पतित द्विरेखीय रूप: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Other uses|पतन (बहुविकल्पी){{!}}पतन}}
{{Other uses|पतन (बहुविकल्पी){{!}}पतन}}


गणित में, विशेष रूप से रेखीय बीजगणित, सदिश समष्टि V पर एक [[द्विरेखीय रूप]] {{nowrap|''f''&hairsp;(''x'', ''y''&hairsp;)}} एक द्विरेखीय रूप है जैसे कि V से V<sup>∗</sup> (V&hairsp; की द्वैतसदिशसमष्‍टि) का प्रतिचित्रण {{nowrap|''v'' ↦ (''x'' ↦ ''f''&hairsp;(''x'',&thinsp;''v''&hairsp;))}} द्वारा दी गई तुल्याकारिता नहीं है। एक समतुल्य परिभाषा जब V [[आयाम (वेक्टर स्थान)|परिमित-आयामी (सदिश समष्टि)]] है कि इसमें एक असतहीय कर्नेल है: V में कुछ गैर-शून्य x स्थित हैं जैसे कि
गणित में, विशेष रूप से रेखीय बीजगणित, सदिश समष्टि V पर एक [[द्विरेखीय रूप]] {{nowrap|''f''&hairsp;(''x'', ''y''&hairsp;)}} एक द्विरेखीय रूप है जैसे कि V से V<sup>∗</sup> (V&hairsp; की द्वैतसदिशसमष्‍टि) का प्रतिचित्रण {{nowrap|''v'' ↦ (''x'' ↦ ''f''&hairsp;(''x'',&thinsp;''v''&hairsp;))}} द्वारा दी गई तुल्याकारिता नहीं है। एक समतुल्य परिभाषा जब V [[आयाम (वेक्टर स्थान)|परिमित-आयामी (सदिश समष्टि]]) है कि इसमें एक असतहीय कर्नेल है: V में कुछ गैर-शून्य x स्थित हैं जैसे कि


:<math>\,y \in V</math> सभी के लिए <math>f(x,y)=0\,</math>।
:<math>\,y \in V</math> सभी के लिए <math>f(x,y)=0\,</math>।
Line 10: Line 10:
:<math>y \in V</math> के लिए <math>f(x,y)=0</math> का अर्थ है कि <math>x = 0</math>।
:<math>y \in V</math> के लिए <math>f(x,y)=0</math> का अर्थ है कि <math>x = 0</math>।


अविकृत रूपों के सबसे महत्वपूर्ण उदाहरण आंतरिक उत्पाद और [[सहानुभूतिपूर्ण रूप]] हैं। [[सममित द्विरेखीय रूप]] अनपभ्रष्ट रूप आंतरिक उत्पादों के महत्वपूर्ण सामान्यीकरण हैं, जिसमें प्रायः मात्र यह आवश्यक होता है कि प्रतिचित्र <math>V \to V^*</math> एक समरूपता हो, धनात्मकता नहीं। उदाहरण के लिए, अपने स्पर्शरेखा रिक्त समष्टि पर एक आंतरिक उत्पाद संरचना के साथ एक बहुविध एक रिमेंनियन बहुविध है, जबकि इसे एक सममित अनपभ्रष्ट रूप में विश्रान्ति करने से एक छद्म रीमैनियन [[कई गुना]] उत्पन्न होता है।
अविकृत रूपों के सबसे महत्वपूर्ण उदाहरण आंतरिक उत्पाद और [[सहानुभूतिपूर्ण रूप]] हैं। [[सममित द्विरेखीय रूप]] अनपभ्रष्ट रूप आंतरिक उत्पादों के महत्वपूर्ण सामान्यीकरण हैं, जिसमें प्रायः मात्र यह आवश्यक होता है कि प्रतिचित्र <math>V \to V^*</math> एक समरूपता हो, धनात्मकता नहीं। उदाहरण के लिए, अपने स्पर्शरेखा रिक्त समष्टि पर एक आंतरिक उत्पाद संरचना के साथ एक बहुविध एक रिमेंनियन बहुविध है, जबकि इसे एक सममित अनपभ्रष्ट रूप में विराम होने पर एक छद्म रीमैनियन [[कई गुना]] उत्पन्न होता है।


== निर्धारक का प्रयोग ==
== निर्धारक का प्रयोग ==
यदि V परिमित-आयामी है, तो V के लिए कुछ [[आधार (रैखिक बीजगणित)]] के सापेक्ष, एक द्विरेखीय रूप पतित होता है यदि और मात्र यदि संबद्ध [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] का निर्धारक शून्य है - यदि और मात्र यदि आव्यूह [[एकवचन मैट्रिक्स|अव्युत्क्रमणीय आव्यूह]] है, और तदनुसार पतित रूपों को 'अव्युत्क्रमणीय रूप' भी कहा जाता है। इसी प्रकार , एक अनपभ्रष्ट रूप वह है जिसके लिए संबंधित आव्यूह [[गैर-एकवचन मैट्रिक्स|व्‍युत्‍क्रमणीय आव्यूह]] है। ये कथन चुने हुए आधार से स्वतंत्र हैं।
यदि V परिमित-आयामी है, तो V के लिए कुछ [[आधार (रैखिक बीजगणित)|आधार (रैखिक बीजगणित]]) के सापेक्ष, एक द्विरेखीय रूप पतित होता है यदि और मात्र यदि संबद्ध [[मैट्रिक्स (गणित)|आव्यूह (गणित]]) का निर्धारक शून्य है - यदि और मात्र यदि आव्यूह [[एकवचन मैट्रिक्स|अव्युत्क्रमणीय आव्यूह]] है, और तदनुसार पतित रूपों को 'अव्युत्क्रमणीय रूप' भी कहा जाता है। इसी प्रकार, एक अनपभ्रष्ट रूप वह है जिसके लिए संबंधित आव्यूह [[गैर-एकवचन मैट्रिक्स|व्‍युत्‍क्रमणीय आव्यूह]] है। ये कथन चुने हुए आधार से स्वतंत्र हैं।


== संबंधित धारणाएं ==
== संबंधित धारणाएं ==
यदि एक [[द्विघात रूप]] Q के लिए एक शून्येतर सदिश v ∈ V ऐसा है कि Q(v) = 0 है, तो Q एक समदैशिक द्विघात रूप है। यदि सभी गैर-शून्य सदिशों के लिए Q का चिह्न समान है, तो यह एक [[निश्चित द्विघात रूप]] या ' विषमदैशिक द्विघात रूप' है।
यदि एक [[द्विघात रूप]] Q के लिए एक शून्येतर सदिश v ∈ V ऐसा है कि Q (v) = 0 है, तो Q एक समदैशिक द्विघात रूप है। यदि सभी गैर-शून्य सदिशों के लिए Q का चिह्न समान है, तो यह एक [[निश्चित द्विघात रूप]] या ' विषमदैशिक द्विघात रूप' है।


[[एक-मॉड्यूलर रूप|एकमापांकी रूप]] और एक पूर्ण जोड़ी की बारीकी से संबंधित धारणा है; ये [[क्षेत्र (गणित)]] पर सहमत हैं लेकिन सामान्य रिंग (गणित) पर नहीं।
[[एक-मॉड्यूलर रूप|एकमापांकी रूप]] और द्विएकघाती समघात की ध्यानपूर्वक संबंधित धारणा है; ये [[क्षेत्र (गणित)|क्षेत्रों (गणित]]) पर सहमत हैं परन्तु सामान्य वलय (गणित) पर नहीं।


== उदाहरण ==
== उदाहरण ==
वास्तविक, द्विघात बीजगणित का अध्ययन द्विघात रूपों के प्रकारों के बीच अंतर को दर्शाता है। गुणनफल zz* प्रत्येक सम्मिश्र संख्या, विभक्त-[[जटिल संख्या]] और [[दोहरी संख्या]] के लिए एक द्विघात रूप है। z = x + ε y के लिए, दोहरी संख्या का रूप x है<sup>2</sup> जो कि एक पतित द्विघात रूप है। विभाजित-जटिल मामला एक आइसोट्रोपिक रूप है, और जटिल मामला एक निश्चित रूप है।
वास्तविक, द्विघात बीजगणित का अध्ययन द्विघात रूपों के प्रकारों के बीच अंतर को दर्शाता है। गुणनफल zz* प्रत्येक सम्मिश्र संख्या, विभक्त-[[जटिल संख्या]] और [[दोहरी संख्या]] के लिए एक द्विघात रूप है। z = x + ε y के लिए, दोहरी संख्या का रूप x<sup>2</sup> है जो कि एक पतित द्विघात रूप है। विभाजित-जटिल स्थिति एक समदैशिक रूप है, और जटिल स्थिति एक निश्चित रूप है।


अविकृत रूपों के सबसे महत्वपूर्ण उदाहरण आंतरिक उत्पाद और सहानुभूतिपूर्ण रूप हैं। सममित अनपभ्रष्ट रूप आंतरिक उत्पादों के महत्वपूर्ण सामान्यीकरण हैं, जिसमें प्रायः यह आवश्यक होता है कि प्रतिचित्र <math>V \to V^*</math> एक समरूपता बनें, धनात्मकता नहीं। उदाहरण के लिए, अपने स्पर्शरेखा रिक्त समष्टि पर एक आंतरिक उत्पाद संरचना के साथ एक बहुविध एक रिमेंनियन बहुविध है, जबकि इसे एक सममित अनपभ्रष्ट रूप में आराम करने से एक छद्म-रीमैनियन बहुविध उत्पन्न होता है।
अविकृत रूपों के सबसे महत्वपूर्ण उदाहरण आंतरिक उत्पाद और सहानुभूतिपूर्ण रूप हैं। सममित अनपभ्रष्ट रूप आंतरिक उत्पादों के महत्वपूर्ण सामान्यीकरण हैं, जिसमें प्रायः यह आवश्यक होता है कि प्रतिचित्र <math>V \to V^*</math> एक समरूपता बनें, धनात्मकता नहीं। उदाहरण के लिए, अपने स्पर्शरेखा रिक्त समष्टि पर एक आंतरिक उत्पाद संरचना के साथ एक बहुविध एक रिमेंनियन बहुविध है, जबकि इसे एक सममित अनपभ्रष्ट रूप में विराम होने पर एक छद्म-रीमैनियन बहुविध उत्पन्न होता है।


== अनंत आयाम ==
== अनंत आयाम ==
ध्यान दें कि एक अनंत-आयामी समष्टि में, हमारे पास एक द्विरेखीय रूप ƒ हो सकता है जिसके लिए <math>v \mapsto (x \mapsto f(x,v))</math> [[इंजेक्शन]] है लेकिन [[विशेषण]] नहीं है। उदाहरण के लिए, एक बंद परिबद्ध [[अंतराल (गणित)]] पर [[निरंतर कार्य]]ों के समष्टि पर, प्रपत्र
ध्यान दें कि एक अनंत-आयामी समष्टि में, हमारे समीप एक द्विरेखीय रूप ƒ हो सकता है जिसके लिए <math>v \mapsto (x \mapsto f(x,v))</math> [[इंजेक्शन|अंतःक्षेपक]] है परन्तु [[विशेषण]] नहीं है। उदाहरण के लिए, एक बंद परिबद्ध [[अंतराल (गणित)|अंतराल (गणित]]) पर [[निरंतर कार्य|निरंतर फलनों]] के समष्टि पर, रूप
:<math> f(\phi,\psi) = \int\psi(x)\phi(x) \,dx</math> विशेषण नहीं है: उदाहरण के लिए, डायराक डेल्टा कार्यात्मक दोहरी जगह में है लेकिन आवश्यक रूप में नहीं है। दूसरी ओर, यह द्विरेखीय रूप संतुष्ट करता है
:<math> f(\phi,\psi) = \int\psi(x)\phi(x) \,dx</math> विशेषण नहीं है: उदाहरण के लिए, डिरैक डेल्टा फलन दोहरी समष्टि में है परन्तु आवश्यक रूप में नहीं है। दूसरी ओर, यह द्विरेखीय रूप सभी
:<math>f(\phi,\psi)=0</math> सभी के लिए <math>\phi</math> इसका आशय है <math>\psi=0.\,</math>
:<math>\phi</math> के लिए <math>f(\phi,\psi)=0</math> को संतुष्ट करता है जिसका अर्थ है कि <math>\psi=0\,</math>
ऐसे मामले में जहां ƒ इंजेक्टिविटी को संतुष्ट करता है (लेकिन आवश्यक रूप से विशेषण नहीं), ƒ को कमजोर रूप से अनपभ्रष्ट कहा जाता है।
ऐसे स्थिति में जहां ƒ अंतःक्षेपक को संतुष्ट करता है (परन्तु आवश्यक रूप से विशेषण नहीं), ƒ को अल्प अनपभ्रष्ट कहा जाता है।


== शब्दावली ==
== शब्दावली ==
यदि f सभी सदिशों पर समान रूप से लुप्त हो जाता है तो इसे 'पूर्णतः पतित' कहा जाता है। सदिशों के समुच्चय V पर किसी द्विरेखीय रूप f को दिया गया है
यदि f सभी सदिशों पर समान रूप से लुप्त हो जाता है तो इसे 'पूर्णतः पतित' कहा जाता है। V पर किसी द्विरेखीय रूप f देखते हुए सदिशों


:<math>\{x\in V \mid f(x,y) = 0 \mbox{ for all } y \in V\}</math>
:<math>\{x\in V \mid f(x,y) = 0 \mbox{ for all } y \in V\}</math>
वी के एक पूर्ण रूप से पतित रैखिक उप-समष्टि बनाता है। नक्शा एफ गैर-अपघटित है अगर और मात्र अगर यह उप-समष्टि तुच्छ है।
का समुच्चय V का एक पूर्णतया पतित उपसमष्टि बनाता है। प्रतिचित्र एफ अनपभ्रष्ट है यदि और मात्र यदि यह उप-समष्टि सतहीय है।


ज्यामितीय रूप से, द्विघात रूप की एक [[आइसोट्रोपिक रेखा]] प्रक्षेप्य समष्टि में संबद्ध [[चतुर्भुज सतह]] के एक बिंदु से मेल खाती है। ऐसी रेखा द्विरेखीय रूप के लिए अतिरिक्त रूप से आइसोट्रोपिक है यदि और मात्र यदि संबंधित बिंदु एक विलक्षण विविधता है। इसलिए, एक बीजगणितीय रूप से बंद क्षेत्र पर, हिल्बर्ट का नलस्टेलेंसैट्स गारंटी देता है कि द्विघात रूप में हमेशा आइसोट्रोपिक रेखाएं होती हैं, जबकि द्विरेखीय रूप में वे होती हैं यदि और मात्र अगर सतह अव्युत्क्रमणीय है।
ज्यामितीय रूप से, द्विघात रूप की एक [[आइसोट्रोपिक रेखा|समदैशिक रेखा]] प्रक्षेप्य समष्टि में संबद्ध [[चतुर्भुज सतह]] के एक बिंदु से मेल खाती है। ऐसी रेखा द्विरेखीय रूप के लिए अतिरिक्त रूप से समदैशिक है यदि और मात्र यदि संबंधित बिंदु एक विलक्षण विविधता है। इसलिए, एक बीजगणितीय रूप से बंद क्षेत्र पर, हिल्बर्ट का नलस्टेलेंसैट्स गारंटी देता है कि द्विघात रूप में सदैव समदैशिक रेखाएं होती हैं, जबकि द्विरेखीय रूप में वे होती हैं यदि और मात्र यदि सतह अव्युत्क्रमणीय है।


== यह भी देखें ==
== यह भी देखें ==


* {{annotated link|Dual system}}
* {{annotated link|द्वैत तंत्र}}
* {{annotated link|Linear form}}
* {{annotated link|रेखीय रूप}}


==उद्धरण==
==उद्धरण==

Revision as of 16:28, 26 April 2023

गणित में, विशेष रूप से रेखीय बीजगणित, सदिश समष्टि V पर एक द्विरेखीय रूप f (x, y ) एक द्विरेखीय रूप है जैसे कि V से V (V  की द्वैतसदिशसमष्‍टि) का प्रतिचित्रण v ↦ (xf (x, v )) द्वारा दी गई तुल्याकारिता नहीं है। एक समतुल्य परिभाषा जब V परिमित-आयामी (सदिश समष्टि) है कि इसमें एक असतहीय कर्नेल है: V में कुछ गैर-शून्य x स्थित हैं जैसे कि

सभी के लिए


अनपभ्रष्ट रूप

एक अनपभ्रष्ट या व्युत्क्रमणीय रूप एक द्विरेखीय रूप है जो पतित नहीं है, जिसका अर्थ है एक समरूपता है, या समान रूप से परिमित आयामों में, यदि और मात्र यदि सभी

के लिए का अर्थ है कि

अविकृत रूपों के सबसे महत्वपूर्ण उदाहरण आंतरिक उत्पाद और सहानुभूतिपूर्ण रूप हैं। सममित द्विरेखीय रूप अनपभ्रष्ट रूप आंतरिक उत्पादों के महत्वपूर्ण सामान्यीकरण हैं, जिसमें प्रायः मात्र यह आवश्यक होता है कि प्रतिचित्र एक समरूपता हो, धनात्मकता नहीं। उदाहरण के लिए, अपने स्पर्शरेखा रिक्त समष्टि पर एक आंतरिक उत्पाद संरचना के साथ एक बहुविध एक रिमेंनियन बहुविध है, जबकि इसे एक सममित अनपभ्रष्ट रूप में विराम होने पर एक छद्म रीमैनियन कई गुना उत्पन्न होता है।

निर्धारक का प्रयोग

यदि V परिमित-आयामी है, तो V के लिए कुछ आधार (रैखिक बीजगणित) के सापेक्ष, एक द्विरेखीय रूप पतित होता है यदि और मात्र यदि संबद्ध आव्यूह (गणित) का निर्धारक शून्य है - यदि और मात्र यदि आव्यूह अव्युत्क्रमणीय आव्यूह है, और तदनुसार पतित रूपों को 'अव्युत्क्रमणीय रूप' भी कहा जाता है। इसी प्रकार, एक अनपभ्रष्ट रूप वह है जिसके लिए संबंधित आव्यूह व्‍युत्‍क्रमणीय आव्यूह है। ये कथन चुने हुए आधार से स्वतंत्र हैं।

संबंधित धारणाएं

यदि एक द्विघात रूप Q के लिए एक शून्येतर सदिश v ∈ V ऐसा है कि Q (v) = 0 है, तो Q एक समदैशिक द्विघात रूप है। यदि सभी गैर-शून्य सदिशों के लिए Q का चिह्न समान है, तो यह एक निश्चित द्विघात रूप या ' विषमदैशिक द्विघात रूप' है।

एकमापांकी रूप और द्विएकघाती समघात की ध्यानपूर्वक संबंधित धारणा है; ये क्षेत्रों (गणित) पर सहमत हैं परन्तु सामान्य वलय (गणित) पर नहीं।

उदाहरण

वास्तविक, द्विघात बीजगणित का अध्ययन द्विघात रूपों के प्रकारों के बीच अंतर को दर्शाता है। गुणनफल zz* प्रत्येक सम्मिश्र संख्या, विभक्त-जटिल संख्या और दोहरी संख्या के लिए एक द्विघात रूप है। z = x + ε y के लिए, दोहरी संख्या का रूप x2 है जो कि एक पतित द्विघात रूप है। विभाजित-जटिल स्थिति एक समदैशिक रूप है, और जटिल स्थिति एक निश्चित रूप है।

अविकृत रूपों के सबसे महत्वपूर्ण उदाहरण आंतरिक उत्पाद और सहानुभूतिपूर्ण रूप हैं। सममित अनपभ्रष्ट रूप आंतरिक उत्पादों के महत्वपूर्ण सामान्यीकरण हैं, जिसमें प्रायः यह आवश्यक होता है कि प्रतिचित्र एक समरूपता बनें, धनात्मकता नहीं। उदाहरण के लिए, अपने स्पर्शरेखा रिक्त समष्टि पर एक आंतरिक उत्पाद संरचना के साथ एक बहुविध एक रिमेंनियन बहुविध है, जबकि इसे एक सममित अनपभ्रष्ट रूप में विराम होने पर एक छद्म-रीमैनियन बहुविध उत्पन्न होता है।

अनंत आयाम

ध्यान दें कि एक अनंत-आयामी समष्टि में, हमारे समीप एक द्विरेखीय रूप ƒ हो सकता है जिसके लिए अंतःक्षेपक है परन्तु विशेषण नहीं है। उदाहरण के लिए, एक बंद परिबद्ध अंतराल (गणित) पर निरंतर फलनों के समष्टि पर, रूप

विशेषण नहीं है: उदाहरण के लिए, डिरैक डेल्टा फलन दोहरी समष्टि में है परन्तु आवश्यक रूप में नहीं है। दूसरी ओर, यह द्विरेखीय रूप सभी
के लिए को संतुष्ट करता है जिसका अर्थ है कि

ऐसे स्थिति में जहां ƒ अंतःक्षेपक को संतुष्ट करता है (परन्तु आवश्यक रूप से विशेषण नहीं), ƒ को अल्प अनपभ्रष्ट कहा जाता है।

शब्दावली

यदि f सभी सदिशों पर समान रूप से लुप्त हो जाता है तो इसे 'पूर्णतः पतित' कहा जाता है। V पर किसी द्विरेखीय रूप f देखते हुए सदिशों

का समुच्चय V का एक पूर्णतया पतित उपसमष्टि बनाता है। प्रतिचित्र एफ अनपभ्रष्ट है यदि और मात्र यदि यह उप-समष्टि सतहीय है।

ज्यामितीय रूप से, द्विघात रूप की एक समदैशिक रेखा प्रक्षेप्य समष्टि में संबद्ध चतुर्भुज सतह के एक बिंदु से मेल खाती है। ऐसी रेखा द्विरेखीय रूप के लिए अतिरिक्त रूप से समदैशिक है यदि और मात्र यदि संबंधित बिंदु एक विलक्षण विविधता है। इसलिए, एक बीजगणितीय रूप से बंद क्षेत्र पर, हिल्बर्ट का नलस्टेलेंसैट्स गारंटी देता है कि द्विघात रूप में सदैव समदैशिक रेखाएं होती हैं, जबकि द्विरेखीय रूप में वे होती हैं यदि और मात्र यदि सतह अव्युत्क्रमणीय है।

यह भी देखें

उद्धरण