केवियन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 64: Line 64:
& \frac{\overline{AO}}{\overline{AD}} + \frac{\overline{BO}}{\overline{BE}} + \frac{\overline{CO}}{\overline{CF}} = 2.
& \frac{\overline{AO}}{\overline{AD}} + \frac{\overline{BO}}{\overline{BE}} + \frac{\overline{CO}}{\overline{CF}} = 2.
\end{align}</math>
\end{align}</math>
प्रथम संपत्ति सेवा के प्रमेय के रूप में जानी जाती है। अंतिम दो गुण समतुल्य हैं क्योंकि दो समीकरणों को जोड़ने से [[पहचान (गणित)]] मिलती है {{math|1=1 + 1 + 1 = 3}}.
प्रथम संपत्ति सेवा के प्रमेय के रूप में जानी जाती है। अंतिम दो गुण समतुल्य हैं क्योंकि दो समीकरणों को जोड़ने से [[पहचान (गणित)]] {{math|1=1 + 1 + 1 = 3}} मिलती है।


== विभाजक ==
== विभाजक ==


त्रिभुज का एक [[स्प्लिटर (ज्यामिति)]] एक केवियन है जो परिमाप#बहुभुजों को द्विभाजित करता है। त्रिभुज के [[नागल बिंदु]] पर तीन विभाजक [[समवर्ती रेखाएँ]]
त्रिभुज का [[स्प्लिटर (ज्यामिति)]] केवियन है जो परिमाप बहुभुजों को द्विभाजित करता है। त्रिभुज के [[नागल बिंदु]] पर तीन विभाजक [[समवर्ती रेखाएँ]] मिलती है।


== क्षेत्र द्विभाजक ==
== क्षेत्र द्विभाजक ==


किसी त्रिभुज के समद्विभाजन#क्षेत्रीय समद्विभाजक एवं परिमाप समद्विभाजक में से तीन इसकी माध्यिकाएँ हैं, जो शीर्षों को विपरीत भुजा के मध्यबिंदुओं से जोड़ती हैं। इस प्रकार एक समान-घनत्व वाला त्रिभुज सैद्धांतिक रूप से किसी भी माध्यिका को सहारा देने वाले उस्तरा पर संतुलित होगा।
किसी त्रिभुज के समद्विभाजन क्षेत्रीय समद्विभाजक एवं परिमाप समद्विभाजक में से तीन इसकी माध्यिकाएँ हैं, जो शीर्षों को विपरीत भुजा के मध्य बिंदुओं से जोड़ती हैं। इस प्रकार समान-घनत्व वाला त्रिभुज सैद्धांतिक रूप से किसी भी माध्यिका को सहारा देने वाले उस्तरा पर संतुलित होगा।


== कोण त्रिभाजक ==
== कोण त्रिभाजक ==

Revision as of 10:59, 25 April 2023

ज्यामिति में, केवियन रेखा खंड होता है, जो त्रिभुज के शीर्ष (ज्यामिति) को त्रिभुज के विपरीत दिशा में बिंदु से जोड़ता है।[1][2] मेडियन (ज्यामिति) एवं कोण द्विभाजक केवियन के विशेष विषय हैं। केवियन नाम इतालवी गणितज्ञ जियोवानी सेवा से आया है, जिन्होंने केवियन के विषय में प्रसिद्ध प्रमेय को सिद्ध किया। जिसमें उनका नाम भी है।[3]


लंबाई

लंबाई के एक केवियन के साथ एक त्रिकोण d

स्टीवर्ट की प्रमेय

केवियन की लंबाई स्टीवर्ट के प्रमेय द्वारा निर्धारित की जा सकती है: आरेख में, केवियन की लंबाई d सूत्र द्वारा दी गई है।

सामान्यतः यह निम्नलिखित स्मरक द्वारा भी दर्शाया गया है (कुछ पुनर्व्यवस्था के साथ)।

[4]


मध्य

यदि केवियन माध्यिका (त्रिकोण) होता है (इस प्रकार भुजा को समद्विभाजित करता है), तो इसकी लंबाई सूत्र से निर्धारित की जा सकती है।

या

तब से

इसलिए इस स्थिति में


कोण द्विभाजक

यदि केवियन समद्विभाजक कोण ​​द्विभाजक होता है, तो इसकी लंबाई सूत्रों का पालन करती है।

एवं[5]

एवं

जहां अर्द्धपरिधि लम्बाई a की भुजा को b : c के अनुपात में बांटा गया है।

ऊँचाई

यदि केवियन ऊंचाई (त्रिकोण) होता है एवं इस प्रकार इस तरफ लंबवत होता है, तो इसकी लंबाई सूत्रों का पालन करती है।

एवं

जहां अर्द्धपरिधि


अनुपात गुण

एक सामान्य बिंदु से गुजरने वाले तीन केवियन

तीन सेवियों द्वारा बनाई गई लंबाई के अनुपात के विभिन्न गुण हैं जो सभी आंतरिक बिंदु से प्रवाहित होते हैं,[6]: 177–188  दाईं ओर आरेख का वर्णन करते हुए,

प्रथम संपत्ति सेवा के प्रमेय के रूप में जानी जाती है। अंतिम दो गुण समतुल्य हैं क्योंकि दो समीकरणों को जोड़ने से पहचान (गणित) 1 + 1 + 1 = 3 मिलती है।

विभाजक

त्रिभुज का स्प्लिटर (ज्यामिति) केवियन है जो परिमाप बहुभुजों को द्विभाजित करता है। त्रिभुज के नागल बिंदु पर तीन विभाजक समवर्ती रेखाएँ मिलती है।

क्षेत्र द्विभाजक

किसी त्रिभुज के समद्विभाजन क्षेत्रीय समद्विभाजक एवं परिमाप समद्विभाजक में से तीन इसकी माध्यिकाएँ हैं, जो शीर्षों को विपरीत भुजा के मध्य बिंदुओं से जोड़ती हैं। इस प्रकार समान-घनत्व वाला त्रिभुज सैद्धांतिक रूप से किसी भी माध्यिका को सहारा देने वाले उस्तरा पर संतुलित होगा।

कोण त्रिभाजक

यदि किसी त्रिभुज के प्रत्येक शीर्ष से दो केवियाँ खींची जाती हैं ताकि कोण को तीन बराबर कोणों में विभाजित किया जा सके, तो छह केवियन जोड़ियों में प्रतिच्छेद करके एक समबाहु त्रिभुज बनाते हैं, जिसे मॉर्ले त्रिभुज कहा जाता है।

केवियों द्वारा गठित आंतरिक त्रिभुज का क्षेत्रफल

राउथ की प्रमेय किसी दिए गए त्रिभुज के क्षेत्रफल के अनुपात को तीन सेवियों के जोड़ीदार चौराहों द्वारा गठित त्रिभुज के अनुपात को निर्धारित करता है, प्रत्येक शीर्ष से एक।

यह भी देखें

टिप्पणियाँ

  1. Coxeter, H. S. M.; Greitzer, S. L. (1967). ज्यामिति पर दोबारा गौर किया. Washington, DC: Mathematical Association of America. p. 4. ISBN 0-883-85619-0.
  2. Some authors exclude the other two sides of the triangle, see Eves (1963, p.77)
  3. Lightner, James E. (1975). "त्रिकोण के 'केंद्रों' पर एक नया रूप". The Mathematics Teacher. 68 (7): 612–615. JSTOR 27960289.
  4. "समस्या समाधान की कला". artofproblemsolving.com. Retrieved 2018-10-22.
  5. Johnson, Roger A., Advanced Euclidean Geometry, Dover Publ., 2007 (orig. 1929), p. 70.
  6. Alfred S. Posamentier and Charles T. Salkind, Challenging Problems in Geometry, Dover Publishing Co., second revised edition, 1996.


संदर्भ

  • Eves, Howard (1963), A Survey of Geometry (Vol. One), Allyn and Bacon
  • Ross Honsberger (1995). Episodes in Nineteenth and Twentieth Century Euclidean Geometry, pages 13 and 137. Mathematical Association of America.
  • Vladimir Karapetoff (1929). "Some properties of correlative vertex lines in a plane triangle." American Mathematical Monthly 36: 476–479.
  • Indika Shameera Amarasinghe (2011). “A New Theorem on any Right-angled Cevian Triangle.” Journal of the World Federation of National Mathematics Competitions, Vol 24 (02), pp. 29–37.