अनुभाग (फाइबर बंडल): Difference between revisions

From Vigyanwiki
No edit summary
Line 65: Line 65:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 24/04/2023]]
[[Category:Created On 24/04/2023]]
[[Category:Vigyan Ready]]

Revision as of 17:52, 1 May 2023

अनुभाग बंडल का . अनुभाग आधार स्थान की अनुमति देता है उप-स्थान के साथ पहचाना जाना का .
एक सदिश क्षेत्र चालू है . स्पर्शरेखा सदिश बंडल का खंड सदिश क्षेत्र है।
एक वेक्टर बंडल आधार पर खंड के साथ .

टोपोलॉजी के गणितीय क्षेत्र में, फाइबर बंडल का खंड (या क्रॉस सेक्शन) प्रक्षेपण कार्य का निरंतर सही व्युत्क्रम है। दूसरे शब्दों में, यदि आधार स्थान पर फाइबर बंडल है।[1]

फिर उस फाइबर बंडल का भाग निरंतर मानचित्र है,

ऐसा है कि

सभी के लिए .


एक खंड सार लक्षण वर्णन है कि इसका ग्राफ होने का क्या मतलब है। कार्य के ग्राफ़ को कार्टेसियन उत्पाद , और के मान लेने वाले कार्य के साथ पहचाना जा सकता है।

चलो पहले कारक पर प्रक्षेपण हो: . फिर ग्राफ कोई भी कार्य है जिसके लिए .है

फाइबर बंडलों की भाषा खंड की इस धारणा को उस स्थिति में सामान्यीकृत करने की अनुमति देती है जब अनिवार्य रूप से कार्टेशियन उत्पाद नहीं है। अगर फाइबर बंडल है, तो प्रत्येक फाइबर में सेक्शन बिंदु का विकल्प है। स्थिति का सीधा सा अर्थ है कि खंड बिंदु पर है को के ऊपर होना चाहिए। (छवि देखें।)

उदाहरण के लिए, जब सदिश बंडल है तो का भाग सदिश स्थान का तत्व है जो प्रत्येक बिंदु पर स्थित है। विशेष रूप से, चिकने बहुरूपी पर सदिश क्षेत्र के प्रत्येक बिंदु पर स्पर्शरेखा सदिश की पसंद: यह के स्पर्शरेखा बंडल का खंड है।

खंड, विशेष रूप से प्रमुख बंडलों और वेक्टर बंडलों के, अवकल ज्यामिति में भी बहुत महत्वपूर्ण उपकरण हैं। इस सेटिंग में, आधार स्थान निर्बाध बहुरूपी है, और को के ऊपर निर्बाध फाइबर बंडल माना जाता है (जिससे , निर्बाध बहुरूपी है और निर्बाध बहुरूपी है। नक्शा)। इस स्थिति में, खुले समूह पर के चिकने वर्गों के स्थान पर विचार करता है, जिसे दर्शाया गया है। यह मध्यवर्ती नियमितता वाले वर्गों के रिक्त स्थान पर विचार करने के लिए ज्यामितीय विश्लेषण में भी उपयोगी है (उदाहरण के लिए, खंड, या धारक स्थितियों या सोबोलेव रिक्त स्थान के अर्थ में नियमितता वाले अनुभाग) है ।

स्थानीय और वैश्विक खंड

फाइबर बंडलों में सामान्य रूप से ऐसे वैश्विक खंड नहीं होते हैं (उदाहरण के लिए, फाइबर बंडल पर फाइबर के साथ मोबियस लेकर प्राप्त किया जाता है। बंडल और शून्य खंड को हटाना), इसलिए यह केवल स्थानीय रूप से अनुभागों को परिभाषित करने के लिए उपयोगी है। फाइबर बंडल का स्थानीय खंड निरंतर मानचित्र है जहां , में खुला समूह है और {} में सभी के लिए यदि का स्थानीय तुच्छीकरण है, जहाँ , से तक होमोमोर्फिज्म है (जहाँ है फाइबर), तो स्थानीय खंड सदैव से तक निरंतर मानचित्रों के साथ विशेषण पत्राचार में पर उपस्थित होते हैं। (स्थानीय) खंड के ऊपर शीफ बनाते हैं जिसे के वर्गों का शीफ कहा जाता है।

के ऊपर फाइबर बंडल के निरंतर खंडों के स्थान को कभी-कभी } के रूप में दर्शाया जाता है, जबकि के वैश्विक खंडों के स्थान को अक्सर या के रूप में दर्शाया जाता है।

वैश्विक वर्गों तक विस्तार

अनुभागों का अध्ययन होमोटॉपी सिद्धांत और बीजगणितीय टोपोलॉजी में किया जाता है, जहां वैश्विक वर्गों के अस्तित्व या गैर-अस्तित्व के लिए मुख्य लक्ष्यों में से है। बाधा सिद्धांत वैश्विक वर्गों के अस्तित्व से इनकार करता है क्योंकि अंतरिक्ष बहुत मुड़ा हुआ है। अधिक स्पष्ट रूप से, अंतरिक्ष के मुड़ने के कारण अवरोध स्थानीय खंड को वैश्विक खंड तक विस्तारित करने की संभावना को बाधित करते हैं। बाधाओं को विशेष विशेषता वर्ग द्वारा इंगित किया जाता है, जो कोहोमोलॉजिकल वर्ग हैं। उदाहरण के लिए, प्रमुख बंडल में वैश्विक खंड होता है यदि और केवल यदि यह तुच्छ बंडल है। दूसरी ओर, वेक्टर बंडल में सदैव वैश्विक खंड होता है, जिसका नाम शून्य खंड होता है। चूँकि , यह कहीं न मिलने वाले खंड को तभी स्वीकार करता है जब इसका यूलर वर्ग शून्य है ।

सामान्यीकरण

स्थानीय वर्गों को विस्तारित करने में बाधाओं को निम्नलिखित विधि से सामान्यीकृत किया जा सकता है: स्थलीय स्थान लें और श्रेणी (गणित) बनाएं, जिनकी वस्तुएं खुले उपसमुच्चय हैं, और आकारिकी समावेशन हैं। इस प्रकार हम टोपोलॉजिकल स्थान को सामान्य बनाने के लिए श्रेणी का उपयोग करते हैं। हम एबेलियन समूह के कई उपयोग करके स्थानीय खंड की धारणा को सामान्य करते हैं, जो प्रत्येक वस्तु को एबेलियन समूह (स्थानीय वर्गों के अनुरूप) प्रदान करता है।

यहां महत्वपूर्ण अंतर है: सहज रूप से, स्थानीय खंड टोपोलॉजिकल स्थान के खुले उपसमुच्चय पर सदिश क्षेत्रों की तरह हैं। तो प्रत्येक बिंदु पर, निश्चित सदिश स्थान का तत्व निर्दिष्ट किया जाता है। चूँकि , कई सदिश स्थान (या अधिक सामान्यतः एबेलियन समूह) को लगातार बदल सकते हैं।

यह पूरी प्रक्रिया वास्तव में वैश्विक खंड फंक्टर है, जो प्रत्येक शीफ को इसके ग्लोबल सेक्शन को असाइन करती है। तब शेफ कोहोलॉजी हमें एबेलियन समूह को लगातार बदलते हुए समान विस्तार समस्या पर विचार करने में सक्षम बनाती है। चारित्रिक वर्गों का सिद्धांत हमारे विस्तार में अवरोधों के विचार का सामान्यीकरण करता है।

यह भी देखें

टिप्पणियाँ

  1. Husemöller, Dale (1994), Fibre Bundles, Springer Verlag, p. 12, ISBN 0-387-94087-1


संदर्भ


बाहरी संबंध