एक तालिका से लिया जाता है। IAU 2000B पद्धति के अनुसार उनकी गणना जूलियन दिवस से भी की जा सकती है।[9]
लोकप्रिय संस्कृति में
Lua error: Internal error: The interpreter exited with status 1. 1961 की आपदा फिल्म जिस दिन पृथ्वी में आग लगी में, ध्रुवों के पास दो सुपर-हाइड्रोजन बमों के लगभग एक साथ विस्फोट से पृथ्वी के पोषण में परिवर्तन होता है, साथ ही अक्षीय झुकाव में 11° बदलाव और पृथ्वी की कक्षा में परिवर्तन होता है। सूर्य के चारों ओर।
स्टार ट्रेक: द नेक्स्ट जेनरेशन में, तेजी से 'साइकिल चलाना' या 'शील्ड न्यूटेशन' को 'बदलना' अक्सर एक साधन के रूप में उल्लेख किया जाता है, जिसके द्वारा प्रतिपक्षी को बचाव के माध्यम से तोड़ने और उद्यम या अन्य अंतरिक्ष यान को लूटने के उनके प्रयासों में देरी होती है।
यह भी देखें
- मुक्ति
- अधिक चिढ़ाना
टिप्पणियाँ
- ↑ 1.0 1.1 Lua error: Internal error: The interpreter exited with status 1.
- ↑ Lua error: Internal error: The interpreter exited with status 1.
- ↑ 3.0 3.1 Lua error: Internal error: The interpreter exited with status 1.
- ↑ Lua error: Internal error: The interpreter exited with status 1.
- ↑ Lua error: Internal error: The interpreter exited with status 1.
- ↑ Lua error: Internal error: The interpreter exited with status 1.
- ↑ Lua error: Internal error: The interpreter exited with status 1.
- ↑ Lua error: Internal error: The interpreter exited with status 1.
- ↑ Lua error: Internal error: The interpreter exited with status 1.
Lua error: Internal error: The interpreter exited with status 1.
संदर्भ
- The Feynman Lectures on Physics Vol. I Ch. 20: Rotation in space
- Lua error: Internal error: The interpreter exited with status 1.
- Lua error: Internal error: The interpreter exited with status 1.
- Lua error: Internal error: The interpreter exited with status 1.
Lua error: Internal error: The interpreter exited with status 1.