दो समानांतर रेखाओं के बीच की दूरी: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Problem in coordinate geometry}} {{redirect-distinguish|Distance between two lines|Distance between two skew lines}} समतल (ज्यामित...")
 
No edit summary
Line 5: Line 5:


== सूत्र और प्रमाण ==
== सूत्र और प्रमाण ==
क्योंकि रेखाएँ समानांतर हैं, उनके बीच लंबवत दूरी एक स्थिर है, इसलिए यह मायने नहीं रखता कि दूरी को मापने के लिए कौन सा बिंदु चुना गया है। दो गैर-लंबवत समांतर रेखाओं के समीकरण दिए गए हैं
क्योंकि रेखाएँ समानांतर हैं, उनके बीच लंबवत दूरी स्थिर है, इसलिए यह मायने नहीं रखता कि दूरी को मापने के लिए कौन सा बिंदु चुना गया है। दो गैर-लंबवत समांतर रेखाओं के समीकरण दिए गए हैं


:<math>y = mx+b_1\,</math>
:<math>y = mx+b_1\,</math>

Revision as of 22:01, 24 April 2023

समतल (ज्यामिति) में दो समानांतर (ज्यामिति) रेखा (ज्यामिति) के बीच की दूरी किन्हीं दो बिंदुओं के बीच की न्यूनतम दूरी होती है।

सूत्र और प्रमाण

क्योंकि रेखाएँ समानांतर हैं, उनके बीच लंबवत दूरी स्थिर है, इसलिए यह मायने नहीं रखता कि दूरी को मापने के लिए कौन सा बिंदु चुना गया है। दो गैर-लंबवत समांतर रेखाओं के समीकरण दिए गए हैं

दो रेखाओं के बीच की दूरी लंब रेखा के साथ इन रेखाओं के दो प्रतिच्छेदन बिंदुओं के बीच की दूरी है

इस दूरी को पहले लीनियर सिस्टम को हल करके पाया जा सकता है

और

चौराहे बिंदुओं के निर्देशांक प्राप्त करने के लिए। रैखिक प्रणालियों के समाधान बिंदु हैं

और

बिंदुओं के बीच की दूरी है

जो कम हो जाता है

जब पंक्तियों द्वारा दिया जाता है

उनके बीच की दूरी को व्यक्त किया जा सकता है


यह भी देखें

  • बिंदु से रेखा तक की दूरी

संदर्भ

  • Abstand In: Schülerduden – Mathematik II. Bibliographisches Institut & F. A. Brockhaus, 2004, ISBN 3-411-04275-3, pp. 17-19 (German)
  • Hardt Krämer, Rolf Höwelmann, Ingo Klemisch: Analytische Geometrie und Lineare Akgebra. Diesterweg, 1988, ISBN 3-425-05301-9, p. 298 (German)


बाहरी संबंध