औसत वक्रता प्रवाह: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Parabolic partial differential equation}} {{Use mdy dates|date = March 2019}} {{Use American English|date = March 2019}} गणित में अं...")
 
No edit summary
Line 1: Line 1:
{{Short description|Parabolic partial differential equation}}
{{Short description|Parabolic partial differential equation}}
{{Use mdy dates|date = March 2019}}
{{Use American English|date = March 2019}}


गणित में [[ अंतर ज्यामिति ]] के क्षेत्र में, मीन कर्वेचर फ्लो [[रीमैनियन कई गुना]] में डिफरेंशियल ज्योमेट्री और टोपोलॉजी #H की शब्दावली के [[ज्यामितीय प्रवाह]] का एक उदाहरण है (उदाहरण के लिए, 3-डायमेंशनल [[ यूक्लिडियन अंतरिक्ष ]] में चिकनी सतहें)। सहजता से, सतहों का एक परिवार [[औसत वक्रता]] प्रवाह के तहत विकसित होता है यदि सतह के औसत वक्रता द्वारा सतह पर चलने वाले वेग के सामान्य घटक को दिया जाता है। उदाहरण के लिए, एक गोल गोला औसत वक्रता प्रवाह के तहत समान रूप से अंदर की ओर सिकुड़ कर विकसित होता है (चूंकि गोले का औसत वक्रता सदिश अंदर की ओर होता है)। विशेष मामलों को छोड़कर, माध्य वक्रता प्रवाह [[गणितीय विलक्षणता]] विकसित करता है।
 
गणित में [[ अंतर ज्यामिति ]] के क्षेत्र में, मीन कर्वेचर फ्लो [[रीमैनियन कई गुना]] में डिफरेंशियल ज्योमेट्री और टोपोलॉजी H की शब्दावली के [[ज्यामितीय प्रवाह]] का एक उदाहरण है (उदाहरण के लिए, 3-डायमेंशनल [[ यूक्लिडियन अंतरिक्ष ]] में चिकनी सतहें)। सहजता से, सतहों का एक परिवार [[औसत वक्रता]] प्रवाह के तहत विकसित होता है यदि सतह के औसत वक्रता द्वारा सतह पर चलने वाले वेग के सामान्य घटक को दिया जाता है। उदाहरण के लिए, एक गोल गोला औसत वक्रता प्रवाह के तहत समान रूप से अंदर की ओर सिकुड़ कर विकसित होता है (चूंकि गोले का औसत वक्रता सदिश अंदर की ओर होता है)। विशेष मामलों को छोड़कर, माध्य वक्रता प्रवाह [[गणितीय विलक्षणता]] विकसित करता है।


बाधा के तहत संलग्न मात्रा स्थिर है, इसे सतही तनाव प्रवाह कहा जाता है।
बाधा के तहत संलग्न मात्रा स्थिर है, इसे सतही तनाव प्रवाह कहा जाता है।
Line 10: Line 9:


== अस्तित्व और विशिष्टता ==
== अस्तित्व और विशिष्टता ==
परवलयिक ज्यामितीय प्रवाह के लिए हैमिल्टन के सामान्य अस्तित्व प्रमेय के एक अनुप्रयोग के रूप में [[माइकल गेज]] और रिचर्ड एस हैमिल्टन द्वारा निम्नलिखित दिखाया गया था।<ref>{{cite journal |last1=Gage |first1=M. |last2=Hamilton |first2=R.S. |title=उष्मा समीकरण सिकुड़ता हुआ उत्तल समतल वक्र|journal=J. Differential Geom. |date=1986 |volume=23 |issue=1 |pages=69–96|doi=10.4310/jdg/1214439902 |doi-access=free }}</ref><ref>{{cite journal |last1=Hamilton |first1=Richard S. |title=धनात्मक रिक्की वक्रता के साथ तीन गुना|journal=Journal of Differential Geometry |date=1982 |volume=17 |issue=2 |pages=255–306|doi=10.4310/jdg/1214436922 |doi-access=free }}</ref>
परवलयिक ज्यामितीय प्रवाह के लिए हैमिल्टन के सामान्य अस्तित्व प्रमेय के एक अनुप्रयोग के रूप में [[माइकल गेज]] और रिचर्ड एस हैमिल्टन द्वारा निम्नलिखित दिखाया गया था। <ref>{{cite journal |last1=Gage |first1=M. |last2=Hamilton |first2=R.S. |title=उष्मा समीकरण सिकुड़ता हुआ उत्तल समतल वक्र|journal=J. Differential Geom. |date=1986 |volume=23 |issue=1 |pages=69–96|doi=10.4310/jdg/1214439902 |doi-access=free }}</ref><ref>{{cite journal |last1=Hamilton |first1=Richard S. |title=धनात्मक रिक्की वक्रता के साथ तीन गुना|journal=Journal of Differential Geometry |date=1982 |volume=17 |issue=2 |pages=255–306|doi=10.4310/jdg/1214436922 |doi-access=free }}</ref>
 
होने देना <math>M</math> एक कॉम्पैक्ट [[अलग करने योग्य कई गुना]] हो, चलो <math>(M',g)</math> एक पूर्ण चिकनी रिमैनियन मैनिफोल्ड बनें, और दें <math>f:M\to M'</math> एक सहज [[विसर्जन (गणित)]] बनें। फिर एक सकारात्मक संख्या है <math>T</math>, जो अनंत हो सकता है, और एक नक्शा <math>F:[0,T)\times M\to M'</math> निम्नलिखित गुणों के साथ:
होने देना <math>M</math> एक कॉम्पैक्ट [[अलग करने योग्य कई गुना]] हो, चलो <math>(M',g)</math> एक पूर्ण चिकनी रिमैनियन मैनिफोल्ड बनें, और दें <math>f:M\to M'</math> एक सहज [[विसर्जन (गणित)]] बनें। फिर एक सकारात्मक संख्या है <math>T</math>, जो अनंत हो सकता है, और एक नक्शा <math>F:[0,T)\times M\to M'</math> निम्नलिखित गुणों के साथ:
* <math>F(0,\cdot)=f</math>
* <math>F(0,\cdot)=f</math>
Line 26: Line 26:
ध्यान दें कि अगर <math>n\geq 2</math> और <math>f:M\to\mathbb{R}^{n+1}</math> एक चिकनी हाइपरसफेस विसर्जन है जिसका दूसरा मौलिक रूप सकारात्मक है, फिर [[गॉस का नक्शा]] <math>\nu:M\to S^n</math> एक भिन्नता है, और इसलिए कोई शुरू से ही जानता है <math>M</math> के लिए डिफियोमॉर्फिक है <math>S^n</math> और, प्राथमिक अंतर टोपोलॉजी से, कि ऊपर विचार किए गए सभी निमज्जन एम्बेडिंग हैं।
ध्यान दें कि अगर <math>n\geq 2</math> और <math>f:M\to\mathbb{R}^{n+1}</math> एक चिकनी हाइपरसफेस विसर्जन है जिसका दूसरा मौलिक रूप सकारात्मक है, फिर [[गॉस का नक्शा]] <math>\nu:M\to S^n</math> एक भिन्नता है, और इसलिए कोई शुरू से ही जानता है <math>M</math> के लिए डिफियोमॉर्फिक है <math>S^n</math> और, प्राथमिक अंतर टोपोलॉजी से, कि ऊपर विचार किए गए सभी निमज्जन एम्बेडिंग हैं।


गेज़ और हैमिल्टन ने ह्युस्केन के परिणाम को मामले में आगे बढ़ाया <math>n=1</math>. मैथ्यू ग्रेसन (1987) ने दिखाया कि अगर <math>f:S^1\to\mathbb{R}^2</math> कोई सहज एम्बेडिंग है, तो प्रारंभिक डेटा के साथ औसत वक्रता प्रवाह <math>f</math> अंतत: पूरी तरह से सकारात्मक वक्रता के साथ अंतःस्थापन होते हैं, जिस बिंदु पर गेज और हैमिल्टन का परिणाम लागू होता है।<ref>{{cite journal |last1=Grayson |first1=Matthew A. |title=ऊष्मा समीकरण सन्निहित समतल वक्रों को गोल बिन्दुओं तक सिकोड़ देता है|journal=J. Differential Geom. |date=1987 |volume=26 |issue=2 |pages=285–314|doi=10.4310/jdg/1214441371 |doi-access=free }}</ref> सारांश:
गेज़ और हैमिल्टन ने ह्युस्केन के परिणाम को मामले में आगे बढ़ाया <math>n=1</math>. मैथ्यू ग्रेसन (1987) ने दिखाया कि अगर <math>f:S^1\to\mathbb{R}^2</math> कोई सहज एम्बेडिंग है, तो प्रारंभिक डेटा के साथ औसत वक्रता प्रवाह <math>f</math> अंतत: पूरी तरह से सकारात्मक वक्रता के साथ अंतःस्थापन होते हैं, जिस बिंदु पर गेज और हैमिल्टन का परिणाम लागू होता है। <ref>{{cite journal |last1=Grayson |first1=Matthew A. |title=ऊष्मा समीकरण सन्निहित समतल वक्रों को गोल बिन्दुओं तक सिकोड़ देता है|journal=J. Differential Geom. |date=1987 |volume=26 |issue=2 |pages=285–314|doi=10.4310/jdg/1214441371 |doi-access=free }}</ref> सारांश:
* अगर <math>f:S^1\to\mathbb{R}^2</math> एक सहज एम्बेडिंग है, तो औसत वक्रता प्रवाह पर विचार करें <math>F:[0,T)\times S^1\to\mathbb{R}^2</math> प्रारंभिक डेटा के साथ <math>f</math>. तब <math>F(t,\cdot):S^1\to\mathbb{R}^2</math> प्रत्येक के लिए एक सहज एम्बेडिंग है <math>t\in(0,T)</math> और वहाँ मौजूद है <math>t_0\in(0,T)</math> ऐसा है कि <math>F(t,\cdot):S^1\to\mathbb{R}^2</math> प्रत्येक के लिए सकारात्मक (बाह्य) वक्रता है <math>t\in(t_0,T)</math>. यदि कोई फ़ंक्शन का चयन करता है <math>c</math> Huisken के परिणाम के रूप में, तब के रूप में <math>t\nearrow T</math> एम्बेडिंग <math>c(t)F(t,\cdot):S^1\to\mathbb{R}^2</math> आसानी से एक एम्बेडिंग में अभिसरण करें जिसकी छवि एक गोल वृत्त है।
* अगर <math>f:S^1\to\mathbb{R}^2</math> एक सहज एम्बेडिंग है, तो औसत वक्रता प्रवाह पर विचार करें <math>F:[0,T)\times S^1\to\mathbb{R}^2</math> प्रारंभिक डेटा के साथ <math>f</math>. तब <math>F(t,\cdot):S^1\to\mathbb{R}^2</math> प्रत्येक के लिए एक सहज एम्बेडिंग है <math>t\in(0,T)</math> और वहाँ मौजूद है <math>t_0\in(0,T)</math> ऐसा है कि <math>F(t,\cdot):S^1\to\mathbb{R}^2</math> प्रत्येक के लिए सकारात्मक (बाह्य) वक्रता है <math>t\in(t_0,T)</math>. यदि कोई फ़ंक्शन का चयन करता है <math>c</math> Huisken के परिणाम के रूप में, तब के रूप में <math>t\nearrow T</math> एम्बेडिंग <math>c(t)F(t,\cdot):S^1\to\mathbb{R}^2</math> आसानी से एक एम्बेडिंग में अभिसरण करें जिसकी छवि एक गोल वृत्त है।


Line 61: Line 61:
</math>
</math>
सीमा में <math> \left|\frac{\partial S}{\partial x}\right| \ll 1 </math> और <math> \left|\frac{\partial S}{\partial y}\right| \ll 1 </math>, ताकि सतह लगभग सामान्य के साथ समतल हो
सीमा में <math> \left|\frac{\partial S}{\partial x}\right| \ll 1 </math> और <math> \left|\frac{\partial S}{\partial y}\right| \ll 1 </math>, ताकि सतह लगभग सामान्य के साथ समतल हो
z अक्ष के समानांतर, यह एक [[प्रसार समीकरण]] को कम करता है
z अक्ष के समानांतर, यह एक [[प्रसार समीकरण]] को कम करता है


Line 66: Line 67:
</math>
</math>
जबकि पारंपरिक प्रसार समीकरण एक रैखिक परवलयिक आंशिक अंतर समीकरण है और विकसित नहीं होता है
जबकि पारंपरिक प्रसार समीकरण एक रैखिक परवलयिक आंशिक अंतर समीकरण है और विकसित नहीं होता है
विलक्षणताएं (जब समय में आगे चलती हैं), माध्य वक्रता प्रवाह विलक्षणताएं विकसित कर सकता है क्योंकि यह एक अरैखिक परवलयिक समीकरण है। सामान्य तौर पर अतिरिक्त बाधाओं को एक सतह पर रखने की आवश्यकता होती है ताकि विलक्षणताओं को रोका जा सके
विलक्षणताएं (जब समय में आगे चलती हैं), माध्य वक्रता प्रवाह विलक्षणताएं विकसित कर सकता है क्योंकि यह एक अरैखिक परवलयिक समीकरण है। सामान्य तौर पर अतिरिक्त बाधाओं को एक सतह पर रखने की आवश्यकता होती है ताकि विलक्षणताओं को रोका जा सके
औसत वक्रता बहती है।
औसत वक्रता बहती है।


Line 92: Line 95:
  | year = 1992}}.</ref>
  | year = 1992}}.</ref>


 
'''<br />विलक्षणताएं (जब समय में आगे चलती हैं), माध्य वक्रता प्रवाह विलक्षणताएं विकसित कर सकता है क्योंकि यह एक अरैखिक परवलयिक समीकरण है। सामान्य तौर पर अतिरिक्त बाधाओं को एक सतह पर रखने की आवश्यकता होती है ताकि विलक्षणताओं को रोका जा सके
औसत वक्रता बहती है।'''
== उदाहरण: एम-आयामी क्षेत्रों का औसत वक्रता प्रवाह ==
== उदाहरण: एम-आयामी क्षेत्रों का औसत वक्रता प्रवाह ==
माध्य वक्रता प्रवाह का एक सरल उदाहरण में संकेंद्रित गोल [[ अति क्षेत्र ]] के एक परिवार द्वारा दिया गया है <math>\mathbb{R}^{m+1}</math>. एक का औसत वक्रता <math>m</math>त्रिज्या का आयामी क्षेत्र <math>R</math> है <math>H = m/R</math>.
माध्य वक्रता प्रवाह का एक सरल उदाहरण में संकेंद्रित गोल [[ अति क्षेत्र ]] के एक परिवार द्वारा दिया गया है <math>\mathbb{R}^{m+1}</math>. एक का औसत वक्रता <math>m</math>त्रिज्या का आयामी क्षेत्र <math>R</math> है <math>H = m/R</math>.

Revision as of 11:35, 23 April 2023


गणित में अंतर ज्यामिति के क्षेत्र में, मीन कर्वेचर फ्लो रीमैनियन कई गुना में डिफरेंशियल ज्योमेट्री और टोपोलॉजी H की शब्दावली के ज्यामितीय प्रवाह का एक उदाहरण है (उदाहरण के लिए, 3-डायमेंशनल यूक्लिडियन अंतरिक्ष में चिकनी सतहें)। सहजता से, सतहों का एक परिवार औसत वक्रता प्रवाह के तहत विकसित होता है यदि सतह के औसत वक्रता द्वारा सतह पर चलने वाले वेग के सामान्य घटक को दिया जाता है। उदाहरण के लिए, एक गोल गोला औसत वक्रता प्रवाह के तहत समान रूप से अंदर की ओर सिकुड़ कर विकसित होता है (चूंकि गोले का औसत वक्रता सदिश अंदर की ओर होता है)। विशेष मामलों को छोड़कर, माध्य वक्रता प्रवाह गणितीय विलक्षणता विकसित करता है।

बाधा के तहत संलग्न मात्रा स्थिर है, इसे सतही तनाव प्रवाह कहा जाता है।

यह एक परवलयिक आंशिक अंतर समीकरण है, और इसकी व्याख्या चौरसाई के रूप में की जा सकती है।

अस्तित्व और विशिष्टता

परवलयिक ज्यामितीय प्रवाह के लिए हैमिल्टन के सामान्य अस्तित्व प्रमेय के एक अनुप्रयोग के रूप में माइकल गेज और रिचर्ड एस हैमिल्टन द्वारा निम्नलिखित दिखाया गया था। [1][2]

होने देना एक कॉम्पैक्ट अलग करने योग्य कई गुना हो, चलो एक पूर्ण चिकनी रिमैनियन मैनिफोल्ड बनें, और दें एक सहज विसर्जन (गणित) बनें। फिर एक सकारात्मक संख्या है , जो अनंत हो सकता है, और एक नक्शा निम्नलिखित गुणों के साथ:

  • किसी के लिए एक सहज विसर्जन है
  • जैसा किसी के पास में
  • किसी के लिए , वक्र का व्युत्पन्न पर के औसत वक्रता सदिश के बराबर है पर .
  • अगर उपरोक्त चार गुणों वाला कोई अन्य मानचित्र है, तो और किसी के लिए

अनिवार्य रूप से, का प्रतिबंध को है .

एक संदर्भित करता है प्रारंभिक डेटा के साथ (अधिकतम विस्तारित) औसत वक्रता प्रवाह के रूप में .

अभिसरण प्रमेय

रिक्की प्रवाह पर हैमिल्टन के 1982 के काम के बाद, 1984 में गेरहार्ड ह्यूस्केन ने निम्नलिखित अनुरूप परिणाम उत्पन्न करने के लिए औसत वक्रता प्रवाह के लिए समान विधियों को नियोजित किया:[3]

  • अगर यूक्लिडियन स्थान है , कहाँ के आयाम को दर्शाता है , तब अनिवार्य रूप से परिमित है। यदि 'प्रारंभिक विसर्जन' का दूसरा मौलिक रूप सख्ती से सकारात्मक है, फिर विसर्जन का दूसरा मौलिक रूप हर किसी के लिए सख्ती से सकारात्मक भी है , और इसके अलावा अगर कोई फ़ंक्शन चुनता है ऐसा है कि रिमेंनियन की मात्रा कई गुना है से स्वतंत्र है , फिर ऐसे विसर्जन सुचारू रूप से एक विसर्जन में परिवर्तित हो जाते हैं जिसकी छवि में गोल गोला है।

ध्यान दें कि अगर और एक चिकनी हाइपरसफेस विसर्जन है जिसका दूसरा मौलिक रूप सकारात्मक है, फिर गॉस का नक्शा एक भिन्नता है, और इसलिए कोई शुरू से ही जानता है के लिए डिफियोमॉर्फिक है और, प्राथमिक अंतर टोपोलॉजी से, कि ऊपर विचार किए गए सभी निमज्जन एम्बेडिंग हैं।

गेज़ और हैमिल्टन ने ह्युस्केन के परिणाम को मामले में आगे बढ़ाया . मैथ्यू ग्रेसन (1987) ने दिखाया कि अगर कोई सहज एम्बेडिंग है, तो प्रारंभिक डेटा के साथ औसत वक्रता प्रवाह अंतत: पूरी तरह से सकारात्मक वक्रता के साथ अंतःस्थापन होते हैं, जिस बिंदु पर गेज और हैमिल्टन का परिणाम लागू होता है। [4] सारांश:

  • अगर एक सहज एम्बेडिंग है, तो औसत वक्रता प्रवाह पर विचार करें प्रारंभिक डेटा के साथ . तब प्रत्येक के लिए एक सहज एम्बेडिंग है और वहाँ मौजूद है ऐसा है कि प्रत्येक के लिए सकारात्मक (बाह्य) वक्रता है . यदि कोई फ़ंक्शन का चयन करता है Huisken के परिणाम के रूप में, तब के रूप में एम्बेडिंग आसानी से एक एम्बेडिंग में अभिसरण करें जिसकी छवि एक गोल वृत्त है।

गुण

औसत वक्रता प्रवाह चरमीकरण सतह क्षेत्र, और न्यूनतम सतह औसत वक्रता प्रवाह के लिए महत्वपूर्ण बिंदु हैं; मिनीमा isoperimetric समस्या को हल करता है।

काहलर-आइंस्टीन मेट्रिक | काहलर-आइंस्टीन मैनिफोल्ड में सन्निहित मैनिफोल्ड के लिए, यदि सतह लैग्रैन्जियन सबमेनिफोल्ड है, तो औसत वक्रता प्रवाह लैग्रैंगियन प्रकार का है, इसलिए सतह Lagrangian सबमनीफोल्ड के वर्ग के भीतर विकसित होती है।

ह्यूस्केन का मोनोटोनिकिटी फॉर्मूला औसत वक्रता प्रवाह से गुजरने वाली सतह के साथ टाइम-रिवर्टेड गर्म गिरी के कनवल्शन का एक मोनोटोनिसिटी गुण देता है।

संबंधित प्रवाह हैं:

  • वक्र-छोटा प्रवाह, औसत वक्रता प्रवाह का एक आयामी मामला
  • सतह तनाव प्रवाह
  • Lagrangian माध्य वक्रता प्रवाह
  • प्रतिलोम माध्य वक्रता प्रवाह

त्रि-आयामी सतह का औसत वक्रता प्रवाह

द्वारा दिए गए सतह के औसत-वक्रता प्रवाह के लिए अंतर समीकरण द्वारा दिया गया है

साथ वक्रता और सतह की सामान्य गति से संबंधित एक स्थिर होने के नाते, और औसत वक्रता

सीमा में और , ताकि सतह लगभग सामान्य के साथ समतल हो

z अक्ष के समानांतर, यह एक प्रसार समीकरण को कम करता है

जबकि पारंपरिक प्रसार समीकरण एक रैखिक परवलयिक आंशिक अंतर समीकरण है और विकसित नहीं होता है

विलक्षणताएं (जब समय में आगे चलती हैं), माध्य वक्रता प्रवाह विलक्षणताएं विकसित कर सकता है क्योंकि यह एक अरैखिक परवलयिक समीकरण है। सामान्य तौर पर अतिरिक्त बाधाओं को एक सतह पर रखने की आवश्यकता होती है ताकि विलक्षणताओं को रोका जा सके

औसत वक्रता बहती है।

प्रत्येक चिकनी उत्तल सतह औसत-वक्रता प्रवाह के तहत एक बिंदु तक गिर जाती है, अन्य विलक्षणताओं के बिना, और ऐसा करने पर एक गोले के आकार में परिवर्तित हो जाती है। दो या दो से अधिक आयामों की सतहों के लिए यह गेरहार्ड ह्यूस्केन का एक प्रमेय है;[5] एक आयामी वक्र-छोटा प्रवाह के लिए यह गेज-हैमिल्टन-ग्रेसन प्रमेय है। हालांकि, गोले के अलावा दो या दो से अधिक आयामों की एम्बेडेड सतहें मौजूद हैं जो स्व-समान रहती हैं क्योंकि वे औसत-वक्रता प्रवाह के तहत एक बिंदु पर अनुबंधित होती हैं, जिसमें वे एक टोरस बनाते हैं भी शामिल है।[6]


विलक्षणताएं (जब समय में आगे चलती हैं), माध्य वक्रता प्रवाह विलक्षणताएं विकसित कर सकता है क्योंकि यह एक अरैखिक परवलयिक समीकरण है। सामान्य तौर पर अतिरिक्त बाधाओं को एक सतह पर रखने की आवश्यकता होती है ताकि विलक्षणताओं को रोका जा सके
औसत वक्रता बहती है।

उदाहरण: एम-आयामी क्षेत्रों का औसत वक्रता प्रवाह

माध्य वक्रता प्रवाह का एक सरल उदाहरण में संकेंद्रित गोल अति क्षेत्र के एक परिवार द्वारा दिया गया है . एक का औसत वक्रता त्रिज्या का आयामी क्षेत्र है .

गोले की घूर्णी समरूपता के कारण (या सामान्य तौर पर, आइसोमेट्री के तहत औसत वक्रता के आक्रमण के कारण) औसत वक्रता प्रवाह समीकरण त्रिज्या के प्रारंभिक क्षेत्र के लिए, सामान्य अंतर समीकरण को कम कर देता है ,

इस ODE का समाधान (प्राप्त, उदाहरण के लिए, चरों को अलग करके) है

,

जिसके लिए मौजूद है .[7]


संदर्भ

  1. Gage, M.; Hamilton, R.S. (1986). "उष्मा समीकरण सिकुड़ता हुआ उत्तल समतल वक्र". J. Differential Geom. 23 (1): 69–96. doi:10.4310/jdg/1214439902.
  2. Hamilton, Richard S. (1982). "धनात्मक रिक्की वक्रता के साथ तीन गुना". Journal of Differential Geometry. 17 (2): 255–306. doi:10.4310/jdg/1214436922.
  3. Huisken, Gerhard (1984). "उत्तल सतहों के गोलों में औसत वक्रता द्वारा प्रवाह". J. Differential Geom. 20 (1): 237–266. doi:10.4310/jdg/1214438998.
  4. Grayson, Matthew A. (1987). "ऊष्मा समीकरण सन्निहित समतल वक्रों को गोल बिन्दुओं तक सिकोड़ देता है". J. Differential Geom. 26 (2): 285–314. doi:10.4310/jdg/1214441371.
  5. Huisken, Gerhard (1990), "Asymptotic behavior for singularities of the mean curvature flow", Journal of Differential Geometry, 31 (1): 285–299, doi:10.4310/jdg/1214444099, hdl:11858/00-001M-0000-0013-5CFD-5, MR 1030675.
  6. Angenent, Sigurd B. (1992), "Shrinking doughnuts" (PDF), Nonlinear diffusion equations and their equilibrium states, 3 (Gregynog, 1989), Progress in Nonlinear Differential Equations and their Applications, vol. 7, Boston, MA: Birkhäuser, pp. 21–38, MR 1167827.
  7. Ecker, Klaus (2004), Regularity Theory for Mean Curvature Flow, Progress in Nonlinear Differential Equations and their Applications, vol. 57, Boston, MA: Birkhäuser, doi:10.1007/978-0-8176-8210-1, ISBN 0-8176-3243-3, MR 2024995.