डेटा बिनिंग: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 31: | Line 31: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 21/03/2023]] | [[Category:Created On 21/03/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 15:29, 1 May 2023
डेटा बिनिंग, जिसे असतत बिनिंग या डेटा बकेटिंग भी कहा जाता है, डेटा प्री-प्रोसेसिंग प्रक्रिया है जिसका उपयोग साधारण अवलोकन त्रुटियों के प्रभावों को न्यून करने के लिए किया जाता है। मूल डेटा मान जो किसी दिए गए छोटे अंतराल बिन (कम्प्यूटेशनल ज्योमेट्री) में आते हैं, उसे अंतराल के मूल्य प्रतिनिधि द्वारा प्रतिस्थापित किया जाता है, जो अधिकांशतः केंद्रीय मान (माध्य या माध्यिका) होता है। यह परिमाणीकरण (सिग्नल प्रोसेसिंग) से संबंधित है: डेटा बिनिंग एब्सिस्सा अक्ष पर संचालित होता है जबकि परिमाणीकरण ऑर्डिनेट अक्ष पर संचालित होता है। बिनिंग गोलाई का सामान्यीकरण है।
सांख्यिकीय डेटा बिनिंग न्यून अथवा अधिक निरंतर मानों की संख्या को बिन में समूहित करने की विधि है। उदाहरण के लिए, यदि आपके निकट लोगों के समूह के सम्बन्ध में डेटा है, तो आप उनकी आयु को कम संख्या में आयु अंतरालों में व्यवस्थित करना चाहेंगे (उदाहरण के लिए, प्रत्येक पांच वर्ष में समूह निर्मित करना)। इसका उपयोग बहुभिन्नरूपी आँकड़ों में भी किया जा सकता है, समवर्ती रूप से विभिन्न आयामों में बिनिंग किया जा सकता है।
डिजिटल इमेज प्रोसेसिंग में, बिनिंग का अर्थ भिन्न है। पिक्सेल बिनिंग, रीडआउट के समय या पश्चात में, उनके मूल्यों का योग या औसत करके छवि में आसन्न पिक्सेल के ब्लॉक को संयोजित करने की प्रक्रिया है। यह डेटा की मात्रा को सिमित कर देता है, जिसके परिणाम में सापेक्ष नॉइज़ का स्तर भी कम हो जाता है।
उदाहरण उपयोग
हिस्टोग्राम अंतर्निहित आवृत्ति (सांख्यिकी) वितरण का निरीक्षण करने के लिए उपयोग किए जाने वाले डेटा बिनिंग का उदाहरण है। दृश्यता में सरलता के लिए वे सामान्यतः 1-आयामी स्थान और समान अंतराल (गणित) में होते हैं।
डेटा बिनिंग का उपयोग तब किया जा सकता है जब मास स्पेक्ट्रोमेट्री (एमएस) या परमाणु चुंबकीय अनुनाद (एनएमआर) प्रयोगों से वर्णक्रमीय आयाम में छोटे वाद्य परिवर्तन विभिन्न घटकों का प्रतिनिधित्व करने के रूप में अनुचित रूप से परिभाषित किए जाते है, जब डेटा प्रोफाइल का संग्रह पैटर्न प्रमाण विश्लेषण के अधीन होता है। इस दुविधा से मुक्त होने का मार्ग बिनिंग प्रक्रिया का उपयोग करना है जिसमें विश्लेषण के मध्य छोटे वर्णक्रमीय परिवर्तनों के अतिरिक्त चोटी अपने बिन में स्थिर रहती है, यह सुनिश्चित करने के लिए स्पेक्ट्रम को पर्याप्त डिग्री तक कम किया जाता है। उदाहरण के लिए, एनएमआर में रासायनिक शिफ्ट अक्ष को विखंडित और सामान्यतः व्याख्यान किया जा सकता है, और एमएस में वर्णक्रमीय त्रुटिहीनता पूर्णांक परमाणु द्रव्यमान इकाई मूल्यों के लिए गोल हो सकती है। इसके अतिरिक्त, विभिन्न डिजिटल कैमरा प्रणाली इमेज कंट्रास्ट को श्रेष्ठ बनाने के लिए स्वचालित पिक्सेल बिनिंग फ़ंक्शन को सम्मिलित करते हैं।[1]
बिनिंग का उपयोग मशीन लर्निंग में भी किया जाता है[2] माइक्रोसॉफ्ट के लाइट जीबीएम और स्किकिट-लर्न के हिस्टोग्राम-आधारित ग्रेडिएंट बूस्टिंग (मशीन लर्निंग) क्लासिफिकेशन ट्री जैसे एल्गोरिदम में पर्यवेक्षित वर्गीकरण और प्रतिगमन के लिए निर्णय-ट्री बूस्टिंग विधि को गति देने के लिए भी उपयोग किया जाता है।
यह भी देखें
- बिनिंग (बहुविकल्पी)
- निरंतर सुविधाओं का विवेक
- समूहीकृत डेटा
- हिस्टोग्राम
- माप का स्तर
- परिमाणीकरण (सिग्नल प्रोसेसिंग)
- गोलाई
संदर्भ
- ↑ "फोटोग्राफी में बिनिंग का उपयोग।". Nikon, FSU. Retrieved 2011-01-18.
- ↑ "LightGBM: A Highly Efficient Gradient Boosting Decision Tree". Neural Information Processing Systems (NIPS). Retrieved 2019-12-18.