मोडुली (भौतिकी): Difference between revisions
Line 23: | Line 23: | ||
= N = 1 सिद्धांत= | = N = 1 सिद्धांत= | ||
मॉड्यूलि स्पेस की ज्यामिति पर पहला प्रतिबंध 1979 में [[ब्रूनो जुमिनो]] द्वारा पाया गया था और [http://inspirehep.net/record/142186/?ln=en | मॉड्यूलि स्पेस की ज्यामिति पर पहला प्रतिबंध 1979 में [[ब्रूनो जुमिनो]] द्वारा पाया गया था और [http://inspirehep.net/record/142186/?ln=en सुपरसिमेट्री और काहलर बहुविध] लेख में प्रकाशित हुआ था उन्होंने वैश्विक सुपरसिमेट्री के साथ 4-आयामों में N=1 सिद्धांत पर विचार किया N=1 का अर्थ है कि सुपरसिमेट्रिक बीजगणित के फर्मीओनिक घटकों को एकल [[मेजराना स्पिनर|मेजराना सुपरचार्ज]] में इकट्ठा किया जा सकता है। इस तरह के सिद्धांत में एकमात्र अदिश [[चिरल सुपरफील्ड]] के जटिल अदिश हैं, उन्होंने पाया कि इन अदिशों के लिए अनुमत निर्वात अपेक्षा मूल्यों का निर्वात कई गुना न केवल जटिल है बल्कि काहलर भी कई गुना है। | ||
यदि [[गुरुत्वाकर्षण]] को सिद्धांत में सम्मिलित किया जाता है | यदि [[गुरुत्वाकर्षण]] को सिद्धांत में सम्मिलित किया जाता है ताकि स्थानीय सुपरसिमेट्री हो तो परिणामी सिद्धांत को [[ अतिगुरुत्वाकर्षण |अतिगुरुत्वाकर्षण]] सिद्धांत कहा जाता है और मॉड्यूलि स्पेस की ज्यामिति पर प्रतिबंध मजबूत हो जाता है। मोडुली स्थिति केवल काहलर ही नहीं होना चाहिए बल्कि काहलर फॉर्म को अभिन्न [[सह-समरूपता|कोहोलॉजी]] तक उठाना चाहिए, ऐसे बहुविध को [[ हॉज कई गुना |हॉज]] बहुविध कहा जाता है। पहला उदाहरण 1979 के लेख [http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B147,105 ब्रह्माण्ड संबंधी स्थिरांक के बिना अतिगुरुत्वाकर्षण में स्वतः स्फूर्त समरूपता ब्रेकिंग और हिग्स प्रभाव] में दिखाई दिया और सामान्य कथन 3 साल बाद निश्चित कुछ सुपरग्रेविटी सिद्धांतों में न्यूटन के स्थिरांक का परिमाणीकरण दिखाई दिया। | ||
= N = 2 सिद्धांत= | = N = 2 सिद्धांत= | ||
N = 2 सुपरसिमेट्री के साथ विस्तारित 4-आयामी सिद्धांतों में एकल [[डिराक स्पिनर|डायराक स्पिनर]] अत्यधिक प्रभावकारी के अनुरूप स्थितियां अधिक मजबूत होती हैं। N=2 सुपरसिमेट्री बीजगणित में अदिश के साथ दो [[प्रतिनिधित्व सिद्धांत|प्रतिनिधित्व]] होते हैं, [[वेक्टर सुपरफ़ील्ड|वेक्टर मल्टीप्लेट]] जिसमें एक जटिल अदिश और [[ hypermultiple |हाइपरमल्टीप्लेट]] होता है जिसमें दो जटिल अदिश होते हैं। सदिश गुणकों के मॉडुलि स्थान को [[कूलम्ब शाखा]] कहा जाता है जबकि हाइपरमल्टीप्लेट्स को [[हिग्स शाखा]] कहा जाता है। कुल मोडुली स्थान स्थानीय रूप से इन दो शाखाओं का एक उत्पाद है, क्योंकि [[सुपरसिमेट्री नॉनरेनॉर्मलाइजेशन प्रमेय|गैर-सामान्यीकरण प्रमेय]] का अर्थ है कि प्रत्येक का दशांश अन्य मल्टीप्लेट के क्षेत्रों से स्वतंत्र है। [http://homepages.uc.edu/ उदाहरण के लिए आर्गिरिईस, स्थानीय उत्पाद संरचना की आगे की चर्चा के लिए चार-आयामी | N = 2 सुपरसिमेट्री के साथ विस्तारित 4-आयामी सिद्धांतों में एकल [[डिराक स्पिनर|डायराक स्पिनर]] अत्यधिक प्रभावकारी के अनुरूप स्थितियां अधिक मजबूत होती हैं। N=2 सुपरसिमेट्री बीजगणित में अदिश के साथ दो [[प्रतिनिधित्व सिद्धांत|प्रतिनिधित्व]] होते हैं, [[वेक्टर सुपरफ़ील्ड|वेक्टर मल्टीप्लेट]] जिसमें एक जटिल अदिश और [[ hypermultiple |हाइपरमल्टीप्लेट]] होता है जिसमें दो जटिल अदिश होते हैं। सदिश गुणकों के मॉडुलि स्थान को [[कूलम्ब शाखा]] कहा जाता है जबकि हाइपरमल्टीप्लेट्स को [[हिग्स शाखा]] कहा जाता है। कुल मोडुली स्थान स्थानीय रूप से इन दो शाखाओं का एक उत्पाद है, क्योंकि [[सुपरसिमेट्री नॉनरेनॉर्मलाइजेशन प्रमेय|गैर-सामान्यीकरण प्रमेय]] का अर्थ है कि प्रत्येक का दशांश अन्य मल्टीप्लेट के क्षेत्रों से स्वतंत्र है। [http://homepages.uc.edu/ उदाहरण के लिए आर्गिरिईस, स्थानीय उत्पाद संरचना की आगे की चर्चा के लिए चार-आयामी सुपरसिमेट्रिक क्षेत्र सिद्धांतों की गैर-प्रतिस्पर्धी गतिशीलता] (पीपी 6-7 देखें)। | ||
वैश्विक N = 2 की स्थिति में दूसरे शब्दों में गुरुत्वाकर्षण की अनुपस्थिति में मॉड्यूलि स्थिति की कूलम्ब शाखा एक विशेष काहलर बहुविध है। इस प्रतिबंध का पहला उदाहरण 1984 के लेख [https://inspirehep.net/record/202378/ पोटेंशियल्स एंड सिमेट्रीज ऑफ जनरल गेज्ड N=2 सुपरग्रेविटी] यांग-मिल्स मॉडल बाय [[बर्नार्ड ऑफ व्हिट|बर्नार्ड डी विट]] और [[एंटोनी वैन प्रोयेन|एंटोनी वान प्रोयेन]] द्वारा प्रकाशित किया गया था, जबकि अंतर्निहित ज्यामिति का एक सामान्य ज्यामितीय विवरण जिसे [[विशेष ज्यामिति]] कहा जाता है [[एंड्रयू स्ट्रोमिंगर]] द्वारा अपने 1990 के | वैश्विक N = 2 की स्थिति में दूसरे शब्दों में गुरुत्वाकर्षण की अनुपस्थिति में मॉड्यूलि स्थिति की कूलम्ब शाखा एक विशेष काहलर बहुविध है। इस प्रतिबंध का पहला उदाहरण 1984 के लेख [https://inspirehep.net/record/202378/ पोटेंशियल्स एंड सिमेट्रीज ऑफ जनरल गेज्ड N=2 सुपरग्रेविटी] यांग-मिल्स मॉडल बाय [[बर्नार्ड ऑफ व्हिट|बर्नार्ड डी विट]] और [[एंटोनी वैन प्रोयेन|एंटोनी वान प्रोयेन]] द्वारा प्रकाशित किया गया था, जबकि अंतर्निहित ज्यामिति का एक सामान्य ज्यामितीय विवरण जिसे [[विशेष ज्यामिति]] कहा जाता है [[एंड्रयू स्ट्रोमिंगर]] द्वारा अपने 1990 के लेख्य [http://inspirehep.net/record/26953 विशेष ज्यामिति] में प्रस्तुत किया गया था। | ||
हिग्स शाखा एक हाइपरकाहलर बहुविध है जैसा कि [[लुइस अल्वारेज़ गौम]] और डैनियल जेड फ्रीडमैन ने अपने 1981 के | हिग्स शाखा एक हाइपरकाहलर बहुविध है जैसा कि [[लुइस अल्वारेज़ गौम]] और डैनियल जेड फ्रीडमैन ने अपने 1981 के लेख्य [https://inspirehep.net/record/10231/ सुपरसिमेट्रिक सिग्मा मॉडल में ज्यामितीय संरचना और पराबैंगनी परिमितता] में दिखाया था। गुरुत्वाकर्षण सहित सुपरसिमेट्रिक स्थानीय हो जाता है फिर किसी को उसी हॉज की स्थिति को विशेष कहलर कूलम्ब शाखा में जोड़ने की आवश्यकता होती है जैसा कि N = 1 स्थिति में है। [[जोनाथन बैगर]] और [[एडवर्ड विटन]] ने अपने 1982 के लेख्य [http://inspirehep.net/record/13231/ मैटर कपलिंग्स इन N=2 सुपरग्रेविटी] में प्रदर्शित किया कि इस स्थिति में हिग्स शाखा एक चतुष्कोणीय काहलर बहुविध होना चाहिए। | ||
====N>2 | ====N>2 सुपरसिमेट्री==== | ||
N>2 के साथ विस्तारित | N>2 के साथ विस्तारित सुपरग्रेविटी में मोडुली स्पेस हमेशा सुपरसिमेट्री स्पेस होना चाहिए। | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 13:18, 26 April 2023
क्वांटम क्षेत्र सिद्धांत में मोडुली (या अधिक उचित रूप से मोडुली क्षेत्र) शब्द का उपयोग कभी-कभी अदिश क्षेत्र को संदर्भित करने के लिए किया जाता है, जिनके संभावित ऊर्जा कार्य में वैश्विक न्यूनतम (ग्लोबल मिनिमा) के निरंतर परिवार होते हैं। ऐसे संभावित कार्य अधिकतर अतिसममित (सुपरसिमेट्री) प्रणाली में होते हैं। "मॉड्यूलस" शब्द को गणित से लिया गया है (या अधिक विशेष रूप से मोडुली अंतराल बीजगणितीय ज्यामिति से उधार लिया गया है) जहां इसे "पैरामीटर" के साथ समानार्थी रूप से प्रयोग किया जाता है। मोडुली शब्द (जर्मन में मॉडुलन) पहली बार 1857 में बर्नहार्ड रीमैन के प्रसिद्ध लेख्य "थ्योरी डेर एबेल'शेन फंक्शनेन" में दिखाई दिया।[1]
क्वांटम क्षेत्र सिद्धांतों में मॉडुलि स्थिति
क्वांटम क्षेत्र सिद्धांतों में संभावित वैकुआ को सामान्यतौर पर अदिश क्षेत्र के निर्वात अपेक्षा मूल्यों द्वारा नामपत्र किया जाता है, क्योंकि लोरेंत्ज़ निश्चरता किसी भी उच्च चक्रण क्षेत्रों के निर्वात अपेक्षा मूल्य को खत्म करने के लिए मजबूर करता है। ये निर्वात अपेक्षा मान कोई भी मान ले सकते हैं जिसके लिए संभावित कार्य न्यूनतम है। नतीजतन, जब संभावित कार्य में वैश्विक न्यूनतम के निरंतर परिवार होते हैं तो क्वांटम क्षेत्र सिद्धांत के लिए वैकुआ का स्थान कई गुना (या ऑर्बिफोल्ड) होता है, जिसे सामान्यतौर पर निर्वात बहुविध कहा जाता है।[2] इस बहुविध (मैनिफोल्ड) को अधिकतर वैकुआ का मॉडुलि स्पेस या मॉडुलि स्पेस कहा जाता है।
मोडुली शब्द का उपयोग स्ट्रिंग सिद्धांत में विभिन्न निरंतर मापदंडों को संदर्भित करने के लिए भी किया जाता है जो संभावित स्ट्रिंग पृष्ठभूमि को नामपत्र करते हैं उत्सरण क्षेत्र की अपेक्षा मूल्य, पैरामीटर (जैसे त्रिज्या और जटिल संरचना) जो संघनन बहुविध के आकार को नियंत्रित करते हैं इन मापदंडों को क्वांटम क्षेत्र सिद्धांत में दर्शाया गया है, जो कम ऊर्जा पर स्ट्रिंग सिद्धांत का अनुमान लगाता है ऊपर वर्णित उपयोग के साथ संपर्क बनाते हुए द्रव्यमान रहित अदिश क्षेत्रों के निर्वात अपेक्षा मूल्यों द्वारा स्ट्रिंग सिद्धांत में "मॉड्यूली स्पेस" शब्द का प्रयोग अधिकतर विशेष रूप से सभी संभावित स्ट्रिंग पृष्ठभूमि के स्थान को संदर्भित करने के लिए किया जाता है।
अतिसममित (सुपरसिमेट्रिक) गेज सिद्धांत मोडुली स्थिति
सामान्य क्वांटम क्षेत्र सिद्धांतों में भले ही शास्त्रीय संभावित ऊर्जा को संभावित अपेक्षाओं के बड़े संग्रह पर कम से कम किया जाता है, एक बार क्वांटम सुधार सम्मिलित किए जाने पर यह सामान्य रूप से निश्चित है कि लगभग सभी विन्यास ऊर्जा को कम करने के लिए बंद हो जाते हैं नतीजा यह है कि क्वांटम यांत्रिकी के रिक्तिका का संग्रह सामान्य तौर पर शास्त्रीय सिद्धांत की तुलना में बहुत छोटा होता है। एक उल्लेखनीय अपवाद तब होता है जब प्रश्न में विभिन्न रिक्तिकाएं समरूपता से संबंधित होती हैं जो सुनिश्चित करती है कि उनका ऊर्जा स्तर बिल्कुल गायब रहता हैं।
सुपरसिमेट्री क्वांटम क्षेत्र सिद्धांत में स्थिति बहुत अलग है सामान्य तौर पर इनमें निर्वात के बड़े मोडुली स्थान होते हैं जो किसी भी सममिति से संबंधित नहीं होते हैं उदाहरण, मॉड्यूलि स्पेस पर विभिन्न उत्तेजनाओं के द्रव्यमान विभिन्न बिंदुओं पर भिन्न हो सकते हैं। अतिसममित (सुपरसिमेट्रिक) गेज सिद्धांतों के मोडुली स्पेस सामान्य रूप से गैर-सुपरसिमेट्रिक सिद्धांतों की तुलना में गणना करने में आसान होते हैं क्योंकि क्वांटम सुधार सम्मिलित होने पर भी सुपरसिमेट्रिक मोडुली स्पेस की अनुमत ज्यामिति को प्रतिबंधित करता है।
चार-आयामी सिद्धांतों की अनुमत मॉड्यूलि स्पेस
जितनी अधिक सुपरसिमेट्रिक है निर्वात बहुविध पर प्रतिबंध उतना ही मजबूत है इसलिए यदि अधिक ग्रहण करने वाले स्पिनरों की दी गई संख्या N के लिए एक प्रतिबंध नीचे दिखाई देता है, तो यह N के सभी बड़े मूल्यों के लिए भी लागू होता है।
N = 1 सिद्धांत
मॉड्यूलि स्पेस की ज्यामिति पर पहला प्रतिबंध 1979 में ब्रूनो जुमिनो द्वारा पाया गया था और सुपरसिमेट्री और काहलर बहुविध लेख में प्रकाशित हुआ था उन्होंने वैश्विक सुपरसिमेट्री के साथ 4-आयामों में N=1 सिद्धांत पर विचार किया N=1 का अर्थ है कि सुपरसिमेट्रिक बीजगणित के फर्मीओनिक घटकों को एकल मेजराना सुपरचार्ज में इकट्ठा किया जा सकता है। इस तरह के सिद्धांत में एकमात्र अदिश चिरल सुपरफील्ड के जटिल अदिश हैं, उन्होंने पाया कि इन अदिशों के लिए अनुमत निर्वात अपेक्षा मूल्यों का निर्वात कई गुना न केवल जटिल है बल्कि काहलर भी कई गुना है।
यदि गुरुत्वाकर्षण को सिद्धांत में सम्मिलित किया जाता है ताकि स्थानीय सुपरसिमेट्री हो तो परिणामी सिद्धांत को अतिगुरुत्वाकर्षण सिद्धांत कहा जाता है और मॉड्यूलि स्पेस की ज्यामिति पर प्रतिबंध मजबूत हो जाता है। मोडुली स्थिति केवल काहलर ही नहीं होना चाहिए बल्कि काहलर फॉर्म को अभिन्न कोहोलॉजी तक उठाना चाहिए, ऐसे बहुविध को हॉज बहुविध कहा जाता है। पहला उदाहरण 1979 के लेख ब्रह्माण्ड संबंधी स्थिरांक के बिना अतिगुरुत्वाकर्षण में स्वतः स्फूर्त समरूपता ब्रेकिंग और हिग्स प्रभाव में दिखाई दिया और सामान्य कथन 3 साल बाद निश्चित कुछ सुपरग्रेविटी सिद्धांतों में न्यूटन के स्थिरांक का परिमाणीकरण दिखाई दिया।
N = 2 सिद्धांत
N = 2 सुपरसिमेट्री के साथ विस्तारित 4-आयामी सिद्धांतों में एकल डायराक स्पिनर अत्यधिक प्रभावकारी के अनुरूप स्थितियां अधिक मजबूत होती हैं। N=2 सुपरसिमेट्री बीजगणित में अदिश के साथ दो प्रतिनिधित्व होते हैं, वेक्टर मल्टीप्लेट जिसमें एक जटिल अदिश और हाइपरमल्टीप्लेट होता है जिसमें दो जटिल अदिश होते हैं। सदिश गुणकों के मॉडुलि स्थान को कूलम्ब शाखा कहा जाता है जबकि हाइपरमल्टीप्लेट्स को हिग्स शाखा कहा जाता है। कुल मोडुली स्थान स्थानीय रूप से इन दो शाखाओं का एक उत्पाद है, क्योंकि गैर-सामान्यीकरण प्रमेय का अर्थ है कि प्रत्येक का दशांश अन्य मल्टीप्लेट के क्षेत्रों से स्वतंत्र है। उदाहरण के लिए आर्गिरिईस, स्थानीय उत्पाद संरचना की आगे की चर्चा के लिए चार-आयामी सुपरसिमेट्रिक क्षेत्र सिद्धांतों की गैर-प्रतिस्पर्धी गतिशीलता (पीपी 6-7 देखें)।
वैश्विक N = 2 की स्थिति में दूसरे शब्दों में गुरुत्वाकर्षण की अनुपस्थिति में मॉड्यूलि स्थिति की कूलम्ब शाखा एक विशेष काहलर बहुविध है। इस प्रतिबंध का पहला उदाहरण 1984 के लेख पोटेंशियल्स एंड सिमेट्रीज ऑफ जनरल गेज्ड N=2 सुपरग्रेविटी यांग-मिल्स मॉडल बाय बर्नार्ड डी विट और एंटोनी वान प्रोयेन द्वारा प्रकाशित किया गया था, जबकि अंतर्निहित ज्यामिति का एक सामान्य ज्यामितीय विवरण जिसे विशेष ज्यामिति कहा जाता है एंड्रयू स्ट्रोमिंगर द्वारा अपने 1990 के लेख्य विशेष ज्यामिति में प्रस्तुत किया गया था।
हिग्स शाखा एक हाइपरकाहलर बहुविध है जैसा कि लुइस अल्वारेज़ गौम और डैनियल जेड फ्रीडमैन ने अपने 1981 के लेख्य सुपरसिमेट्रिक सिग्मा मॉडल में ज्यामितीय संरचना और पराबैंगनी परिमितता में दिखाया था। गुरुत्वाकर्षण सहित सुपरसिमेट्रिक स्थानीय हो जाता है फिर किसी को उसी हॉज की स्थिति को विशेष कहलर कूलम्ब शाखा में जोड़ने की आवश्यकता होती है जैसा कि N = 1 स्थिति में है। जोनाथन बैगर और एडवर्ड विटन ने अपने 1982 के लेख्य मैटर कपलिंग्स इन N=2 सुपरग्रेविटी में प्रदर्शित किया कि इस स्थिति में हिग्स शाखा एक चतुष्कोणीय काहलर बहुविध होना चाहिए।
N>2 सुपरसिमेट्री
N>2 के साथ विस्तारित सुपरग्रेविटी में मोडुली स्पेस हमेशा सुपरसिमेट्री स्पेस होना चाहिए।
संदर्भ
- ↑ Bernhard Riemann, Journal für die reine und angewandte Mathematik, vol. 54 (1857), pp. 101-155 "Theorie der Abel'schen Functionen".
- ↑ Teerthal, Patel (2022-01-16). "इलेक्ट्रोवीक चुंबकीय मोनोपोल और चुंबकीय क्षेत्र के लिए किबल तंत्र". Journal of High Energy Physics. Arizona State University. 2022 (1): 10. arXiv:2108.05357. Bibcode:2022JHEP...01..059P. doi:10.1007/JHEP01(2022)059. S2CID 256034831.
- N=2 supergravity and N=2 superYang-Mills theory on general scalar manifolds: Symplectic covariance, gaugings and the momentum map contains a review of restrictions on moduli spaces in various supersymmetric gauge theories.