जेट (कण भौतिकी): Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image:CDF Top Event.jpg|thumb|right|240px|[[ शीर्ष क्वार्क | शीर्ष क्वार्क]] और | [[Image:CDF Top Event.jpg|thumb|right|240px|[[ शीर्ष क्वार्क |शीर्ष क्वार्क]] और प्रति शीर्ष क्वार्क की युगल जेट में क्षय हो रही है, [[टेवाट्रॉन]] में फर्मिलैब संसूचक में कोलाइडर संसूचक में कण ट्रैक और अन्य फर्मों के संमिलित संग्रह के रूप में दिखाई दे रही है।]]एक जेट एक [[कण भौतिकी]] या भारी [[आयन]] प्रयोग में [[क्वार्क]] या ग्लूऑन के [[ haronization |हैड्रोनाइजेशन]] द्वारा उत्पादित [[हैड्रोन]] और अन्य कणों का एक संकीर्ण शंकु है। [[क्वांटम क्रोमोडायनामिक्स|क्वांटम क्रोमोगतिकी]](क्यूसीडी) बंधन के कारण क्वार्क जैसे रंगीन आवेश वाले कण मुक्त रूप में स्थित नहीं हो सकते हैं, जो मात्र रंगहीन अवस्थाओं की अनुमति देता है। जब रंग आवेश युक्त कोई वस्तु खंडित होती है, तो प्रत्येक खंड कुछ रंग आवेश को अपने साथ ले जाता है। कारावास का पालन करने के लिए, ये खंड रंगहीन वस्तुओं का निर्माण करने के लिए अपने चारों ओर अन्य रंगीन वस्तुओं का निर्माण करते हैं। इन वस्तुओं के संयोजन को एक जेट कहा जाता है, चूंकि सभी खंड एक ही दिशा में यात्रा करते हैं, जिससे कणों का एक संकीर्ण जेट बनता है। मूल क्वार्क के गुणों को निर्धारित करने के लिए जेट को [[कण डिटेक्टर|कण संसूचक]] में मापा जाता है और अध्ययन किया जाता है। | ||
एक जेट परिभाषा में जेट आल्गोरिदम और एक पुनर्संयोजन योजना सम्मिलित है।<ref>{{Cite journal|last=Salam|first=Gavin P.|date=2010-06-01|title=जेटोग्राफी की ओर|url=https://doi.org/10.1140/epjc/s10052-010-1314-6|journal=The European Physical Journal C|language=en|volume=67|issue=3|pages=637–686|doi=10.1140/epjc/s10052-010-1314-6|issn=1434-6052|arxiv=0906.1833}}</ref> पूर्व परिभाषित करता है कि कैसे कुछ इनपुट, उदा. कण या संसूचक वस्तु, जेट में समूहीकृत होते हैं, जबकि बाद वाला निर्दिष्ट करता है कि जेट को गति कैसे दी जाती है। उदाहरण के लिए, जेट को क्षेपण(कण भौतिकी) द्वारा चित्रित किया जा सकता है। जेट दिशा (जेट अक्ष) को क्षेपण(कण भौतिकी) के रूप में परिभाषित किया जा सकता है। कण भौतिकी प्रयोगों में, जेट सामान्यतः संसूचक [[कैलोरीमीटर (कण भौतिकी)]] में ऊर्जा निक्षेपण के समूहों से निर्मित होते हैं। अनुकारित प्रक्रियाओं का अध्ययन करते समय, अनुकारित संसूचक प्रतिक्रिया के आधार पर कैलोरीमीटर जेट का पुनर्निर्माण किया जा सकता है। यद्यपि , अनुकारित प्रतिदर्शों में, विखंडन प्रक्रियाओं से निकलने वाले स्थिर कणों से सीधे जेट का पुनर्निर्माण भी किया जा सकता है। कण-स्तर जेट को प्रायः यथार्थता-जेट कहा जाता है। एक ठीक जेट आल्गोरिदम सामान्यतः घटना के विकास में विभिन्न स्तरों पर जेट के समान समूह प्राप्त करने की अनुमति देता है। विशिष्ट जेट पुनर्निर्माण एल्गोरिदम हैं, उदाहरण के लिए, एंटी-''k''<sub>T</sub> आल्गोरिदम, k<sub>T</sub> आल्गोरिदम, शंकु आल्गोरिदम। एक विशिष्ट पुनर्संयोजन योजना ई-योजना या 4-सदिश योजना है, जिसमें एक जेट के 4-सदिश को उसके सभी घटकों के 4-सदिश के योग के रूप में परिभाषित किया गया है। | एक जेट परिभाषा में जेट आल्गोरिदम और एक पुनर्संयोजन योजना सम्मिलित है।<ref>{{Cite journal|last=Salam|first=Gavin P.|date=2010-06-01|title=जेटोग्राफी की ओर|url=https://doi.org/10.1140/epjc/s10052-010-1314-6|journal=The European Physical Journal C|language=en|volume=67|issue=3|pages=637–686|doi=10.1140/epjc/s10052-010-1314-6|issn=1434-6052|arxiv=0906.1833}}</ref> पूर्व परिभाषित करता है कि कैसे कुछ इनपुट, उदा. कण या संसूचक वस्तु, जेट में समूहीकृत होते हैं, जबकि बाद वाला निर्दिष्ट करता है कि जेट को गति कैसे दी जाती है। उदाहरण के लिए, जेट को क्षेपण(कण भौतिकी) द्वारा चित्रित किया जा सकता है। जेट दिशा(जेट अक्ष) को क्षेपण(कण भौतिकी) के रूप में परिभाषित किया जा सकता है। कण भौतिकी प्रयोगों में, जेट सामान्यतः संसूचक [[कैलोरीमीटर (कण भौतिकी)|कैलोरीमीटर(कण भौतिकी]]) में ऊर्जा निक्षेपण के समूहों से निर्मित होते हैं। अनुकारित प्रक्रियाओं का अध्ययन करते समय, अनुकारित संसूचक प्रतिक्रिया के आधार पर कैलोरीमीटर जेट का पुनर्निर्माण किया जा सकता है। यद्यपि , अनुकारित प्रतिदर्शों में, विखंडन प्रक्रियाओं से निकलने वाले स्थिर कणों से सीधे जेट का पुनर्निर्माण भी किया जा सकता है। कण-स्तर जेट को प्रायः यथार्थता-जेट कहा जाता है। एक ठीक जेट आल्गोरिदम सामान्यतः घटना के विकास में विभिन्न स्तरों पर जेट के समान समूह प्राप्त करने की अनुमति देता है। विशिष्ट जेट पुनर्निर्माण एल्गोरिदम हैं, उदाहरण के लिए, एंटी-''k''<sub>T</sub> आल्गोरिदम, k<sub>T</sub> आल्गोरिदम, शंकु आल्गोरिदम। एक विशिष्ट पुनर्संयोजन योजना ई-योजना या 4-सदिश योजना है, जिसमें एक जेट के 4-सदिश को उसके सभी घटकों के 4-सदिश के योग के रूप में परिभाषित किया गया है। | ||
आपेक्षिकीय भारी आयन भौतिकी में, जेट महत्वपूर्ण हैं क्योंकि प्रारंभिक कठोर प्रकीर्णन टकराव में निर्मित क्यूसीडी पदार्थ के लिए एक प्राकृतिक जांच है, और इसके चरण को इंगित करता है। जब क्यूसीडी पदार्थ [[क्वार्क ग्लूऑन प्लाज्मा]] में एक चरण विनिमय से गुजरता है, तो माध्यम में ऊर्जा हानि अत्यधिक बढ़ जाती है, प्रभावी रूप से बाहर जाने वाले जेट का शमन करती है (तीव्रता को कम करना)। | आपेक्षिकीय भारी आयन भौतिकी में, जेट महत्वपूर्ण हैं क्योंकि प्रारंभिक कठोर प्रकीर्णन टकराव में निर्मित क्यूसीडी पदार्थ के लिए एक प्राकृतिक जांच है, और इसके चरण को इंगित करता है। जब क्यूसीडी पदार्थ [[क्वार्क ग्लूऑन प्लाज्मा]] में एक चरण विनिमय से गुजरता है, तो माध्यम में ऊर्जा हानि अत्यधिक बढ़ जाती है, प्रभावी रूप से बाहर जाने वाले जेट का शमन करती है(तीव्रता को कम करना)। | ||
जेट विश्लेषण तकनीकों के उदाहरण हैं: | जेट विश्लेषण तकनीकों के उदाहरण हैं: | ||
* जेट सहसंबंध | * जेट सहसंबंध | ||
* सुरुचि लेबल(जैसे, [[बी-टैगिंग|बी- लेबल]]) | * सुरुचि लेबल(जैसे, [[बी-टैगिंग|बी- लेबल]]) | ||
* जेट उपसंरचना। | * जेट उपसंरचना। | ||
Line 17: | Line 17: | ||
== जेट उत्पादन == | == जेट उत्पादन == | ||
क्यूसीडी दृढ़ प्रकीर्णन प्रक्रियाओं में जेट का उत्पादन किया जाता है, जो उच्च अनुप्रस्थ गति वाले क्वार्क या ग्लून्स बनाते हैं, या सामूहिक रूप से पार्टोनिक चित्र में [[पार्टन (कण भौतिकी)]] कहलाते हैं। | क्यूसीडी दृढ़ प्रकीर्णन प्रक्रियाओं में जेट का उत्पादन किया जाता है, जो उच्च अनुप्रस्थ गति वाले क्वार्क या ग्लून्स बनाते हैं, या सामूहिक रूप से पार्टोनिक चित्र में [[पार्टन (कण भौतिकी)|पार्टन(कण भौतिकी]]) कहलाते हैं। | ||
जेट के एक निश्चित समूह को बनाने की संभावना को जेट उत्पादन अनुप्रस्थ काट द्वारा वर्णित किया गया है, जो [[पार्टन वितरण समारोह|पार्टन वितरण फलन]] द्वारा भारित प्राथमिक | जेट के एक निश्चित समूह को बनाने की संभावना को जेट उत्पादन अनुप्रस्थ काट द्वारा वर्णित किया गया है, जो [[पार्टन वितरण समारोह|पार्टन वितरण फलन]] द्वारा भारित प्राथमिक प्रक्षोभ क्यूसीडी क्वार्क, प्रतिक्वार्क और ग्लूऑन प्रक्रियाओं का औसत है। सबसे निरंतर जेट युगल उत्पादन प्रक्रिया के लिए, दो कण प्रकीर्णन, एक हैड्रोनिक टक्कर में जेट उत्पादन अनुप्रस्थ काट द्वारा दिया जाता है | ||
:<math> | :<math> | ||
Line 30: | Line 30: | ||
* <math>f_i^a(x, Q^2)</math>: बीम '''a''' में कण प्रजातियों को खोजने के लिए पार्टन वितरण फलन। | * <math>f_i^a(x, Q^2)</math>: बीम '''a''' में कण प्रजातियों को खोजने के लिए पार्टन वितरण फलन। | ||
प्राथमिक अनुप्रस्थ काट <math>\hat{\sigma}</math> उदा. पेस्किन एंड श्रोएडर (1995), खंड 17.4 में प्रक्षोभ सिद्धांत के अग्रणी क्रम की गणना। पार्टन वितरण फलन के विभिन्न मानकीकरण की समीक्षा और मोंटे कार्लो घटना उत्पादक के संदर्भ में गणना | प्राथमिक अनुप्रस्थ काट <math>\hat{\sigma}</math> उदा. पेस्किन एंड श्रोएडर(1995), खंड 17.4 में प्रक्षोभ सिद्धांत के अग्रणी क्रम की गणना। पार्टन वितरण फलन के विभिन्न मानकीकरण की समीक्षा और मोंटे कार्लो घटना उत्पादक के संदर्भ में गणना टी. सोजोस्ट्रैंड एट अल(2003), खंड 7.4.1 में चर्चा की गई है। | ||
== जेट विखंडन == | == जेट विखंडन == | ||
प्रक्षोभ क्यूसीडी गणनाओं में अंतिम अवस्था में रंगीन भाग हो सकते हैं, परन्तु मात्र बेरंग हैड्रोन जो अंततः उत्पादित होते हैं, प्रयोगात्मक रूप से देखे जाते हैं। इस प्रकार, एक दी गई प्रक्रिया के परिणामस्वरूप एक संसूचक में क्या देखा गया है, इसका वर्णन करने के लिए, सभी बाहर जाने वाले रंगीन पार्टन को पहले पार्टन बौछार से गुजरना होगा और फिर उत्पादित पार्टन के हैड्रॉन में संयोजन करना होगा। मृदु क्यूसीडी विकिरण, हैड्रॉन के गठन, या दोनों प्रक्रियाओं को एक साथ वर्णित करने के लिए शब्द विखंडन और हैड्रोनाइजेशन प्रायः साहित्य में एक दूसरे के स्थान पर उपयोग किया जाता है। | |||
जैसा कि दृढ़ प्रकीर्णन में उत्पन्न पार्टन | जैसा कि दृढ़ प्रकीर्णन में उत्पन्न पार्टन अन्योन्यक्रिया से बाहर निकलता है, इसके पृथक्करण के साथ दृढ़ युग्मन स्थिरांक बढ़ेगा। यह क्यूसीडी विकिरण की संभावना को बढ़ाता है, जो मुख्य रूप से प्रारंभिक भाग के संबंध में अल्पकोणीय-कोण है। इस प्रकार, एक पार्टन ग्लून्स विकीर्ण करेगा, जो बदले में {{SubatomicParticle|Quark}}{{SubatomicParticle|Antiquark}} जोड़े को विकीर्ण करेगा और इसी प्रकार प्रत्येक नवीन पार्टन अपने मूल के साथ लगभग संरेखित होगा। पार्टन घनत्व कार्यों के विखंडन फलनों <math>P_{ji}\!\left(\frac{x}{z}, Q^2\right)</math> के साथ स्पाइनर को हल करके इसका वर्णन किया जा सकता है। यह एक {{ill|Yuri Dokshitzer|de|Juri Lwowitsch Dokschizer|lt=डॉकशिट्ज़र}}-[[व्लादिमीर ग्रिबोव]]-[[लेव लिपाटोव]]-अल्टारिली-पैरिसि(डीजीएलएपी) प्रकार समीकरण | ||
:<math>\frac{\partial}{\partial\ln Q^2} D_{i}^{h}(x, Q^2) = \sum_{j} \int_{x}^{1} \frac{dz}{z} \frac{\alpha_S}{4\pi} P_{ji}\!\left(\frac{x}{z}, Q^2\right) D_{j}^{h}(z, Q^2)</math> | :<math>\frac{\partial}{\partial\ln Q^2} D_{i}^{h}(x, Q^2) = \sum_{j} \int_{x}^{1} \frac{dz}{z} \frac{\alpha_S}{4\pi} P_{ji}\!\left(\frac{x}{z}, Q^2\right) D_{j}^{h}(z, Q^2)</math> द्वारा वर्णित है | ||
पार्टन | पार्टन बौछार क्रमिक रूप से कम ऊर्जा के भाग उत्पन्न करते है, और इसलिए प्रक्षोभ क्यूसीडी के लिए वैधता के क्षेत्र से बाहर निकलना चाहिए। परिघटनात्मक मॉडल को उस समय की लंबाई का वर्णन करने के लिए लागू किया जाना चाहिए जब बौछार होती है, और फिर रंगहीन हैड्रोन की बाध्य अवस्था में रंगीन पार्टन का संयोजन होता है, जो स्वाभाविक रूप से गैर-प्रक्षोभ करने वाला होता है। लुंड स्ट्रिंग मॉडल एक उदाहरण है, जिसे कई आधुनिक [[घटना जनरेटर|घटना उत्पादक]] में लागू किया गया है। | ||
== इन्फ्रारेड और कोलीनियर सुरक्षा == | == इन्फ्रारेड और कोलीनियर सुरक्षा == | ||
एक जेट एल्गोरिद्म | एक जेट एल्गोरिद्म अवरक्त सुरक्षित होता है यदि यह एक मृदु विकिरक जोड़ने के लिए एक घटना को संशोधित करने के बाद जेट के समान समूह का उत्पादन करता है। इसी प्रकार, एक जेट आल्गोरिदम संरेख सुरक्षित है यदि किसी एक इनपुट के संरेखीय विभाजन को प्रारम्भ करने के बाद जेट के अंतिम समूह को नहीं बदला जाता है। जेट आल्गोरिदम को इन दो आवश्यकताओं को पूरा करने के कई कारण हैं। प्रायोगिक रूप से, जेट उपयोगी होते हैं यदि वे बीज पार्टन के विषय में जानकारी रखते हैं। जब उत्पादन किया जाता है, तो बीज पार्टन के पार्टन बौछार से गुजरने की अपेक्षा की जाती है, जिसमें हैड्रोनाइज़ेशन प्रारम्भ होने से पहले लगभग-समरेख विभाजन की एक श्रृंखला सम्मिलित हो सकती है। इसके अतिरिक्त , जब संसूचक प्रतिक्रिया में अस्थिरता की बात आती है तो जेट एल्गोरिदम दृढ़ होना चाहिए। सैद्धांतिक रूप से, यदि कोई जेट एल्गोरिद्म अवरक्त और सरेख सुरक्षित नहीं है, तो यह गारंटी नहीं दी जा सकती है कि प्रक्षोभ सिद्धांत के किसी भी क्रम पर एक परिमित अनुप्रस्थ काट प्राप्त किया जा सकता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 52: | Line 52: | ||
* {{cite journal | last=Andersson | first=B. | last2=Gustafson | first2=G. | last3=Ingelman | first3=G. | last4=Sjöstrand | first4=T. | title=Parton fragmentation and string dynamics | journal=Physics Reports | publisher=Elsevier BV | volume=97 | issue=2-3 | year=1983 | issn=0370-1573 | doi=10.1016/0370-1573(83)90080-7 | pages=31–145}} | * {{cite journal | last=Andersson | first=B. | last2=Gustafson | first2=G. | last3=Ingelman | first3=G. | last4=Sjöstrand | first4=T. | title=Parton fragmentation and string dynamics | journal=Physics Reports | publisher=Elsevier BV | volume=97 | issue=2-3 | year=1983 | issn=0370-1573 | doi=10.1016/0370-1573(83)90080-7 | pages=31–145}} | ||
* {{cite journal | last=Ellis | first=Stephen D. | last2=Soper | first2=Davison E. | title=Successive combination jet algorithm for hadron collisions | journal=Physical Review D | publisher=American Physical Society (APS) | volume=48 | issue=7 | date=1993-10-01 | issn=0556-2821 | doi=10.1103/physrevd.48.3160 | pages=3160–3166|arxiv=hep-ph/9305266}} | * {{cite journal | last=Ellis | first=Stephen D. | last2=Soper | first2=Davison E. | title=Successive combination jet algorithm for hadron collisions | journal=Physical Review D | publisher=American Physical Society (APS) | volume=48 | issue=7 | date=1993-10-01 | issn=0556-2821 | doi=10.1103/physrevd.48.3160 | pages=3160–3166|arxiv=hep-ph/9305266}} | ||
* [https://arxiv.org/abs/nucl-th/0302077 M. Gyulassy ''et al.'', "Jet Quenching and Radiative Energy Loss in Dense Nuclear Matter", in R.C. Hwa & X.-N. Wang (eds.), ''Quark Gluon Plasma 3'' (World Scientific, Singapore, 2003).] | * [https://arxiv.org/abs/nucl-th/0302077 M. Gyulassy ''et al.'', "Jet Quenching and Radiative Energy Loss in Dense Nuclear Matter", in R.C. Hwa & X.-N. Wang(eds.), ''Quark Gluon Plasma 3''(World Scientific, Singapore, 2003) .] | ||
* J. E. Huth ''et al.'', in E. L. Berger (ed.), ''Proceedings of Research Directions For The Decade: Snowmass 1990'', (World Scientific, Singapore, 1992), 134. [https://web.archive.org/web/20110514050455/http://lss.fnal.gov/archive/test-preprint/fermilab-conf-90-249-e.shtml | * J. E. Huth ''et al.'', in E. L. Berger(ed.), ''Proceedings of Research Directions For The Decade: Snowmass 1990'',(World Scientific, Singapore, 1992), 134.([https://web.archive.org/web/20110514050455/http://lss.fnal.gov/archive/test-preprint/fermilab-conf-90-249-e.shtml Preprint at Fermilab Library Server)] | ||
* [http://physics.weber.edu/schroeder/qftbook.html M. E. Peskin, D. V. Schroeder, "An Introduction to Quantum Field Theory" (Westview, Boulder, CO, 1995)]. | * [http://physics.weber.edu/schroeder/qftbook.html M. E. Peskin, D. V. Schroeder, "An Introduction to Quantum Field Theory"(Westview, Boulder, CO, 1995)] . | ||
* [https://arxiv.org/abs/hep-ph/0308153 T. Sjöstrand ''et al.'', "Pythia 6.3 Physics and Manual", Report LU TP 03-38 (2003).] | * [https://arxiv.org/abs/hep-ph/0308153 T. Sjöstrand ''et al.'', "Pythia 6.3 Physics and Manual", Report LU TP 03-38(2003) .] | ||
* [http://www.arxiv.org/abs/hep-ph/0412013 G. Sterman, "क्यूसीडी and Jets", Report YITP-SB-04-59 (2004).] | * [http://www.arxiv.org/abs/hep-ph/0412013 G. Sterman, "क्यूसीडी and Jets", Report YITP-SB-04-59(2004) .] | ||
Revision as of 20:37, 14 April 2023
एक जेट एक कण भौतिकी या भारी आयन प्रयोग में क्वार्क या ग्लूऑन के हैड्रोनाइजेशन द्वारा उत्पादित हैड्रोन और अन्य कणों का एक संकीर्ण शंकु है। क्वांटम क्रोमोगतिकी(क्यूसीडी) बंधन के कारण क्वार्क जैसे रंगीन आवेश वाले कण मुक्त रूप में स्थित नहीं हो सकते हैं, जो मात्र रंगहीन अवस्थाओं की अनुमति देता है। जब रंग आवेश युक्त कोई वस्तु खंडित होती है, तो प्रत्येक खंड कुछ रंग आवेश को अपने साथ ले जाता है। कारावास का पालन करने के लिए, ये खंड रंगहीन वस्तुओं का निर्माण करने के लिए अपने चारों ओर अन्य रंगीन वस्तुओं का निर्माण करते हैं। इन वस्तुओं के संयोजन को एक जेट कहा जाता है, चूंकि सभी खंड एक ही दिशा में यात्रा करते हैं, जिससे कणों का एक संकीर्ण जेट बनता है। मूल क्वार्क के गुणों को निर्धारित करने के लिए जेट को कण संसूचक में मापा जाता है और अध्ययन किया जाता है।
एक जेट परिभाषा में जेट आल्गोरिदम और एक पुनर्संयोजन योजना सम्मिलित है।[1] पूर्व परिभाषित करता है कि कैसे कुछ इनपुट, उदा. कण या संसूचक वस्तु, जेट में समूहीकृत होते हैं, जबकि बाद वाला निर्दिष्ट करता है कि जेट को गति कैसे दी जाती है। उदाहरण के लिए, जेट को क्षेपण(कण भौतिकी) द्वारा चित्रित किया जा सकता है। जेट दिशा(जेट अक्ष) को क्षेपण(कण भौतिकी) के रूप में परिभाषित किया जा सकता है। कण भौतिकी प्रयोगों में, जेट सामान्यतः संसूचक कैलोरीमीटर(कण भौतिकी) में ऊर्जा निक्षेपण के समूहों से निर्मित होते हैं। अनुकारित प्रक्रियाओं का अध्ययन करते समय, अनुकारित संसूचक प्रतिक्रिया के आधार पर कैलोरीमीटर जेट का पुनर्निर्माण किया जा सकता है। यद्यपि , अनुकारित प्रतिदर्शों में, विखंडन प्रक्रियाओं से निकलने वाले स्थिर कणों से सीधे जेट का पुनर्निर्माण भी किया जा सकता है। कण-स्तर जेट को प्रायः यथार्थता-जेट कहा जाता है। एक ठीक जेट आल्गोरिदम सामान्यतः घटना के विकास में विभिन्न स्तरों पर जेट के समान समूह प्राप्त करने की अनुमति देता है। विशिष्ट जेट पुनर्निर्माण एल्गोरिदम हैं, उदाहरण के लिए, एंटी-kT आल्गोरिदम, kT आल्गोरिदम, शंकु आल्गोरिदम। एक विशिष्ट पुनर्संयोजन योजना ई-योजना या 4-सदिश योजना है, जिसमें एक जेट के 4-सदिश को उसके सभी घटकों के 4-सदिश के योग के रूप में परिभाषित किया गया है।
आपेक्षिकीय भारी आयन भौतिकी में, जेट महत्वपूर्ण हैं क्योंकि प्रारंभिक कठोर प्रकीर्णन टकराव में निर्मित क्यूसीडी पदार्थ के लिए एक प्राकृतिक जांच है, और इसके चरण को इंगित करता है। जब क्यूसीडी पदार्थ क्वार्क ग्लूऑन प्लाज्मा में एक चरण विनिमय से गुजरता है, तो माध्यम में ऊर्जा हानि अत्यधिक बढ़ जाती है, प्रभावी रूप से बाहर जाने वाले जेट का शमन करती है(तीव्रता को कम करना)।
जेट विश्लेषण तकनीकों के उदाहरण हैं:
- जेट सहसंबंध
- सुरुचि लेबल(जैसे, बी- लेबल)
- जेट उपसंरचना।
लुंड स्ट्रिंग मॉडल जेट विखंडन मॉडल का एक उदाहरण है।
जेट उत्पादन
क्यूसीडी दृढ़ प्रकीर्णन प्रक्रियाओं में जेट का उत्पादन किया जाता है, जो उच्च अनुप्रस्थ गति वाले क्वार्क या ग्लून्स बनाते हैं, या सामूहिक रूप से पार्टोनिक चित्र में पार्टन(कण भौतिकी) कहलाते हैं।
जेट के एक निश्चित समूह को बनाने की संभावना को जेट उत्पादन अनुप्रस्थ काट द्वारा वर्णित किया गया है, जो पार्टन वितरण फलन द्वारा भारित प्राथमिक प्रक्षोभ क्यूसीडी क्वार्क, प्रतिक्वार्क और ग्लूऑन प्रक्रियाओं का औसत है। सबसे निरंतर जेट युगल उत्पादन प्रक्रिया के लिए, दो कण प्रकीर्णन, एक हैड्रोनिक टक्कर में जेट उत्पादन अनुप्रस्थ काट द्वारा दिया जाता है
द्वारा
- x, Q2: अनुदैर्ध्य संवेग भिन्न और संवेग स्थानांतरण
- : प्रतिक्रिया ij → k के लिए प्रक्षोभ क्यूसीडी अनुप्रस्थ काट
- : बीम a में कण प्रजातियों को खोजने के लिए पार्टन वितरण फलन।
प्राथमिक अनुप्रस्थ काट उदा. पेस्किन एंड श्रोएडर(1995), खंड 17.4 में प्रक्षोभ सिद्धांत के अग्रणी क्रम की गणना। पार्टन वितरण फलन के विभिन्न मानकीकरण की समीक्षा और मोंटे कार्लो घटना उत्पादक के संदर्भ में गणना टी. सोजोस्ट्रैंड एट अल(2003), खंड 7.4.1 में चर्चा की गई है।
जेट विखंडन
प्रक्षोभ क्यूसीडी गणनाओं में अंतिम अवस्था में रंगीन भाग हो सकते हैं, परन्तु मात्र बेरंग हैड्रोन जो अंततः उत्पादित होते हैं, प्रयोगात्मक रूप से देखे जाते हैं। इस प्रकार, एक दी गई प्रक्रिया के परिणामस्वरूप एक संसूचक में क्या देखा गया है, इसका वर्णन करने के लिए, सभी बाहर जाने वाले रंगीन पार्टन को पहले पार्टन बौछार से गुजरना होगा और फिर उत्पादित पार्टन के हैड्रॉन में संयोजन करना होगा। मृदु क्यूसीडी विकिरण, हैड्रॉन के गठन, या दोनों प्रक्रियाओं को एक साथ वर्णित करने के लिए शब्द विखंडन और हैड्रोनाइजेशन प्रायः साहित्य में एक दूसरे के स्थान पर उपयोग किया जाता है।
जैसा कि दृढ़ प्रकीर्णन में उत्पन्न पार्टन अन्योन्यक्रिया से बाहर निकलता है, इसके पृथक्करण के साथ दृढ़ युग्मन स्थिरांक बढ़ेगा। यह क्यूसीडी विकिरण की संभावना को बढ़ाता है, जो मुख्य रूप से प्रारंभिक भाग के संबंध में अल्पकोणीय-कोण है। इस प्रकार, एक पार्टन ग्लून्स विकीर्ण करेगा, जो बदले में
q
q
जोड़े को विकीर्ण करेगा और इसी प्रकार प्रत्येक नवीन पार्टन अपने मूल के साथ लगभग संरेखित होगा। पार्टन घनत्व कार्यों के विखंडन फलनों के साथ स्पाइनर को हल करके इसका वर्णन किया जा सकता है। यह एक डॉकशिट्ज़र -व्लादिमीर ग्रिबोव-लेव लिपाटोव-अल्टारिली-पैरिसि(डीजीएलएपी) प्रकार समीकरण
- द्वारा वर्णित है
पार्टन बौछार क्रमिक रूप से कम ऊर्जा के भाग उत्पन्न करते है, और इसलिए प्रक्षोभ क्यूसीडी के लिए वैधता के क्षेत्र से बाहर निकलना चाहिए। परिघटनात्मक मॉडल को उस समय की लंबाई का वर्णन करने के लिए लागू किया जाना चाहिए जब बौछार होती है, और फिर रंगहीन हैड्रोन की बाध्य अवस्था में रंगीन पार्टन का संयोजन होता है, जो स्वाभाविक रूप से गैर-प्रक्षोभ करने वाला होता है। लुंड स्ट्रिंग मॉडल एक उदाहरण है, जिसे कई आधुनिक घटना उत्पादक में लागू किया गया है।
इन्फ्रारेड और कोलीनियर सुरक्षा
एक जेट एल्गोरिद्म अवरक्त सुरक्षित होता है यदि यह एक मृदु विकिरक जोड़ने के लिए एक घटना को संशोधित करने के बाद जेट के समान समूह का उत्पादन करता है। इसी प्रकार, एक जेट आल्गोरिदम संरेख सुरक्षित है यदि किसी एक इनपुट के संरेखीय विभाजन को प्रारम्भ करने के बाद जेट के अंतिम समूह को नहीं बदला जाता है। जेट आल्गोरिदम को इन दो आवश्यकताओं को पूरा करने के कई कारण हैं। प्रायोगिक रूप से, जेट उपयोगी होते हैं यदि वे बीज पार्टन के विषय में जानकारी रखते हैं। जब उत्पादन किया जाता है, तो बीज पार्टन के पार्टन बौछार से गुजरने की अपेक्षा की जाती है, जिसमें हैड्रोनाइज़ेशन प्रारम्भ होने से पहले लगभग-समरेख विभाजन की एक श्रृंखला सम्मिलित हो सकती है। इसके अतिरिक्त , जब संसूचक प्रतिक्रिया में अस्थिरता की बात आती है तो जेट एल्गोरिदम दृढ़ होना चाहिए। सैद्धांतिक रूप से, यदि कोई जेट एल्गोरिद्म अवरक्त और सरेख सुरक्षित नहीं है, तो यह गारंटी नहीं दी जा सकती है कि प्रक्षोभ सिद्धांत के किसी भी क्रम पर एक परिमित अनुप्रस्थ काट प्राप्त किया जा सकता है।
यह भी देखें
- डिजेट घटना
संदर्भ
- ↑ Salam, Gavin P. (2010-06-01). "जेटोग्राफी की ओर". The European Physical Journal C (in English). 67 (3): 637–686. arXiv:0906.1833. doi:10.1140/epjc/s10052-010-1314-6. ISSN 1434-6052.
- Andersson, B.; Gustafson, G.; Ingelman, G.; Sjöstrand, T. (1983). "Parton fragmentation and string dynamics". Physics Reports. Elsevier BV. 97 (2–3): 31–145. doi:10.1016/0370-1573(83)90080-7. ISSN 0370-1573.
- Ellis, Stephen D.; Soper, Davison E. (1993-10-01). "Successive combination jet algorithm for hadron collisions". Physical Review D. American Physical Society (APS). 48 (7): 3160–3166. arXiv:hep-ph/9305266. doi:10.1103/physrevd.48.3160. ISSN 0556-2821.
- M. Gyulassy et al., "Jet Quenching and Radiative Energy Loss in Dense Nuclear Matter", in R.C. Hwa & X.-N. Wang(eds.), Quark Gluon Plasma 3(World Scientific, Singapore, 2003) .
- J. E. Huth et al., in E. L. Berger(ed.), Proceedings of Research Directions For The Decade: Snowmass 1990,(World Scientific, Singapore, 1992), 134.(Preprint at Fermilab Library Server)
- M. E. Peskin, D. V. Schroeder, "An Introduction to Quantum Field Theory"(Westview, Boulder, CO, 1995) .
- T. Sjöstrand et al., "Pythia 6.3 Physics and Manual", Report LU TP 03-38(2003) .
- G. Sterman, "क्यूसीडी and Jets", Report YITP-SB-04-59(2004) .
बाहरी संबंध
- The Pythia/Jetset Monte Carlo event generator
- The FastJet jet clustering program