बाहरी क्षेत्र इलेक्ट्रॉन स्थानांतरण: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Mechanism of electron transfer in chemical reactions}} बाहरी क्षेत्र एक इलेक्ट्रॉन स्थानां...")
 
No edit summary
Line 1: Line 1:
{{Short description|Mechanism of electron transfer in chemical reactions}}
{{Short description|Mechanism of electron transfer in chemical reactions}}
बाहरी क्षेत्र एक [[इलेक्ट्रॉन स्थानांतरण]] (ईटी) घटना को संदर्भित करता है जो रासायनिक प्रजातियों के बीच होता है जो ईटी घटना के पहले, दौरान और बाद में अलग और बरकरार रहता है।<ref>[http://goldbook.iupac.org/O04351.html Article: outer-sphere electron transfer], from the [[IUPAC]] [[Gold book]]]</ref> इसके विपरीत, आंतरिक क्षेत्र इलेक्ट्रॉन हस्तांतरण के लिए ईटी से गुजरने वाले भाग लेने वाले [[ रिडॉक्स ]] साइट एक रासायनिक पुल से जुड़े होते हैं। क्योंकि बाहरी क्षेत्र में ET इलेक्ट्रॉन स्थानांतरण दो गैर-जुड़े प्रजातियों के बीच होता है, इलेक्ट्रॉन को अंतरिक्ष के माध्यम से एक रेडॉक्स केंद्र से दूसरे स्थान पर जाने के लिए मजबूर किया जाता है।
बाहरी क्षेत्र एक इलेक्ट्रॉन स्थानांतरण (ET) घटना को संदर्भित करता है जो उन रासायनिक प्रजातियों के बीच होता है जो ET घटना से पहले, दौरान और बाद में अलग और अक्षुण्ण रहती हैं। इसके विपरीत, आंतरिक क्षेत्र इलेक्ट्रॉन हस्तांतरण के लिए ETसे गुजरने वाली और  भाग लेने वाली रेडॉक्स स्थित एक रासायनिक पुल से जुड़ी होती हैं। क्योंकि बाहरी क्षेत्र में ET इलेक्ट्रॉन स्थानांतरण दो गैर-जुड़े प्रजातियों के बीच होता है, इलेक्ट्रॉन को अंतरिक्ष के माध्यम से एक रेडॉक्स केंद्र से दूसरे स्थान पर जाने के लिए मजबूर किया जाता है।


== माक्र्स सिद्धांत ==
=== माक्र्स सिद्धांत ===
मुख्य सिद्धांत जो बाहरी क्षेत्र में इलेक्ट्रॉन हस्तांतरण की दरों का वर्णन करता है, 1950 के दशक में रूडोल्फ ए मार्कस द्वारा विकसित किया गया था। माक्र्स सिद्धांत का एक प्रमुख पहलू थर्मोडायनामिक ड्राइविंग बल (इलेक्ट्रॉन-विनिमय स्थलों की रेडॉक्स क्षमता में अंतर) पर इलेक्ट्रॉन अंतरण दर की निर्भरता है। अधिकांश प्रतिक्रियाओं के लिए, ड्राइविंग बल में वृद्धि के साथ दरें बढ़ती हैं। एक दूसरा पहलू यह है कि बाहरी क्षेत्र में इलेक्ट्रॉन-स्थानांतरण की दर पुनर्संगठनात्मक ऊर्जा पर विपरीत रूप से निर्भर करती है। पुनर्गठन ऊर्जा बांड की लंबाई और कोणों में परिवर्तन का वर्णन करती है जो ऑक्सीडेंट और रिडक्टेंट के लिए उनके ऑक्सीकरण राज्यों को बदलने के लिए आवश्यक हैं। इस ऊर्जा का मूल्यांकन स्व-विनिमय दरों (नीचे देखें) के मापन द्वारा किया जाता है।
मुख्य सिद्धांत जो बाहरी क्षेत्र में इलेक्ट्रॉन हस्तांतरण की दरों का वर्णन करता है, 1950 के दशक में रूडोल्फ ए मार्कस द्वारा विकसित किया गया था। माक्र्स सिद्धांत का एक प्रमुख पहलू  ऊष्मागतिक चालन बल (इलेक्ट्रॉन-विनिमय स्थलों की रेडॉक्स क्षमता में अंतर) पर इलेक्ट्रॉन अंतरण दर की निर्भरता है। अधिकांशअभिक्रियाओं के लिए, चालन बल में वृद्धि के साथ दरें बढ़ती हैं। एक दूसरा पहलू यह है कि बाहरी क्षेत्र के इलेक्ट्रॉन-स्थानांतरण की दर "पुनर्गठनात्मक ऊर्जा" पर विपरीत रूप से निर्भर करती है।पुनर्गठन ऊर्जा बंध की लंबाई और कोणों में परिवर्तन का वर्णन करती है जो अपचायक और ऑक्सीकारक के लिए उनकी ऑक्सीकरण अवस्थाओं को बदलने के लिए आवश्यक हैं। इस ऊर्जा का मूल्यांकन स्व-विनिमय दरों के मापन द्वारा किया जाता है।  


बाहरी क्षेत्र इलेक्ट्रॉन स्थानांतरण इलेक्ट्रॉन स्थानांतरण का सबसे आम प्रकार है, विशेष रूप से जैव रसायन में, जहां रेडॉक्स केंद्र प्रोटीन के बीच में कई (लगभग 11 तक) एंगस्ट्रॉम से अलग होते हैं। जैव रसायन में, दो मुख्य प्रकार के बाहरी क्षेत्र ET हैं: ET दो जैविक अणुओं के बीच या निश्चित दूरी इलेक्ट्रॉन स्थानांतरण, जिसमें इलेक्ट्रॉन एक एकल बायोमोलेक्यूल (जैसे, इंट्राप्रोटीन) के भीतर स्थानांतरित होता है।<ref>S. J. Lippard, J. M. Berg “Principles of Bioinorganic Chemistry” University Science Books: Mill Valley, CA; 1994 {{ISBN|0-935702-73-3}}</ref>
बाहरी क्षेत्र इलेक्ट्रॉन स्थानांतरण इलेक्ट्रॉन स्थानांतरण का सबसे साधारण प्रकार है, विशेष रूप से जैव रसायन में, जहां रेडॉक्स केंद्र प्रोटीन के बीच में कई (लगभग 11 तक) एंगस्ट्रॉम से अलग होते हैं। जैव रसायन में, दो मुख्य प्रकार के बाहरी क्षेत्र ET हैं: ET दो जैविक अणुओं के बीच या निश्चित दूरी इलेक्ट्रॉन स्थानांतरण, जिसमें इलेक्ट्रॉन एक एकल जैवाणु (जैसे, इंट्राप्रोटीन) के भीतर स्थानांतरित होता है।<ref>S. J. Lippard, J. M. Berg “Principles of Bioinorganic Chemistry” University Science Books: Mill Valley, CA; 1994 {{ISBN|0-935702-73-3}}</ref>
 
=== उदाहरण ===
 
== उदाहरण ==


=== स्व-विनिमय ===
=== स्व-विनिमय ===
बाहरी क्षेत्र इलेक्ट्रॉन स्थानांतरण उन रासायनिक प्रजातियों के बीच हो सकता है जो उनके ऑक्सीकरण अवस्था को छोड़कर समान हैं।<ref>R. G. Wilkins Kinetics and Mechanism of Reactions of Transition Metal Complexes, 2nd Edition, VCH, Weinheim, 1991. {{ISBN|1-56081-125-0}}</ref> इस प्रक्रिया को स्व-विनिमय कहा जाता है। एक उदाहरण टेट्राहेड्रल आयनों [[पर[[मैंगनेट]]]] और मैंगनेट के बीच डीजेनरेट ऊर्जा स्तर की प्रतिक्रिया है:
बाहरी क्षेत्र इलेक्ट्रॉन स्थानांतरण उन रासायनिक प्रजातियों के बीच हो सकता है जो उनके ऑक्सीकरण अवस्था को छोड़कर समान हैं।<ref>R. G. Wilkins Kinetics and Mechanism of Reactions of Transition Metal Complexes, 2nd Edition, VCH, Weinheim, 1991. {{ISBN|1-56081-125-0}}</ref> इस प्रक्रिया को स्व-विनिमय कहा जाता है। एक उदाहरण टेट्राहेड्रल आयन परमैंगनेट और मैंगनेट के बीच विकृत अभिक्रिया है:


: [एमएनओ<sub>4</sub>]<sup>−</sup> + [एमएन*<sub>4</sub>]<sup>2−</sup> → [एमएनओ<sub>4</sub>]<sup>2−</sup> + [एमएन*<sub>4</sub>]<sup>-</सुप>
:: [MnO<sub>4</sub>]<sup>−</sup> + [Mn*O<sub>4</sub>]<sup>2−</sup> → [MnO<sub>4</sub>]<sup>2−</sup> + [Mn*O<sub>4</sub>]


ऑक्टाहेड्रल धातु परिसरों के लिए, स्व-विनिमय प्रतिक्रियाओं के लिए स्थिर दर की आबादी में परिवर्तन के साथ संबंधित है<sub>g</sub> ऑर्बिटल्स, जिनमें से जनसंख्या धातु-लिगैंड बॉन्ड की लंबाई को सबसे अधिक प्रभावित करती है:
ऑक्टाहेड्रल धातु परिसरों के लिए, स्व-विनिमय अभिक्रियाओं के लिए स्थिर दर, जैसे ऑर्बिटल् की संख्या में परिवर्तन के साथ संबंधित है, जिनमें से जनसंख्या धातु-लिगैंड बंध की लंबाई को सबसे अधिक प्रभावित करती है::
*[सह([[bipy]]) के लिए]<sub>3</sub>]<sup>+</sup>/[सह(बीप्स)<sub>3</sub>]<sup>2+</sup> जोड़ी, सेल्फ एक्सचेंज 10 पर आगे बढ़ता है<sup>9</sup> एम<sup>-1</sup>एस<sup>-1</sup>. इस स्थिति में, इलेक्ट्रॉन विन्यास Co(I) से बदलता है: (t<sub>2g</sub>)<sup>6</sup>(और<sub>g</sub>)<sup>2</sup> Co(II) है: (बी<sub>2g</sub>)<sup>5</sup>(और<sub>g</sub>)<sup>2</उप>।
*[Co(bipy)3] /[Co(bipy)3]2 युग्म के लिए, स्वयं स्थान्तरित  109 M−1s−1 पर आगे बढ़ता है। इस स्थिति में, इलेक्ट्रॉन विन्यास Co(I): (t2g)6(उदा)2 से Co(II): (t2g)5(उदा)2 में बदल जाता है।
*[सह(bipy) के लिए]<sub>3</sub>]<sup>2+</sup>/[सह(बीप्स)<sub>3</sub>]<sup>3+</sup> पेयर, सेल्फ एक्सचेंज 18 M पर आगे बढ़ता है<sup>-1</sup>एस<sup>-1</sup>. इस स्थिति में, इलेक्ट्रॉन विन्यास Co(II) से बदलता है: (t<sub>2g</sub>)<sup>5</sup>(और<sub>g</sub>)<sup>2</sup> से Co(III): (टी<sub>2g</sub>)<sup>6</sup>(और<sub>g</sub>)<sup>0</उप>।
*[Co(bipy)3]2 /[Co(bipy)3]३  युग्म  के लिए, स्वयं स्थान्तरित  18 M−1s−1 पर आगे बढ़ता है। इस स्थिति में, इलेक्ट्रॉन विन्यास Co(II): (t2g)5(उदा)2 से Co(III): (t2g)6(उदा)0 में बदल जाता है।


===[[आयरन-सल्फर प्रोटीन]]===
===[[आयरन-सल्फर प्रोटीन]]===
बाहरी क्षेत्र ईटी आयरन-सल्फर प्रोटीन के जैविक कार्य का आधार है। Fe केंद्रों को आमतौर पर सिस्टीनिल लिगैंड्स द्वारा आगे समन्वित किया जाता है। [फे<sub>4</sub>S<sub>4</sub>] इलेक्ट्रॉन-स्थानांतरण प्रोटीन ([Fe<sub>4</sub>S<sub>4</sub>] [[फेरेडॉक्सिन]]) को आगे निम्न-क्षमता (जीवाणु-प्रकार) और [[HIPIP]] | उच्च-क्षमता (HiPIP) फेरेडॉक्सिन में उप-विभाजित किया जा सकता है। निम्न- और उच्च-क्षमता वाले फेरेडॉक्सिन निम्नलिखित रेडॉक्स योजना से संबंधित हैं:
बाहरी क्षेत्र ET आयरन-सल्फर प्रोटीन के जैविक कार्य का आधार है। Fe केंद्रों को प्रायः सिस्टीनिल लिगैंड् द्वारा आगे समन्वित किया जाता है। [Fe4S4] इलेक्ट्रॉन-हस्तांतरण प्रोटीन ([Fe4S4] फेरेडॉक्सिन) को आगे निम्न-क्षमता (जीवाणु-प्रकार) और उच्च-क्षमता (HiPIP) फेरेडॉक्सिन में विभाजित किया जा सकता है। निम्न- और उच्च-क्षमता वाले फेरेडॉक्सिन निम्नलिखित रेडॉक्स योजना से संबंधित हैं:
[[Image:FdRedox.png|center|500px]]अलग-अलग रेडॉक्स राज्यों के बीच छोटे संरचनात्मक अंतर के कारण, इन समूहों के बीच ET तेजी से होता है।
[[Image:FdRedox.png|center|500px]]अलग-अलग रेडॉक्स अवस्थाओं के बीच छोटे संरचनात्मक अंतर के कारण, इन समूहों के बीच ET तेजी से होता है।


== यह भी देखें ==
=== यह भी देखें ===
*आंतरिक क्षेत्र इलेक्ट्रॉन स्थानांतरण
*आंतरिक क्षेत्र इलेक्ट्रॉन स्थानांतरण


==संदर्भ==
===संदर्भ===
<references/>
<references/>
[[Category: भौतिक रसायन]] [[Category: इलेक्ट्रॉन]]  
[[Category: भौतिक रसायन]] [[Category: इलेक्ट्रॉन]]  

Revision as of 21:52, 24 April 2023

बाहरी क्षेत्र एक इलेक्ट्रॉन स्थानांतरण (ET) घटना को संदर्भित करता है जो उन रासायनिक प्रजातियों के बीच होता है जो ET घटना से पहले, दौरान और बाद में अलग और अक्षुण्ण रहती हैं। इसके विपरीत, आंतरिक क्षेत्र इलेक्ट्रॉन हस्तांतरण के लिए ETसे गुजरने वाली और  भाग लेने वाली रेडॉक्स स्थित एक रासायनिक पुल से जुड़ी होती हैं। क्योंकि बाहरी क्षेत्र में ET इलेक्ट्रॉन स्थानांतरण दो गैर-जुड़े प्रजातियों के बीच होता है, इलेक्ट्रॉन को अंतरिक्ष के माध्यम से एक रेडॉक्स केंद्र से दूसरे स्थान पर जाने के लिए मजबूर किया जाता है।

माक्र्स सिद्धांत

मुख्य सिद्धांत जो बाहरी क्षेत्र में इलेक्ट्रॉन हस्तांतरण की दरों का वर्णन करता है, 1950 के दशक में रूडोल्फ ए मार्कस द्वारा विकसित किया गया था। माक्र्स सिद्धांत का एक प्रमुख पहलू  ऊष्मागतिक चालन बल (इलेक्ट्रॉन-विनिमय स्थलों की रेडॉक्स क्षमता में अंतर) पर इलेक्ट्रॉन अंतरण दर की निर्भरता है। अधिकांशअभिक्रियाओं के लिए, चालन बल में वृद्धि के साथ दरें बढ़ती हैं। एक दूसरा पहलू यह है कि बाहरी क्षेत्र के इलेक्ट्रॉन-स्थानांतरण की दर "पुनर्गठनात्मक ऊर्जा" पर विपरीत रूप से निर्भर करती है।पुनर्गठन ऊर्जा बंध की लंबाई और कोणों में परिवर्तन का वर्णन करती है जो अपचायक और ऑक्सीकारक के लिए उनकी ऑक्सीकरण अवस्थाओं को बदलने के लिए आवश्यक हैं। इस ऊर्जा का मूल्यांकन स्व-विनिमय दरों के मापन द्वारा किया जाता है।

बाहरी क्षेत्र इलेक्ट्रॉन स्थानांतरण इलेक्ट्रॉन स्थानांतरण का सबसे साधारण प्रकार है, विशेष रूप से जैव रसायन में, जहां रेडॉक्स केंद्र प्रोटीन के बीच में कई (लगभग 11 तक) एंगस्ट्रॉम से अलग होते हैं। जैव रसायन में, दो मुख्य प्रकार के बाहरी क्षेत्र ET हैं: ET दो जैविक अणुओं के बीच या निश्चित दूरी इलेक्ट्रॉन स्थानांतरण, जिसमें इलेक्ट्रॉन एक एकल जैवाणु (जैसे, इंट्राप्रोटीन) के भीतर स्थानांतरित होता है।[1]

उदाहरण

स्व-विनिमय

बाहरी क्षेत्र इलेक्ट्रॉन स्थानांतरण उन रासायनिक प्रजातियों के बीच हो सकता है जो उनके ऑक्सीकरण अवस्था को छोड़कर समान हैं।[2] इस प्रक्रिया को स्व-विनिमय कहा जाता है। एक उदाहरण टेट्राहेड्रल आयन परमैंगनेट और मैंगनेट के बीच विकृत अभिक्रिया है:

[MnO4] + [Mn*O4]2− → [MnO4]2− + [Mn*O4]

ऑक्टाहेड्रल धातु परिसरों के लिए, स्व-विनिमय अभिक्रियाओं के लिए स्थिर दर, जैसे ऑर्बिटल् की संख्या में परिवर्तन के साथ संबंधित है, जिनमें से जनसंख्या धातु-लिगैंड बंध की लंबाई को सबसे अधिक प्रभावित करती है::

  • [Co(bipy)3] /[Co(bipy)3]2 युग्म के लिए, स्वयं स्थान्तरित  109 M−1s−1 पर आगे बढ़ता है। इस स्थिति में, इलेक्ट्रॉन विन्यास Co(I): (t2g)6(उदा)2 से Co(II): (t2g)5(उदा)2 में बदल जाता है।
  • [Co(bipy)3]2 /[Co(bipy)3]३  युग्म  के लिए, स्वयं स्थान्तरित  18 M−1s−1 पर आगे बढ़ता है। इस स्थिति में, इलेक्ट्रॉन विन्यास Co(II): (t2g)5(उदा)2 से Co(III): (t2g)6(उदा)0 में बदल जाता है।

आयरन-सल्फर प्रोटीन

बाहरी क्षेत्र ET आयरन-सल्फर प्रोटीन के जैविक कार्य का आधार है। Fe केंद्रों को प्रायः सिस्टीनिल लिगैंड् द्वारा आगे समन्वित किया जाता है। [Fe4S4] इलेक्ट्रॉन-हस्तांतरण प्रोटीन ([Fe4S4] फेरेडॉक्सिन) को आगे निम्न-क्षमता (जीवाणु-प्रकार) और उच्च-क्षमता (HiPIP) फेरेडॉक्सिन में विभाजित किया जा सकता है। निम्न- और उच्च-क्षमता वाले फेरेडॉक्सिन निम्नलिखित रेडॉक्स योजना से संबंधित हैं:

FdRedox.png

अलग-अलग रेडॉक्स अवस्थाओं के बीच छोटे संरचनात्मक अंतर के कारण, इन समूहों के बीच ET तेजी से होता है।

यह भी देखें

  • आंतरिक क्षेत्र इलेक्ट्रॉन स्थानांतरण

संदर्भ

  1. S. J. Lippard, J. M. Berg “Principles of Bioinorganic Chemistry” University Science Books: Mill Valley, CA; 1994 ISBN 0-935702-73-3
  2. R. G. Wilkins Kinetics and Mechanism of Reactions of Transition Metal Complexes, 2nd Edition, VCH, Weinheim, 1991. ISBN 1-56081-125-0