लेजेंड्रे परिवर्तन: Difference between revisions
(→और गुण) |
No edit summary |
||
Line 4: | Line 4: | ||
गणित में, [[एड्रियन मैरी लीजेंड्रे|एड्रियन मैरी लीजेंड्]] के नाम पर लेजेंड्रे ट्रांसफॉर्मेशन (या लेजेंड्रे ट्रांसफॉर्मेशन) एक वास्तविक चर के [[वास्तविक संख्या|वास्तविक]]-मूल्यवान उत्तल कार्यों पर एक समावेशी परिवर्तन है। भौतिक समस्याओं में, इसका उपयोग एक मात्रा (जैसे वेग, दबाव, या तापमान) के कार्यों को संयुग्मित मात्रा (संवेग, मात्रा और एन्ट्रापी, क्रमशः) के कार्यों में परिवर्तित करने के लिए किया जाता है। इस तरह, यह आमतौर पर [[शास्त्रीय यांत्रिकी|चिरसम्मत यांत्रिकी]] में प्रयोग किया जाता है ताकि लैग्रेंगियन औपचारिकता (या इसके विपरीत) से हेमिल्टनियन औपचारिकता को प्राप्त किया जा सके और ऊष्मप्रवैगिकी में थर्मोडायनामिक क्षमता प्राप्त करने के साथ-साथ कई चर के अंतर समीकरणों के समाधान में भी किया जा सके। | गणित में, [[एड्रियन मैरी लीजेंड्रे|एड्रियन मैरी लीजेंड्]] के नाम पर लेजेंड्रे ट्रांसफॉर्मेशन (या लेजेंड्रे ट्रांसफॉर्मेशन) एक वास्तविक चर के [[वास्तविक संख्या|वास्तविक]]-मूल्यवान उत्तल कार्यों पर एक समावेशी परिवर्तन है। भौतिक समस्याओं में, इसका उपयोग एक मात्रा (जैसे वेग, दबाव, या तापमान) के कार्यों को संयुग्मित मात्रा (संवेग, मात्रा और एन्ट्रापी, क्रमशः) के कार्यों में परिवर्तित करने के लिए किया जाता है। इस तरह, यह आमतौर पर [[शास्त्रीय यांत्रिकी|चिरसम्मत यांत्रिकी]] में प्रयोग किया जाता है ताकि लैग्रेंगियन औपचारिकता (या इसके विपरीत) से हेमिल्टनियन औपचारिकता को प्राप्त किया जा सके और ऊष्मप्रवैगिकी में थर्मोडायनामिक क्षमता प्राप्त करने के साथ-साथ कई चर के अंतर समीकरणों के समाधान में भी किया जा सके। | ||
वास्तविक रेखा पर पर्याप्त रूप से सुचारू कार्यों के लिए, | वास्तविक रेखा पर पर्याप्त रूप से सुचारू कार्यों के लिए, एक फ़ंक्शन <math>f</math> के लेजेंड्रे ट्रांसफ़ॉर्म <math>f^*</math>को एक योगात्मक स्थिरांक तक निर्दिष्ट किया जा सकता है, इस परिस्थिति के अनुसार कि फ़ंक्शंस के पहले डेरिवेटिव एक दूसरे के व्युत्क्रम फ़ंक्शन हैं। इसे यूलर के डेरिवेटिव नोटेशन के रूप में व्यक्त किया जा सकता है<math display="block">Df(\cdot) = \left( D f^* \right)^{-1}(\cdot)~,</math>जहाँ <math>D</math> अवकलन का संचालिका है, <math>\cdot</math> संबद्ध फलन के लिए एक तर्क या इनपुट का प्रतिनिधित्व करता है, <math>(\phi)^{-1}(\cdot)</math> एक व्युत्क्रम फलन है जैसे <math>(\phi) ^{-1}(\phi(x))=x</math> | ||
Line 26: | Line 26: | ||
=== डेरिवेटिव के संदर्भ में लेजेंड्रे ट्रांसफॉर्म को समझना === | === डेरिवेटिव के संदर्भ में लेजेंड्रे ट्रांसफॉर्म को समझना === | ||
अवकलनीय उत्तल फलन के लिए <math>f</math> पहले व्युत्पन्न के साथ वास्तविक रेखा पर <math>f'</math> और इसका उलटा <math>(f')^{-1}</math>, लीजेंड्रे का रूपांतरण <math>f</math>, <math> f^*</math>, निर्दिष्ट किया जा सकता है, एक योज्य स्थिरांक तक, इस | अवकलनीय उत्तल फलन के लिए <math>f</math> पहले व्युत्पन्न के साथ वास्तविक रेखा पर <math>f'</math> और इसका उलटा <math>(f')^{-1}</math>, लीजेंड्रे का रूपांतरण <math>f</math>, <math> f^*</math>, निर्दिष्ट किया जा सकता है, एक योज्य स्थिरांक तक, इस परिस्थिति के द्वारा कि कार्यों के पहले डेरिवेटिव एक दूसरे के व्युत्क्रम कार्य हैं, अर्थात, <math>f' = ((f^*)')^{-1}</math> और <math>(f^*)' = (f')^{-1}</math>. | ||
इसे देखने के लिए पहले ध्यान दें कि अगर <math> f</math> वास्तविक रेखा पर एक उत्तल कार्य के रूप में अवकलनीय है और <math> \overline{x} </math> के कार्य का एक [[महत्वपूर्ण बिंदु (गणित)]] है <math> x \mapsto p \cdot x -f(x) </math>, तब सर्वोच्चता प्राप्त की जाती है <math> \overline{x}</math> (उत्तलता से, इस विकिपीडिया पृष्ठ में पहला चित्र देखें)। इसलिए, लीजेंड्रे का परिवर्तन <math> f</math> है <math> f^*(p)= p \cdot \overline{x} - f(\overline{x})</math>. | इसे देखने के लिए पहले ध्यान दें कि अगर <math> f</math> वास्तविक रेखा पर एक उत्तल कार्य के रूप में अवकलनीय है और <math> \overline{x} </math> के कार्य का एक [[महत्वपूर्ण बिंदु (गणित)]] है <math> x \mapsto p \cdot x -f(x) </math>, तब सर्वोच्चता प्राप्त की जाती है <math> \overline{x}</math> (उत्तलता से, इस विकिपीडिया पृष्ठ में पहला चित्र देखें)। इसलिए, लीजेंड्रे का परिवर्तन <math> f</math> है <math> f^*(p)= p \cdot \overline{x} - f(\overline{x})</math>. |
Revision as of 14:42, 27 April 2023
गणित में, एड्रियन मैरी लीजेंड् के नाम पर लेजेंड्रे ट्रांसफॉर्मेशन (या लेजेंड्रे ट्रांसफॉर्मेशन) एक वास्तविक चर के वास्तविक-मूल्यवान उत्तल कार्यों पर एक समावेशी परिवर्तन है। भौतिक समस्याओं में, इसका उपयोग एक मात्रा (जैसे वेग, दबाव, या तापमान) के कार्यों को संयुग्मित मात्रा (संवेग, मात्रा और एन्ट्रापी, क्रमशः) के कार्यों में परिवर्तित करने के लिए किया जाता है। इस तरह, यह आमतौर पर चिरसम्मत यांत्रिकी में प्रयोग किया जाता है ताकि लैग्रेंगियन औपचारिकता (या इसके विपरीत) से हेमिल्टनियन औपचारिकता को प्राप्त किया जा सके और ऊष्मप्रवैगिकी में थर्मोडायनामिक क्षमता प्राप्त करने के साथ-साथ कई चर के अंतर समीकरणों के समाधान में भी किया जा सके।
वास्तविक रेखा पर पर्याप्त रूप से सुचारू कार्यों के लिए, एक फ़ंक्शन के लेजेंड्रे ट्रांसफ़ॉर्म को एक योगात्मक स्थिरांक तक निर्दिष्ट किया जा सकता है, इस परिस्थिति के अनुसार कि फ़ंक्शंस के पहले डेरिवेटिव एक दूसरे के व्युत्क्रम फ़ंक्शन हैं। इसे यूलर के डेरिवेटिव नोटेशन के रूप में व्यक्त किया जा सकता है
या समकक्ष रूप से और लग्रेंज के अंकन में है।
एफ़िन रिक्त स्थान और गैर-उत्तल कार्यों के लिए लीजेंड्रे परिवर्तन का सामान्यीकरण उत्तल संयुग्म (जिसे लीजेंड्रे-फेनशेल परिवर्तन भी कहा जाता है) के रूप में जाना जाता है, जिसका उपयोग फलन के उत्तल पतवार के निर्माण के लिए किया जा सकता है।
परिभाषा
मान लीजिये अंतराल होने दें, और एक उत्तल फलन; तब का लेजेंड्रे रूपांतरण फलन द्वारा परिभाषित किया गया है।
उत्तल कार्यों के लिए सामान्यीकरण एक उत्तल सेट पर सीधा है: में डोमेन है
फलन को का उत्तल संयुग्मी फलन कहते हैं। ऐतिहासिक कारणों (विश्लेषणात्मक यांत्रिकी में निहित) के लिए, संयुग्म चर को अक्सर के बजाय के रूप में दर्शाया जाता है। यदि उत्तल फलन पूरी रेखा पर परिभाषित हो और हर जगह अवकलनीय हो, तब
लीजेंड्रे ट्रांसफॉर्मेशन बिंदुओं और रेखाओं के बीच के द्वैत संबंध का एक अनुप्रयोग है। द्वारा निर्दिष्ट कार्यात्मक संबंध को समान रूप से बिंदुओं के सेट के रूप में या उनके ढलान और अवरोधन मानों द्वारा निर्दिष्ट स्पर्शरेखा रेखाओं के सेट के रूप में प्रदर्शित किया जा सकता है।
डेरिवेटिव के संदर्भ में लेजेंड्रे ट्रांसफॉर्म को समझना
अवकलनीय उत्तल फलन के लिए पहले व्युत्पन्न के साथ वास्तविक रेखा पर और इसका उलटा , लीजेंड्रे का रूपांतरण , , निर्दिष्ट किया जा सकता है, एक योज्य स्थिरांक तक, इस परिस्थिति के द्वारा कि कार्यों के पहले डेरिवेटिव एक दूसरे के व्युत्क्रम कार्य हैं, अर्थात, और .
इसे देखने के लिए पहले ध्यान दें कि अगर वास्तविक रेखा पर एक उत्तल कार्य के रूप में अवकलनीय है और के कार्य का एक महत्वपूर्ण बिंदु (गणित) है , तब सर्वोच्चता प्राप्त की जाती है (उत्तलता से, इस विकिपीडिया पृष्ठ में पहला चित्र देखें)। इसलिए, लीजेंड्रे का परिवर्तन है .
फिर, मान लीजिए कि पहला अवकलज व्युत्क्रमणीय है और मान लें कि इसका व्युत्क्रम है। फिर प्रत्येक के लिए, बिंदु फलन (अर्थात् का अद्वितीय महत्वपूर्ण बिंदु है क्योंकि और पर के संबंध में फलन का पहला अवकलज है। इसलिए हमारे पास है ) प्रत्येक के लिए के संबंध में अवकलन करने पर, हम पाते हैं
तब से यह सरल करता है . दूसरे शब्दों में, और एक दूसरे के विपरीत हैं।
सामान्यतः, यदि के व्युत्क्रम के रूप में, तो तो समाकलन से प्राप्त होता है। एक स्थिर के साथ।
व्यावहारिक रूप में, दिया हुआ है, बनाम का पैरामीट्रिक प्लॉट बनाम के ग्राफ के बराबर है।
कुछ मामलों में (उदाहरण के लिए थर्मोडायनामिक क्षमता, नीचे), एक गैर-मानक आवश्यकता का उपयोग किया जाता है, जो f * की एक वैकल्पिक परिभाषा के बराबर होता है, जिसमें ऋण चिह्न होता है,
गुण
- एक उत्तल फलन का लेजेंड्रे रूपांतरण, जिसके दोहरे व्युत्पन्न मान सभी धनात्मक हैं, वह भी एक उत्तल फलन है जिसके दोहरे व्युत्पन्न मान सभी धनात्मक हैं। आइए हम इसे सभी धनात्मक दोहरे व्युत्पन्न मूल्यों और एक विशेषण (उलटा) व्युत्पन्न के साथ एक दोहरे अवकलनीय फलन के साथ प्रदर्शित करें। एक स्थिर के लिए, मान लीजिए फलन को पर अधिकतम करता है। तब का लेजेंड्रे परिवर्तन है, यह देखते हुए कि पर निर्भर करता है (जो ऊपर दिए गए इस पृष्ठ के पहले आंकड़े में देखा जा सकता है)। इसलिए,अधिकतम स्थिति द्वारा इस प्रकार जहाँ , मतलब है कि का विलोम है जिसका व्युत्पन्न है (इसलिए ). ध्यान दें कि निम्नलिखित व्युत्पन्न के साथ भी अवकलनीय है (उलटा कार्य नियम),इस प्रकार लीजेंड्रे परिवर्तन अवकलनीय कार्यों की संरचना है, इसलिए यह अवकलनीय है। उत्पाद नियम और श्रृंखला नियम लागू करने से प्राप्त होता हैप्राप्त हो रहा हैइसलिए उत्तल है।
- इससे पता चलता है कि लिजेंड्रे रूपांतरण एक अंतर्वलन (गणित) है, अर्थात, : के लिए उपरोक्त समानता का उपयोग करके , और इसका व्युत्पन्न,
उदाहरण
उदाहरण 1
घातीय फलन पर विचार करें, जिसका प्रांत है। परिभाषा से, लेजेंड्रे रूपांतरण है
परिभाषा से, लीजेंड्रे रूपांतरण है
और इसका डोमेन है यह दिखाता है कि किसी फलन के डोमेन और उसके लेजेंड्रे परिवर्तन भिन्न हो सकते हैं।
ढूँढ़ने के लिए
इस प्रकार, अधिकतम होता है, और
उदाहरण 2
मान लीजिए कि f(x) = cx2 R पर परिभाषित है, जहाँ c > 0 एक निश्चित स्थिरांक है।
x* अचल के लिए, x, x*x − f(x) = x*x − cx2 के फलन का पहला अवकलज x* − 2cx और दूसरा अवकलज −2c है; x = x*/2c पर एक स्थिर बिंदु होता है, जो हमेशा अधिकतम होता है।
इस प्रकार, I* = R और
उदाहरण 3
मान लीजिए f(x) = x2 के लिए x ∈ I = [2, 3].
x* निश्चित के लिए, x*x − f(x) कॉम्पैक्ट I पर निरंतर है, इसलिए यह हमेशा उस पर एक अधिकतम सीमा लेता है; यह इस प्रकार है कि I* = RI
x = x*/2 पर स्थिर बिंदु डोमेन [2, 3] में है अगर और केवल अगर 4 ≤ x* ≤ 6 अन्यथा अधिकतम या तो x = 2, या x = 3 पर लिया जाता है। यह इस प्रकार है
उदाहरण 4
फलन f(x) = cx उत्तल है, प्रत्येक x के लिए (लीजेंड्रे परिवर्तन को अच्छी तरह से परिभाषित करने के लिए सख्त उत्तलता आवश्यक नहीं है)। स्पष्ट रूप से x*x − f(x) = (x* − c)x कभी भी ऊपर से x के एक फलन के रूप में परिबद्ध नहीं होता है, जब तक कि x* − c = 0 नहीं। इसलिए f* I* = {c} और f*(c) = 0 पर परिभाषित है।
कोई समावेशन की जांच कर सकता है: बेशक, x*x − f*(x*) हमेशा x* ∈ {c} के फलन के रूप में परिबद्ध होता है, इसलिए I ** = R फिर, सभी x के लिए एक है
उदाहरण 5: कई चर
मान लीजिये
तब f उत्तल है, और
हमारे पास X* = Rn और है
लीजेंड्रे ट्रांसफॉर्म के तहत अंतर का व्यवहार
लेजेंड्रे रूपांतरण को भागों द्वारा एकीकरण से प्राप्त किया गया है, p dx = d(px) − x dp
मान लीजिए f दो स्वतंत्र चरों x और y का फलन है, जिसमें अवकल है
अतः हम फलन g(p, y) = f − px पर विचार करते हैं ताकि
अनुप्रयोग
विश्लेषणात्मक यांत्रिकी
चिरसम्मत यांत्रिकी में लैग्रैंगियन फॉर्मूलेशन से हैमिल्टनियन फॉर्मूलेशन प्राप्त करने के लिए और इसके विपरीत एक लीजेंड्रे ट्रांसफ़ॉर्म का उपयोग किया जाता है। एक विशिष्ट लैग्रैंगियन का रूप है
इसलिए लीजेंड्रे का रूपांतरण के एक फलन के रूप में हैमिल्टनियन फलन है,
ऊष्मप्रवैगिकी
ऊष्मप्रवैगिकी में लीजेंड्रे परिवर्तन के उपयोग के पीछे की रणनीति एक ऐसे फलन से स्थानांतरित करना है जो एक चर पर निर्भर करता है जो एक नए (संयुग्मित) फलन पर निर्भर करता है जो एक नए चर पर निर्भर करता है, मूल एक के संयुग्म है। नया चर मूल चर के संबंध में मूल फलन का आंशिक अवकलज है। नया फलन मूल फलन और पुराने और नए चरों के गुणनफल के बीच का अंतर है। आमतौर पर, यह परिवर्तन उपयोगी होता है क्योंकि यह निर्भरता को स्थानांतरित करता है, उदाहरण के लिए, एक व्यापक चर से ऊर्जा को इसके संयुग्म-गहन चर में, जिसे अक्सर एक भौतिक प्रयोग में अधिक आसानी से नियंत्रित किया जा सकता है।
उदाहरण के लिए, आंतरिक ऊर्जा व्यापक मात्रा एन्ट्रापी, आयतन और रासायनिक संरचना का एक स्पष्ट कार्य है
एंट्रॉपी के व्यापक चर से ऊर्जा की निर्भरता को स्थानांतरित करना भी संभव है, S, (अक्सर अधिक सुविधाजनक) गहन चर के लिए T, जिसके परिणामस्वरूप हेल्महोल्ट्ज़ ऊर्जा और गिब्स ऊर्जा उष्मागतिक मुक्त ऊर्जा प्राप्त होती है। हेल्महोल्ट्ज़ मुक्त ऊर्जा, A, और गिब्स ऊर्जा, G, क्रमशः आंतरिक ऊर्जा और एन्थैल्पी के लीजेंड्रे रूपांतरणों को करके प्राप्त किया जाता है,
एक उदाहरण - चर संधारित्र
भौतिकी के एक अन्य उदाहरण के रूप में, एक समानांतर-प्लेट संधारित्र पर विचार करें, जिसमें प्लेटें एक दूसरे के सापेक्ष गति कर सकती हैं। इस तरह के एक संधारित्र विद्युत ऊर्जा के हस्तांतरण की अनुमति देगा जो प्लेटों पर कार्य करने वाले बल द्वारा किए गए बाहरी यांत्रिक कार्य में संधारित्र में संग्रहीत होता है। एक विद्युत आवेश को एक सिलेंडर में गैस के "चार्ज" के अनुरूप माना जा सकता है, जिसके परिणामस्वरूप पिस्टन पर यांत्रिक बल लगाया जाता है।
प्लेटों पर बल की गणना x के फलन के रूप में करें, वह दूरी जो उन्हें अलग करती है। बल खोजने के लिए, स्थितिज ऊर्जा की गणना करें, और फिर बल की परिभाषा को स्थितिज ऊर्जा फलन के ग्रेडिएंट के रूप में लागू करें।
धारिता C(x) तथा आवेश Q के संधारित्र में संचित ऊर्जा है
विद्युत क्षेत्र के कारण प्लेटों के बीच बल F तब होता है
संभाव्यता सिद्धांत
बड़े विचलन सिद्धांत में, दर फलन को एक यादृच्छिक चर के क्षण-उत्पन्न करने वाले फलन के लघुगणक के लीजेंड्रे परिवर्तन के रूप में परिभाषित किया गया है। दर फलन का एक महत्वपूर्ण अनुप्रयोग आई.आई.डी. यादृच्छिक चरों के योगों की पूँछ संभावनाओं की गणना में है।
सूक्ष्मअर्थशास्त्र
माइक्रोइकोनॉमिक्स (सूक्ष्मअर्थशास्त्र) में लेजेंड्रे परिवर्तन स्वाभाविक रूप से किसी उत्पाद की आपूर्ति S(P) को खोजने की प्रक्रिया में उत्पन्न होता है, जिसे बाजार में एक निश्चित मूल्य P दिया जाता है, लागत समारोह C(Q), यानी निर्माता को बनाने/खनन/आदि की लागत जानने पर। दिए गए उत्पाद की Q इकाइयाँ।
एक सरल सिद्धांत पूरी तरह से लागत फलन पर आधारित आपूर्ति वक्र के आकार की व्याख्या करता है। मान लें कि हमारे उत्पाद की एक इकाई का बाजार मूल्य P है। इस वस्तु को बेचने वाली कंपनी के लिए, सबसे अच्छी रणनीति उत्पादन Q को समायोजित करना है ताकि इसका लाभ अधिकतम हो सके। हम अधिकतम लाभ प्राप्त कर सकते हैं
ज्यामितीय व्याख्या
कड़ाई से उत्तल फलन के लिए, लीजेंड्रे परिवर्तन को फलन के ग्राफ़ और ग्राफ़ के स्पर्शरेखा के परिवार के बीच मानचित्रण के रूप में व्याख्या किया जा सकता है। (एक चर के एक समारोह के लिए, स्पर्शरेखा को सभी बिंदुओं पर अच्छी तरह से परिभाषित किया गया है, क्योंकि एक उत्तल फलन सभी बिंदुओं पर अलग-अलग है।)
ढलान और -अवरोधन के साथ एक लाइन का समीकरण द्वारा दिया गया है, इस लाइन के लिए बिंदु पर फलन के ग्राफ को स्पर्शरेखा बनाने की आवश्यकता है।
लीजेंड्रे परिवर्तन एक से अधिक आयामों में
Rn के एक खुले उत्तल उपसमुच्चय U पर एक अलग-अलग वास्तविक-मूल्यवान फलन के लिए जोड़ी (U, f) के लेजेंड्रे संयुग्म को जोड़ी (V, g) के रूप में परिभाषित किया गया है, जहां V ग्रेडिएंट मैपिंग Df के तहत U की छवि है , और g सूत्र द्वारा दिया गया V पर फलन है
वैकल्पिक रूप से, यदि X एक सदिश समष्टि है और Y इसकी दोहरी सदिश समष्टि है, तो x के प्रत्येक बिंदु X और y के Y के लिए, Y के साथ कोटिस्पर्शी रिक्त स्थान T*Xx और X के साथ T*Yy की प्राकृतिक पहचान है। यदि f, X के ऊपर एक वास्तविक अवकलनीय फलन है, तो इसका बाह्य अवकलज, df कोटिस्पर्शी बंडल T*X का एक भाग है और इस तरह, हम X से Y तक एक मानचित्र बना सकते हैं। इसी प्रकार, यदि g, Y के ऊपर एक वास्तविक अवकलनीय फलन है, तो dg, Y से X तक के मानचित्र को परिभाषित करता है। यदि दोनों मानचित्र एक दूसरे के व्युत्क्रम होते हैं, तो हम कहते हैं कि हमारे पास एक लेजेंड्रे रूपांतरण है। इस सेटिंग में टॉटोलॉजिकल वन-फॉर्म की धारणा का आमतौर पर उपयोग किया जाता है।
जब फलन अलग-अलग नहीं होता है, तब भी लीजेंड्रे ट्रांसफॉर्मेशन को बढ़ाया जा सकता है और इसे लेजेंड्रे-फेंशेल ट्रांसफॉर्मेशन के रूप में जाना जाता है। इस अधिक सामान्य सेटिंग में, कुछ गुण खो जाते हैं: उदाहरण के लिए, लेजेंड्रे रूपांतरण अब अपना व्युत्क्रम नहीं है (जब तक कि उत्तलता जैसी अतिरिक्त मान्यताएं नहीं हैं)।
कई गुना पर लेजेंड्रे परिवर्तन
को एक स्मूथ मैनिफोल्ड होने दें, और और को क्रमशः और उससे जुड़े बंडल प्रोजेक्शन पर एक वेक्टर बंडल होने दें। मान लीजिये मसृण फलन हो। हम चिरसम्मत अवस्था के साथ सादृश्य द्वारा के बारे में सोचते हैं जहां ,और कुछ धनात्मक संख्या के लिए और समारोह
हमेशा की तरह, के द्वैत को द्वारा दर्शाया जाता है। के ऊपर के फाइबर को द्वारा निरूपित किया जाता है, और से तक के प्रतिबंध को का लेजेंड्रे ट्रांसफॉर्मेशन स्मूथ मॉर्फिज़्म है
द्वारा परिभाषित , जहाँ .
दूसरे शब्दों में, कोवेक्टर है जो भेजता है दिशात्मक व्युत्पन्न के लिए .
स्थानीय रूप से लीजेंड्रे परिवर्तन का वर्णन करने के लिए, आइए जिस पर एक समन्वय चार्ट हो तुच्छ है। का तुच्छीकरण चुनना ऊपर , हम चार्ट प्राप्त करते हैं और . इन चार्टों के संदर्भ में, हमारे पास है , जहाँ
यदि, जैसा कि चिरसम्मत मामले में, का प्रतिबंध प्रत्येक फाइबर के लिए सख्ती से उत्तल है और एक धनात्मक निश्चित द्विघात रूप से नीचे एक स्थिर है, फिर लिजेंड्रे रूपांतरित होता है डिफियोमोर्फिज्म है।[2] लगता है कि एक भिन्नता है और चलो द्वारा परिभाषित "हैमिल्टनियन मैकेनिक्स" फलन हो
और गुण
स्केलिंग गुण
लीजेंड्रे ट्रांसफॉर्मेशन में निम्नलिखित स्केलिंग गुण हैं: के लिए a > 0,
अनुवाद के अंतर्गत व्यवहार
व्युत्क्रम के अंतर्गत व्यवहार
रैखिक परिवर्तनों के तहत व्यवहार
मान लीजिये A : Rn → Rm एक रैखिक परिवर्तन हो। किसी उत्तल फलन के लिए f पर Rn, किसी के पास
इनफिनिमल कनवल्शन
दो फलनों f और g के इनफिनिमल दृढ़ संकल्प के रूप में परिभाषित किया गया है
मान लीजिये f1, ..., fm उचित उत्तल कार्य करें तब Rn
फेनचेल की असमानता
किसी भी फलन f और इसके उत्तल संयुग्म f * के लिए फेनचेल की असमानता (जिसे फेनशेल-यंग असमानता के रूप में भी जाना जाता है) प्रत्येक x ∈ X और p ∈ X* यानी स्वतंत्र x, p जोड़े, के लिए लागू होती है।
यह भी देखें
- द्वैत वक्र
- प्रक्षेप्य द्वैत
- उत्पादों में यंग की असमानता
- उत्तल संयुग्म
- मोरो की प्रमेय
- भागों द्वारा एकीकरण
- फेनचेल का द्वैत प्रमेय
संदर्भ
- ↑ "Legendre Transform | Nick Alger // Maps, art, etc". Archived from the original on 2015-03-12. Retrieved 2011-01-26.
- ↑ 2.0 2.1 Ana Cannas da Silva. Lectures on Symplectic Geometry, Corrected 2nd printing. Springer-Verlag, 2008. pp. 147-148. ISBN 978-3-540-42195-5.
- Courant, Richard; Hilbert, David (2008). Methods of Mathematical Physics. Vol. 2. John Wiley & Sons. ISBN 978-0471504399.
- Arnol'd, Vladimir Igorevich (1989). Mathematical Methods of Classical Mechanics (2nd ed.). Springer. ISBN 0-387-96890-3.
- Fenchel, W. (1949). "On conjugate convex functions", Can. J. Math 1: 73-77.
- Rockafellar, R. Tyrrell (1996) [1970]. Convex Analysis. Princeton University Press. ISBN 0-691-01586-4.
- Zia, R. K. P.; Redish, E. F.; McKay, S. R. (2009). "Making sense of the Legendre transform". American Journal of Physics. 77 (7): 614. arXiv:0806.1147. Bibcode:2009AmJPh..77..614Z. doi:10.1119/1.3119512. S2CID 37549350.
अग्रिम पठन
- Nielsen, Frank (2010-09-01). "Legendre transformation and information geometry" (PDF). Retrieved 2016-01-24.
- Touchette, Hugo (2005-07-27). "Legendre-Fenchel transforms in a nutshell" (PDF). Retrieved 2016-01-24.
- Touchette, Hugo (2006-11-21). "Elements of convex analysis" (PDF). Archived from the original (PDF) on 2016-02-01. Retrieved 2016-01-24.
बाहरी संबंध
- Legendre transform with figures at maze5.net
- Legendre and Legendre-Fenchel transforms in a step-by-step explanation at onmyphd.com