त्रिकोणासन (ज्यामिति): Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (7 revisions imported from alpha:त्रिकोणासन_(ज्यामिति)) |
(No difference)
|
Revision as of 11:11, 3 May 2023
ज्यामिति में, एक त्रिभुज एक समतलीय वस्तु का त्रिभुजों में एक उपखंड है, और विस्तार से एक उच्च-आयाम ज्यामितीय वाली ज्यामितीय वस्तु का उपविभाजन सरलता में होता है। त्रि-आयामी आयतन के त्रिकोणासन में इसे एक साथ संकुलित किए गए चतुष्फलकी में उप-विभाजित करना सम्मिलित होगा।
ज्यादातर उदाहरणों में, त्रिकोणासन के त्रिभुजों को किनारे से किनारे और शीर्ष से शीर्ष तक मिलने की आवश्यकता होती है।
प्रकार
विभिन्न प्रकार के त्रिभुजों को परिभाषित किया जा सकता है, दोनों के आधार पर कि किस ज्यामितीय वस्तु को उप-विभाजित किया जाना है और उप-विभाजन कैसे निर्धारित किया जाता है।
- एक त्रिकोण का उपखण्ड है में -आयामी सिम्प्लेक्स जैसे कि कोई भी दो सिम्प्लेक्स एक सामान्य फलक (किसी भी निचले आयाम का एक सिंप्लेक्स) में प्रतिच्छेद करता है या बिल्कुल नहीं करता है, और किसी भी बाध्य समुच्चय में केवल परिमित रूप से कई सिम्प्लेक्स को में प्रतिच्छेद करता है। यह एक स्थानीय परिमित सरल जटिल है जो पूरे स्थान को ढक देता है।
- एक बिंदु-समुच्चय त्रिभुज, यानी, बिंदुओं के असतत स्थान समुच्चय का त्रिकोणासन , बिंदुओं के उत्तल पतवार का एक उपखंड है, जैसे कि कोई भी दो सिम्प्लेक्स किसी भी आयाम के एक समान छोर में प्रतिच्छेद करती हैं या बिल्कुल नहीं करती और इस तरह कि सिम्प्लेक्स के कोने का समुच्चय में समाहित होता है। प्रायः उपयोग किए जाने वाले और अध्ययन किए गए बिंदु समुच्चय त्रिकोणासन में डेलाउने त्रिभुज (सामान्य स्थिति में बिंदुओं के लिए, सरलता का समुच्चय जो एक खुली गेंद से परिचालित होता है जिसमें कोई इनपुट बिंदु नहीं होता है) और न्यूनतम-भार त्रिकोणासन सम्मिलित हैं (बिंदु समुच्चय त्रिकोणासन किनारे की लंबाई के योग को कम करता है)।
- मानचित्रकारी में, एक त्रिकोणीय अनियमित नेटवर्क प्रत्येक बिंदु के लिए ऊंचाई के साथ-साथ द्वि-आयामी बिंदुओं के एक समुच्चय का एक बिंदु समुच्चय त्रिभुज है। समतल से प्रत्येक बिंदु को उसकी ऊँची ऊँचाई तक उठाने से त्रिभुज के त्रिभुज त्रि-आयामी सतहों में उठ जाते हैं, जो त्रि-आयामी भू-आकृति का एक अनुमान बनाते हैं।
- एक बहुभुज त्रिभुज एक दिए गए बहुभुज का एक उपखंड है जो किनारे से किनारे तक मिलता है, फिर से इस गुण के साथ कि त्रिकोण के कोने का समुच्चय बहुभुज के कोने के समुच्चय के साथ मेल खाता है। बहुभुज त्रिभुज रैखिक समय में पाए जा सकते हैं और कई महत्वपूर्ण ज्यामितीय एल्गोरिदम का आधार बन सकते हैं, जिसमें आर्ट गैलरी समस्या का एक सरल अनुमानित समाधान भी सम्मिलित है। सीमित डेलाउने त्रिभुज, डेलाउने त्रिभुज का बिंदु समुच्चय से बहुभुज तक या अधिक सामान्यतः, सीधे-सीधे रेखांकन के लिए, डेलाउने त्रिभुज का एक रूपांतरण है।
- एक सतह त्रिभुज में त्रिभुजों का एक जाल होता है जिसमें दी गई सतह पर बिंदु होते हैं जो सतह को आंशिक रूप से या पूरी तरह से आच्छादित करते हैं।
- परिमित तत्व विधि में, त्रिकोणासन का उपयोग प्रायः बहुभुज जाल के रूप में किया जाता है (इस स्थिति में, एक त्रिकोण जाल) एक संगणना के अंतर्गत होता है। इस स्थिति में, त्रिभुजों को सिम्युलेटेड होने के लिए डोमेन का एक उपखंड बनाना चाहिए, लेकिन कोनों को इनपुट बिंदुओं तक सीमित करने के बजाय, अतिरिक्त स्टेनर पॉइंट को कोनों के रूप में जोड़ने की अनुमति है। परिमित तत्व जाल के रूप में उपयुक्त होने के लिए, परिमित तत्व अनुकरण के विवरण पर निर्भर मानदंड के अनुसार, एक त्रिभुज में अच्छी आकार के त्रिकोण होने चाहिए (जाली की गुणवत्ता देखें); उदाहरण के लिए, कुछ विधियों के लिए आवश्यक है कि सभी त्रिकोण सही या नुकीले हों, जो बिना रुकावट वाले जाल बनाते हैं। कई मेशिंग तकनीकों को जाना जाता है, जिसमें डेलाउने शोधन एल्गोरिदम जैसे च्यू का दूसरा एल्गोरिदम और रुपर्ट का एल्गोरिदम सम्मिलित है।
- अधिक सामान्य टोपोलॉजिकल स्पेस में, किसी स्थान का त्रिकोणासन सामान्यतः साधारण परिसरों को संदर्भित करता है जो स्पेस के लिए होमियोमॉर्फिक होते हैं।
सामान्यीकरण
त्रिकोणासन की अवधारणा को कुछ हद तक त्रिभुजों से संबंधित आकृतियों में उपविभाजनों के लिए सामान्यीकृत किया जा सकता है। विशेष रूप से, एक बिंदु समुच्चय का एक स्यूडोट्रायंगुलेशन बिंदुओं के उत्तल पतवार का एक विभाजन है जो स्यूडोट्राएंगल्स में होता है - बहुभुज, जो त्रिभुजों की तरह, ठीक तीन उत्तल कोने होते हैं। बिंदु समुच्चय त्रिभुज के रूप में, दिए गए इनपुट बिंदुओं पर स्यूडोट्रायंगुलेशन के लिए उनके शीर्ष होने की आवश्यकता होती है।