पहला मौलिक रूप: Difference between revisions
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
== परिभाषा == | == परिभाषा == | ||
मान लीजिए {{math|''X''(''u'', ''v'')}} [[पैरामीट्रिक सतह]] है। फिर दो स्पर्शरेखा सदिशों का आंतरिक उत्पाद होता है। | मान लीजिए {{math|''X''(''u'', ''v'')}} [[पैरामीट्रिक सतह]] है। फिर दो स्पर्शरेखा सदिशों का आंतरिक उत्पाद होता है। | ||
<math display="block"> | <math display="block"> | ||
\begin{align} | \begin{align} | ||
Line 27: | Line 27: | ||
== आगे का अंकन == | == आगे का अंकन == | ||
जब प्रथम मौलिक रूप केवल | जब प्रथम मौलिक रूप केवल तर्क के साथ लिखा जाता है, तो यह उस सदिश के आंतरिक उत्पाद को स्वयं के साथ दर्शाता है। | ||
<math display="block">\mathrm{I}(v)= \langle v,v \rangle = |v|^2</math> | <math display="block">\mathrm{I}(v)= \langle v,v \rangle = |v|^2</math> | ||
प्रथम मौलिक रूप | प्रथम मौलिक रूप प्रायः [[मीट्रिक टेंसर]] के आधुनिक अंकन में लिखा जाता है। गुणांक तब {{mvar|g<sub>ij</sub>}} के रूप में लिखा जा सकता है। | ||
<math display="block"> \left(g_{ij}\right) = \begin{pmatrix} | <math display="block"> \left(g_{ij}\right) = \begin{pmatrix} | ||
g_{11} & g_{12} \\ | g_{11} & g_{12} \\ | ||
Line 37: | Line 37: | ||
F & G | F & G | ||
\end{pmatrix}</math> | \end{pmatrix}</math> | ||
इस टेन्सर के घटकों की गणना स्पर्शरेखा सदिशों | इस टेन्सर के घटकों की गणना स्पर्शरेखा सदिशों {{math|''X''<sub>1</sub>}} एवं {{math|''X''<sub>2</sub>}} के अदिश गुणनफल के रूप में की जाती है। | ||
<math display="block">g_{ij} = X_i \cdot X_j</math> | <math display="block">g_{ij} = X_i \cdot X_j</math> | ||
{{math|1=''i'', ''j'' = 1, 2}} के लिए नीचे उदाहरण देखें। | |||
== लंबाई एवं क्षेत्रफल की गणना करना == | == लंबाई एवं क्षेत्रफल की गणना करना == | ||
प्रथम मौलिक रूप | प्रथम मौलिक रूप पूर्ण रूप से सतह के मीट्रिक गुणों का वर्णन करता है। इस प्रकार, यह सतह पर वक्रों की लंबाई एवं सतह पर क्षेत्रों के क्षेत्रों की गणना करने में सक्षम बनाता है। [[रेखा तत्व]] {{math|''ds''}} को प्रथम मौलिक रूप के गुणांकों के रूप में व्यक्त किया जा सकता है। | ||
<math display="block">ds^2 = E\,du^2+2F\,du\,dv+G\,dv^2 \,.</math> शास्त्रीय क्षेत्र तत्व द्वारा दिया गया {{math|1=''dA'' = {{abs|''X<sub>u</sub>'' × ''X<sub>v</sub>''}} ''du'' ''dv''}} लैग्रेंज की पहचान की सहायता से प्रथम मौलिक रूप के संदर्भ में व्यक्त किया जा सकता | <math display="block">ds^2 = E\,du^2+2F\,du\,dv+G\,dv^2 \,.</math> शास्त्रीय क्षेत्र तत्व द्वारा दिया गया {{math|1=''dA'' = {{abs|''X<sub>u</sub>'' × ''X<sub>v</sub>''}} ''du'' ''dv''}} लैग्रेंज की पहचान की सहायता से प्रथम मौलिक रूप के संदर्भ में व्यक्त किया जा सकता है। | ||
<math display="block">dA = |X_u \times X_v| \ du\, dv= \sqrt{ \langle X_u,X_u \rangle \langle X_v,X_v \rangle - \left\langle X_u,X_v \right\rangle^2 } \, du\, dv = \sqrt{EG-F^2} \, du\, dv.</math> | <math display="block">dA = |X_u \times X_v| \ du\, dv= \sqrt{ \langle X_u,X_u \rangle \langle X_v,X_v \rangle - \left\langle X_u,X_v \right\rangle^2 } \, du\, dv = \sqrt{EG-F^2} \, du\, dv.</math> | ||
=== उदाहरण: | === उदाहरण: गोले पर वक्र === | ||
में [[इकाई क्षेत्र]] पर एक [[गोलाकार वक्र]] {{math|'''R'''<sup>3</sup>}} के रूप में parametrized हो सकता है | में [[इकाई क्षेत्र]] पर एक [[गोलाकार वक्र]] {{math|'''R'''<sup>3</sup>}} के रूप में parametrized हो सकता है | ||
<math display="block">X(u,v) = \begin{bmatrix} \cos u \sin v \\ \sin u \sin v \\ \cos v \end{bmatrix},\ (u,v) \in [0,2\pi) \times [0,\pi].</math> | <math display="block">X(u,v) = \begin{bmatrix} \cos u \sin v \\ \sin u \sin v \\ \cos v \end{bmatrix},\ (u,v) \in [0,2\pi) \times [0,\pi].</math> |
Revision as of 10:56, 24 April 2023
विभेदक ज्यामिति में, प्रथम मूलभूत रूप त्रि-आयामी यूक्लिडियन अंतरिक्ष में [[सतह (अंतर ज्यामिति)]] के स्पर्शरेखा स्थान पर आंतरिक उत्पाद है, जो R3 डॉट उत्पाद से विहित रूप से प्रेरित होता है। यह सतह की वक्रता एवं मीट्रिक गुणों की गणना की अनुमति देता है जैसे कि लंबाई एवं क्षेत्रफल परिवेशी स्थान के अनुरूप प्रथम मौलिक रूप रोमन अंक I द्वारा निरूपित किया जाता है।
परिभाषा
मान लीजिए X(u, v) पैरामीट्रिक सतह है। फिर दो स्पर्शरेखा सदिशों का आंतरिक उत्पाद होता है।
प्रथम मौलिक रूप को सममित मैट्रिक्स के रूप में दर्शाया जा सकता है।
आगे का अंकन
जब प्रथम मौलिक रूप केवल तर्क के साथ लिखा जाता है, तो यह उस सदिश के आंतरिक उत्पाद को स्वयं के साथ दर्शाता है।
लंबाई एवं क्षेत्रफल की गणना करना
प्रथम मौलिक रूप पूर्ण रूप से सतह के मीट्रिक गुणों का वर्णन करता है। इस प्रकार, यह सतह पर वक्रों की लंबाई एवं सतह पर क्षेत्रों के क्षेत्रों की गणना करने में सक्षम बनाता है। रेखा तत्व ds को प्रथम मौलिक रूप के गुणांकों के रूप में व्यक्त किया जा सकता है।
उदाहरण: गोले पर वक्र
में इकाई क्षेत्र पर एक गोलाकार वक्र R3 के रूप में parametrized हो सकता है
गोले पर वक्र की लंबाई
इकाई क्षेत्र का भूमध्य रेखा द्वारा दिया गया एक पैरामीट्रिज्ड वक्र है
गोले पर एक क्षेत्र का क्षेत्रफल
क्षेत्र तत्व का उपयोग इकाई क्षेत्र के क्षेत्रफल की गणना करने के लिए किया जा सकता है।
गाऊसी वक्रता
किसी सतह की गॉसियन वक्रता किसके द्वारा दी जाती है
कहाँ L, M, एवं N दूसरे मूलभूत रूप के गुणांक हैं।
कार्ल फ्रेडरिक गॉस के प्रमेय एग्रेगियम में कहा गया है कि सतह के गॉसियन वक्रता को केवल प्रथम मौलिक रूप एवं इसके डेरिवेटिव के संदर्भ में व्यक्त किया जा सकता है, ताकि K वास्तव में सतह का आंतरिक अपरिवर्तनीय है। प्रथम मौलिक रूप के संदर्भ में गॉसियन वक्रता के लिए एक स्पष्ट अभिव्यक्ति गॉसियन वक्रता#Alternative_formulas द्वारा प्रदान की जाती है।
यह भी देखें
- मीट्रिक टेंसर
- दूसरा मौलिक रूप
- तीसरा मौलिक रूप
- टॉटोलॉजिकल वन-फॉर्म