व्रेथ गुणनफल: Difference between revisions
No edit summary |
(text) |
||
Line 10: | Line 10: | ||
== परिभाषा == | == परिभाषा == | ||
मान लीजिये A एक समूह है और H | मान लीजिये A एक समूह है और H एक सम्मुच्चय पर कार्य करने वाला <math>\Omega</math> समूह है। <math>A</math> का [[समूहों का प्रत्यक्ष उत्पाद|प्रत्यक्ष उत्पादन]] <math>A^{\Omega}</math> स्वयम् <math>\Omega</math> द्वारा अनुक्रमित क्रम <math>\overline{a} = (a_{\omega})_{\omega \in \Omega}</math> <math>A</math> में <math>\Omega</math> द्वारा अनुक्रमित बिंदुवार गुणन द्वारा दिए गए समूह संचालन का समुच्चय है। <math>\Omega</math> पर <math>H</math> की क्रिया को <math>A^{\Omega}</math> पर एक क्रिया के लिए रीइन्डेक्सिंग द्वारा विस्तारित किया जा सकता है, अर्थात् निम्नलिखित को परिभाषित करके | ||
: <math> h \cdot (a_{\omega})_{\omega \in \Omega} := (a_{h^{-1} \cdot \omega})_{\omega \in \Omega}</math> | : <math> h \cdot (a_{\omega})_{\omega \in \Omega} := (a_{h^{-1} \cdot \omega})_{\omega \in \Omega}</math> | ||
सभी | सभी <math>h \in H</math> के लिए और सभी <math>(a_{\omega})_{\omega \in \Omega} \in A^{\Omega}</math> के लिए है। | ||
फिर | फिर <math>H</math>द्वारा <math>A</math> का अप्रतिबंधित पुष्पांजलि उत्पाद <math>A \text{ Wr}_{\Omega} H</math> अर्ध-प्रत्यक्ष उत्पाद <math>A^{\Omega} \rtimes H</math> ऊपर दिए गए <math>A^{\Omega}</math> पर <math>H</math> की क्रिया है। उपसमूह <math>A^{\Omega}</math> को <math>A^{\Omega} \rtimes H</math> पुष्पांजलि उत्पाद का आधार कहा जाता है। | ||
प्रतिबंधित | प्रतिबंधित पुष्पांजलि उत्पाद <math>A \text{ wr}_{\Omega} H</math> अप्रतिबंधित पुष्पांजलि उत्पाद के रूप में उसी तरह बनाया गया है, अतिरिक्त इसके कि पुष्पांजलि उत्पाद के आधार के रूप में समूहों के प्रत्यक्ष योग का उपयोग किया जाता है। इस स्तिथि में, आधार में सभी अनुक्रम <math>A</math> निश्चित रूप से कई गैर-पहचान प्रविष्टियों के साथ होते हैं । | ||
सबसे | सबसे सामान्य स्तिथि में, <math>\Omega = H</math> और <math>H</math> बाएं गुणन द्वारा स्वयं पर कार्य करता है। इस स्तिथि में, अप्रतिबंधित और प्रतिबंधित पुष्पांजलि उत्पाद <math>A \text{ Wr } H</math> और <math>A \text{ wr } H</math> द्वारा क्रमश निरूपित किया जा सकता है। इसे नियमित पुष्पांजलि उत्पाद कहा जाता है। | ||
== अंकन और परंपराएँ == | == अंकन और परंपराएँ == | ||
H द्वारा A के पुष्पांजलि उत्पाद की संरचना H-सम्मुच्चय Ω पर निर्भर करती है और स्तिथियों में Ω अनंत है, यह इस बात पर भी निर्भर करता है कि कोई प्रतिबंधित या अप्रतिबंधित पुष्पांजलि उत्पाद का उपयोग करता है या नहीं। हालाँकि, साहित्य में प्रयुक्त संकेतन में कमी हो सकती है और परिस्थितियों पर ध्यान देने की आवश्यकता है। | |||
* | * रचना में A≀<sub>Ω</sub>H अप्रतिबंधित पुष्पांजलि उत्पाद A Wr<sub>Ω</sub>H या प्रतिबंधित पुष्पांजलि उत्पाद A wr<sub>Ω</sub>H का अर्थ हो सकता है। | ||
* इसी तरह, A≀H अप्रतिबंधित नियमित पुष्पांजलि उत्पाद A Wr H या प्रतिबंधित नियमित पुष्पांजलि उत्पाद A wr H | * इसी तरह, A≀H अप्रतिबंधित नियमित पुष्पांजलि उत्पाद A Wr H या प्रतिबंधित नियमित पुष्पांजलि उत्पाद A wr H का अर्थ हो सकता है। | ||
* साहित्य में | * साहित्य में H-सम्मुच्चय Ω को अंकन से छोड़ा जा सकता है भले ही Ω ≠ H है। | ||
* विशेष | * विशेष स्तिथि में कि H = S<sub>''n''</sub> घात n का [[सममित समूह]] है रचना में यह मान लेना सामान्य है कि Ω = {1,...,n} (S<sub>''n''</sub> की प्राकृतिक क्रिया के साथ) और फिर Ω को अंकन से हटा दें। यानी A≀S<sub>''n''</sub> सामान्यतः A≀<sub>{1,...,''n''}</sub>S<sub>''n''</sub> को दर्शाता है नियमित पुष्पांजलि उत्पाद A≀<sub>''S''<sub>''n''</sub>S<sub>''n''</sub> के स्थान पर पहले की स्तिथि में आधार समूह A की n प्रतियों का उत्पाद है, उत्तरार्द्ध में यह A की n प्रतियों का उत्पाद है। | ||
== गुण == | == गुण == | ||
=== परिमित Ω | === परिमित Ω पर अप्रतिबंधित और प्रतिबंधित पुष्पांजलि उत्पाद का समझौता === | ||
चूँकि परिमित प्रत्यक्ष उत्पाद समूहों के परिमित प्रत्यक्ष योग के समान है, यह इस प्रकार है कि अप्रतिबंधित A Wr<sub>Ω</sub>H और प्रतिबंधित | चूँकि परिमित प्रत्यक्ष उत्पाद समूहों के परिमित प्रत्यक्ष योग के समान है, यह इस प्रकार है कि अप्रतिबंधित A Wr<sub>Ω</sub>H और प्रतिबंधित पुष्पांजलि उत्पाद A wr<sub>Ω</sub>H सहमत है यदि H-सम्मुच्चय Ω परिमित है। विशेष रूप से यह तब सत्य होता है जब Ω = H परिमित होता है। | ||
=== उपसमूह === | === उपसमूह === | ||
A WR<sub>Ω</sub>H हमेशा A Wr<sub>Ω</sub> ''H'' का [[उपसमूह]] होता है। | |||
=== | === गणनांक === | ||
यदि A, H और Ω परिमित हैं, तो | यदि A, H और Ω परिमित हैं, तो | ||
:: | | :: |''A''≀<sub>Ω</sub>''H''| = |''A''|<sup>|Ω|</sup>|''H''|.<ref>Joseph J. Rotman, An Introduction to the Theory of Groups, p. 172 (1995)</ref> | ||
=== | === सार्वभौमिक अंतःस्थापन प्रमेय === | ||
{{Main| | {{Main|सार्वभौमिक अंतःस्थापन प्रमेय}} | ||
सार्वभौमिक अंतःस्थापन प्रमेय यदि G, H द्वारा A का एक [[समूह विस्तार]] है, तो अप्रतिबंधित पुष्पांजलि उत्पाद A≀H का एक उपसमूह उपस्थित है जो G के लिए समरूपी है।<ref>M. Krasner and L. Kaloujnine, "Produit complet des groupes de permutations et le problème d'extension de groupes III", [[Acta Sci. Math.]] 14, pp. 69–82 (1951)</ref> इसे क्रास्नर-कलौजिनिन अंतःस्थापन प्रमेय के रूप में भी जाना जाता है। क्रोहन-रोड्स प्रमेय में वह सम्मिलित है जो मूल रूप से इसके समतुल्य अर्धसमूह है।<ref name="Meldrum1995">{{cite book|author=J D P Meldrum|title=समूहों और अर्धसमूहों के पुष्पांजलि उत्पाद|year=1995|publisher=Longman [UK] / Wiley [US]|isbn=978-0-582-02693-3|page=ix}}</ref> | |||
== पुष्पांजलि उत्पादों की विहित क्रियाएं == | == पुष्पांजलि उत्पादों की विहित क्रियाएं == | ||
यदि समूह A एक सम्मुच्चय Λ पर कार्य करता है तो Ω और Λ से सम्मुच्चय बनाने के दो विहित तरीके हैं जिन पर A Wr<sub>Ω</sub> | यदि समूह A एक सम्मुच्चय Λ पर कार्य करता है तो Ω और Λ से सम्मुच्चय बनाने के दो विहित तरीके हैं जिन पर A Wr<sub>Ω</sub>H (और इसलिए A WR<sub>Ω</sub>H) कार्य कर सकता है। | ||
* Λ × Ω पर पुष्पांजलि उत्पाद | * Λ × Ω पर पुष्पांजलि उत्पाद क्रिया। | ||
*: अगर {{nowrap|((''a''<sub>''ω''</sub>),''h'') ∈ ''A'' Wr<sub>Ω</sub> ''H''}} और {{nowrap|(''λ'',''ω''′) ∈ Λ × Ω}}, तब | *: अगर {{nowrap|((''a''<sub>''ω''</sub>),''h'') ∈ ''A'' Wr<sub>Ω</sub> ''H''}} और {{nowrap|(''λ'',''ω''′) ∈ Λ × Ω}}, तब | ||
*:: <math>((a_\omega), h) \cdot (\lambda,\omega') := (a_{h(\omega')}\lambda, h\omega'). </math> | *:: <math>((a_\omega), h) \cdot (\lambda,\omega') := (a_{h(\omega')}\lambda, h\omega'). </math> | ||
* Λ | * Λ<sup>Ω</sup> पर आदिम पुष्पांजलि उत्पाद क्रिया। | ||
*: | *: Λ<sup>Ω</sup> में एक तत्व एक क्रम (''λ<sub>ω</sub>'') H-सम्मुच्चय Ω द्वारा अनुक्रमित है। एक तत्व {{nowrap|((''a''<sub>''ω''</sub>), ''h'') ∈ ''A'' Wr<sub>Ω</sub> ''H''}} दिया गया है, (''λ<sub>ω</sub>'') ∈ Λ<sup>Ω</sup> पर इसका संचालन निम्नलिखित द्वारा दिया गया है | ||
*:: <math>((a_\omega), h) \cdot (\lambda_\omega) := (a_{h^{-1}\omega}\lambda_{h^{-1}\omega}).</math> | *:: <math>((a_\omega), h) \cdot (\lambda_\omega) := (a_{h^{-1}\omega}\lambda_{h^{-1}\omega}).</math> | ||
Line 62: | Line 63: | ||
== उदाहरण == | == उदाहरण == | ||
* लैम्पलाइटर समूह प्रतिबंधित | * लैम्पलाइटर समूह प्रतिबंधित पुष्पांजलि उत्पाद ℤ<sub>2</sub>≀ℤ है। | ||
* {{math|ℤ<sub>''m''</sub>≀''S''<sub>''n''</sub>}} ([[सामान्यीकृत सममित समूह]])। | * {{math|ℤ<sub>''m''</sub>≀''S''<sub>''n''</sub>}} ([[सामान्यीकृत सममित समूह]])। | ||
: इस पुष्पांजलि उत्पाद का आधार n-गुना प्रत्यक्ष उत्पाद है | : इस पुष्पांजलि उत्पाद का आधार n-गुना प्रत्यक्ष उत्पाद है | ||
:: ℤ<sub>''m''</sub><sup> | :: ℤ<sub>''m''</sub><sup>''n''</sup> = ℤ<sub>''m''</sub> × ... × ℤ<sub>''m''</sub> | ||
: ℤ | : ℤ<sub>''m''</sub> की प्रतियों का जहां क्रिया φ : ''S<sub>n</sub>'' → Aut(ℤ<sub>''m''</sub><sup>''n''</sup>) सममित समूह S<sub>''n''</sub> की घात n निम्नलिखित द्वारा दी गई है | ||
:: | :: ''φ''(''σ'')(α<sub>1</sub>,..., ''α<sub>n</sub>'') := (''α<sub>σ</sub>''<sub>(1)</sub>,..., ''α<sub>σ</sub>''<sub>(''n'')</sub>)<ref>J. W. Davies and A. O. Morris, "The Schur Multiplier of the Generalized Symmetric Group", [[J. London Math. Soc.]] (2), 8, (1974), pp. 615–620</ref> | ||
* | * S<sub>2</sub>≀S<sub>''n''</sub> ([[हाइपरऑक्टाहेड्रल समूह]])। | ||
: | : S<sub>''n''</sub> {1,...,n} की क्रिया ऊपर जैसी है। चूँकि सममित समूह S<sub>2</sub> घात 2 का [[समूह समरूपता]] ℤ<sub>2</sub> है तो हाइपरऑक्टाहेड्रल समूह सामान्यीकृत सममित समूह की एक विशेष स्तिथि है।<ref>P. Graczyk, G. Letac and H. Massam, "The Hyperoctahedral Group, Symmetric Group Representations and the Moments of the Real Wishart Distribution", J. Theoret. Probab. 18 (2005), no. 1, 1–42.</ref> | ||
* सबसे छोटा गैर-तुच्छ | * सबसे छोटा गैर-तुच्छ पुष्पांजलि उत्पाद ℤ<sub>2</sub>≀ℤ<sub>2</sub> है, जो उपरोक्त हाइपरऑक्टाहेड्रल समूह की द्वि-आयामी स्तिथि है। यह वर्ग का सममिति समूह है, जिसे ''Dih''<sub>4</sub> भी कहते हैं, क्रम 8 का द्वितल समूह। | ||
* मान लीजिए p एक [[अभाज्य संख्या]] है और मान लीजिए | * मान लीजिए p एक [[अभाज्य संख्या]] है और मान लीजिए n≥1 है। P को सममित समूह S<sub>''p''<sup>''n''</sup></sub> के साइलो p-उपसमूह प्रमेय होने दें। फिर P पुनरावृत्त नियमित पुष्पांजलि उत्पाद W<sub>''n''</sub> = ℤ<sub>''p''</sub> ≀ ℤ<sub>''p''</sub>≀...≀ℤ<sub>''p''</sub> ℤ के लिए समूह समरूपता है। यहां सभी k ≥ 2 के लिए W1 := ℤp और Wk := Wk−1≀ℤp है। <ref>Joseph J. Rotman, An Introduction to the Theory of Groups, p. 176 (1995)</ref><ref>L. Kaloujnine, "La structure des p-groupes de Sylow des groupes symétriques finis", [[Annales Scientifiques de l'École Normale Supérieure]]. Troisième Série 65, pp. 239–276 (1948)</ref> उदाहरण के लिए, S4 का सिलो 2-उपसमूह उपरोक्त ℤ<sub>2</sub>≀ℤ<sub>2</sub> समूह है। | ||
* रुबिक का घन समूह पुष्पांजलि उत्पादों के उत्पाद में सूचकांक 12 का एक उपसमूह | * रुबिक का घन समूह पुष्पांजलि उत्पादों के उत्पाद में सूचकांक 12 का एक उपसमूह (ℤ<sub>3</sub>≀S<sub>8</sub>) × (ℤ<sub>2</sub>≀S<sub>12</sub>), 8 कोनों और 12 किनारों की समरूपता के अनुरूप कारक है। | ||
* | * सुडोकू वैधता संरक्षण परिवर्तन (वीपीटी) समूह में युग्म पुष्पांजलि उत्पाद (''S''<sub>3</sub> ≀ ''S''<sub>3</sub>) ≀ ''S''<sub>2</sub> सम्मिलित है, जहां कारक 3-पंक्ति या 3-स्तंभ पट्टी या ढेर (S<sub>3</sub>) के भीतर पंक्तियों/स्तंभों का क्रमचय है, पट्टी/ढेर का क्रमपरिवर्तन स्वयं (S<sub>3</sub>) और प्रतिस्थापन, जो पट्टी और ढेर (S<sub>2</sub>) को अंतर्विनिमय करता है। यहां, सूचकांक सम्मुच्चय Ω पट्टी (प्रतिक्रिया ढेर) (| Ω | = 3) और सम्मुच्चय {पट्टी, ढेर} (| Ω | = 2) का सम्मुच्चय है। तदनुसार, |''S''<sub>3</sub> ≀ ''S''<sub>3</sub>| = |''S''<sub>3</sub>|<sup>3</sup>|''S''<sub>3</sub>| = (3!)<sup>4</sup> और |(''S''<sub>3</sub> ≀ ''S''<sub>3</sub>) ≀ ''S''<sub>2</sub>| = |''S''<sub>3</sub> ≀ ''S''<sub>3</sub>|<sup>2</sup>|''S''<sub>2</sub>| = (3!)<sup>8</sup> × 2। | ||
* पुष्पांजलि उत्पाद स्वाभाविक रूप से पूर्ण जड़ वाले [[वृक्ष (डेटा संरचना)]] और उनके [[ग्राफ (असतत गणित)]] के समरूपता समूह में उत्पन्न होते हैं। उदाहरण के लिए, बार-बार (पुनरावृत्त) पुष्पांजलि उत्पाद | * पुष्पांजलि उत्पाद स्वाभाविक रूप से पूर्ण जड़ वाले [[वृक्ष (डेटा संरचना)|तरू]] [[वृक्ष (डेटा संरचना)|(डेटा संरचना)]] और उनके [[ग्राफ (असतत गणित)|आलेख (असतत गणित)]] के समरूपता समूह में उत्पन्न होते हैं। उदाहरण के लिए, बार-बार (पुनरावृत्त) पुष्पांजलि उत्पाद ''S''<sub>2</sub> ≀ ''S''<sub>2</sub> ≀ ''...'' ≀ ''S''<sub>2</sub> एक पूर्ण [[बाइनरी ट्री|द्वयी तरू]] का स्वसमाकृतिकता समूह है। | ||
== संदर्भ == | == संदर्भ == | ||
Line 88: | Line 89: | ||
== बाहरी संबंध == | == बाहरी संबंध == | ||
* [http://www.encyclopediaofmath.org/index.php?title=Wreath_product&oldid=35297 | * [http://www.encyclopediaofmath.org/index.php?title=Wreath_product&oldid=35297 पुष्पांजलि उत्पाद] गणित के विश्वकोश में. | ||
* [http://www.abstractmath.org/Papers/SAWPCWC.pdf | * [http://www.abstractmath.org/Papers/SAWPCWC.pdf पुष्पांजलि उत्पाद निर्माण के कुछ अनुप्रयोग]. {{webarchive |url=https://web.archive.org/web/20140221081427/http://www.abstractmath.org/Papers/SAWPCWC.pdf |date=21 फ़रवरी 2014}} | ||
[[Category: समूह उत्पाद]] [[Category: क्रमपरिवर्तन समूह]] [[Category: बाइनरी ऑपरेशंस]] | [[Category: समूह उत्पाद]] [[Category: क्रमपरिवर्तन समूह]] [[Category: बाइनरी ऑपरेशंस]] | ||
Revision as of 12:22, 2 May 2023
बीजगणितीय संरचना → 'समूह सिद्धांत' समूह सिद्धांत |
---|
समूह सिद्धांत में, पुष्पांजलि उत्पाद अर्ध-प्रत्यक्ष उत्पाद पर आधारित दो समूह (गणित) का एक विशेष संयोजन है। यह एक समूह की क्रिया (समूह सिद्धांत) द्वारा दूसरे समूह की कई प्रतियों पर बनता है, जो कुछ हद तक घातांक के अनुरूप होता है। पुष्पांजलि उत्पादों का उपयोग क्रमचय समूहों के वर्गीकरण में किया जाता है और समूहों के रोचक उदाहरणों के निर्माण का एक तरीका भी प्रदान करता है।
और दो समूह दिए गए हैं (कभी-कभी नीचे और ऊपर के रूप में जाना जाता है[1]), पुष्पांजलि उत्पाद के दो रूप उपस्थित हैं: अप्रतिबंधित पुष्पांजलि उत्पाद और प्रतिबंधित पुष्पांजलि उत्पाद । सामान्य रूप, जिसे क्रमशः या द्वारा निरूपित किया जाता है उनके लिए आवश्यक है कि कुछ सम्मुच्चय पर समूह क्रिया (गणित) करे। जब अनिर्दिष्ट होता है, सामान्यतः (एक नियमित पुष्पांजलि उत्पाद), हालांकि एक अलग कभी-कभी निहित होता है। जब , , और सभी परिमित होते हैं, तब दो भिन्नताएं मेल खाती हैं। अन्यतर भिन्नता को (लाटेक्स प्रतीक के लिए \wr के साथ) या (एकल कूट U+2240) के रूप में भी दर्शाया जाता है।
यह धारणा अर्धसमूहों के लिए सामान्यीकृत है और परिमित अर्धसमूहों क्रोह्न-रोड्स सिद्धांत में एक केंद्रीय निर्माण है।
परिभाषा
मान लीजिये A एक समूह है और H एक सम्मुच्चय पर कार्य करने वाला समूह है। का प्रत्यक्ष उत्पादन स्वयम् द्वारा अनुक्रमित क्रम में द्वारा अनुक्रमित बिंदुवार गुणन द्वारा दिए गए समूह संचालन का समुच्चय है। पर की क्रिया को पर एक क्रिया के लिए रीइन्डेक्सिंग द्वारा विस्तारित किया जा सकता है, अर्थात् निम्नलिखित को परिभाषित करके
सभी के लिए और सभी के लिए है।
फिर द्वारा का अप्रतिबंधित पुष्पांजलि उत्पाद अर्ध-प्रत्यक्ष उत्पाद ऊपर दिए गए पर की क्रिया है। उपसमूह को पुष्पांजलि उत्पाद का आधार कहा जाता है।
प्रतिबंधित पुष्पांजलि उत्पाद अप्रतिबंधित पुष्पांजलि उत्पाद के रूप में उसी तरह बनाया गया है, अतिरिक्त इसके कि पुष्पांजलि उत्पाद के आधार के रूप में समूहों के प्रत्यक्ष योग का उपयोग किया जाता है। इस स्तिथि में, आधार में सभी अनुक्रम निश्चित रूप से कई गैर-पहचान प्रविष्टियों के साथ होते हैं ।
सबसे सामान्य स्तिथि में, और बाएं गुणन द्वारा स्वयं पर कार्य करता है। इस स्तिथि में, अप्रतिबंधित और प्रतिबंधित पुष्पांजलि उत्पाद और द्वारा क्रमश निरूपित किया जा सकता है। इसे नियमित पुष्पांजलि उत्पाद कहा जाता है।
अंकन और परंपराएँ
H द्वारा A के पुष्पांजलि उत्पाद की संरचना H-सम्मुच्चय Ω पर निर्भर करती है और स्तिथियों में Ω अनंत है, यह इस बात पर भी निर्भर करता है कि कोई प्रतिबंधित या अप्रतिबंधित पुष्पांजलि उत्पाद का उपयोग करता है या नहीं। हालाँकि, साहित्य में प्रयुक्त संकेतन में कमी हो सकती है और परिस्थितियों पर ध्यान देने की आवश्यकता है।
- रचना में A≀ΩH अप्रतिबंधित पुष्पांजलि उत्पाद A WrΩH या प्रतिबंधित पुष्पांजलि उत्पाद A wrΩH का अर्थ हो सकता है।
- इसी तरह, A≀H अप्रतिबंधित नियमित पुष्पांजलि उत्पाद A Wr H या प्रतिबंधित नियमित पुष्पांजलि उत्पाद A wr H का अर्थ हो सकता है।
- साहित्य में H-सम्मुच्चय Ω को अंकन से छोड़ा जा सकता है भले ही Ω ≠ H है।
- विशेष स्तिथि में कि H = Sn घात n का सममित समूह है रचना में यह मान लेना सामान्य है कि Ω = {1,...,n} (Sn की प्राकृतिक क्रिया के साथ) और फिर Ω को अंकन से हटा दें। यानी A≀Sn सामान्यतः A≀{1,...,n}Sn को दर्शाता है नियमित पुष्पांजलि उत्पाद A≀SnSn के स्थान पर पहले की स्तिथि में आधार समूह A की n प्रतियों का उत्पाद है, उत्तरार्द्ध में यह A की n प्रतियों का उत्पाद है।
गुण
परिमित Ω पर अप्रतिबंधित और प्रतिबंधित पुष्पांजलि उत्पाद का समझौता
चूँकि परिमित प्रत्यक्ष उत्पाद समूहों के परिमित प्रत्यक्ष योग के समान है, यह इस प्रकार है कि अप्रतिबंधित A WrΩH और प्रतिबंधित पुष्पांजलि उत्पाद A wrΩH सहमत है यदि H-सम्मुच्चय Ω परिमित है। विशेष रूप से यह तब सत्य होता है जब Ω = H परिमित होता है।
उपसमूह
A WRΩH हमेशा A WrΩ H का उपसमूह होता है।
गणनांक
यदि A, H और Ω परिमित हैं, तो
- |A≀ΩH| = |A||Ω||H|.[2]
सार्वभौमिक अंतःस्थापन प्रमेय
सार्वभौमिक अंतःस्थापन प्रमेय यदि G, H द्वारा A का एक समूह विस्तार है, तो अप्रतिबंधित पुष्पांजलि उत्पाद A≀H का एक उपसमूह उपस्थित है जो G के लिए समरूपी है।[3] इसे क्रास्नर-कलौजिनिन अंतःस्थापन प्रमेय के रूप में भी जाना जाता है। क्रोहन-रोड्स प्रमेय में वह सम्मिलित है जो मूल रूप से इसके समतुल्य अर्धसमूह है।[4]
पुष्पांजलि उत्पादों की विहित क्रियाएं
यदि समूह A एक सम्मुच्चय Λ पर कार्य करता है तो Ω और Λ से सम्मुच्चय बनाने के दो विहित तरीके हैं जिन पर A WrΩH (और इसलिए A WRΩH) कार्य कर सकता है।
- Λ × Ω पर पुष्पांजलि उत्पाद क्रिया।
- अगर ((aω),h) ∈ A WrΩ H और (λ,ω′) ∈ Λ × Ω, तब
- अगर ((aω),h) ∈ A WrΩ H और (λ,ω′) ∈ Λ × Ω, तब
- ΛΩ पर आदिम पुष्पांजलि उत्पाद क्रिया।
- ΛΩ में एक तत्व एक क्रम (λω) H-सम्मुच्चय Ω द्वारा अनुक्रमित है। एक तत्व ((aω), h) ∈ A WrΩ H दिया गया है, (λω) ∈ ΛΩ पर इसका संचालन निम्नलिखित द्वारा दिया गया है
- ΛΩ में एक तत्व एक क्रम (λω) H-सम्मुच्चय Ω द्वारा अनुक्रमित है। एक तत्व ((aω), h) ∈ A WrΩ H दिया गया है, (λω) ∈ ΛΩ पर इसका संचालन निम्नलिखित द्वारा दिया गया है
उदाहरण
- लैम्पलाइटर समूह प्रतिबंधित पुष्पांजलि उत्पाद ℤ2≀ℤ है।
- ℤm≀Sn (सामान्यीकृत सममित समूह)।
- इस पुष्पांजलि उत्पाद का आधार n-गुना प्रत्यक्ष उत्पाद है
- ℤmn = ℤm × ... × ℤm
- ℤm की प्रतियों का जहां क्रिया φ : Sn → Aut(ℤmn) सममित समूह Sn की घात n निम्नलिखित द्वारा दी गई है
- φ(σ)(α1,..., αn) := (ασ(1),..., ασ(n))[5]
- S2≀Sn (हाइपरऑक्टाहेड्रल समूह)।
- Sn {1,...,n} की क्रिया ऊपर जैसी है। चूँकि सममित समूह S2 घात 2 का समूह समरूपता ℤ2 है तो हाइपरऑक्टाहेड्रल समूह सामान्यीकृत सममित समूह की एक विशेष स्तिथि है।[6]
- सबसे छोटा गैर-तुच्छ पुष्पांजलि उत्पाद ℤ2≀ℤ2 है, जो उपरोक्त हाइपरऑक्टाहेड्रल समूह की द्वि-आयामी स्तिथि है। यह वर्ग का सममिति समूह है, जिसे Dih4 भी कहते हैं, क्रम 8 का द्वितल समूह।
- मान लीजिए p एक अभाज्य संख्या है और मान लीजिए n≥1 है। P को सममित समूह Spn के साइलो p-उपसमूह प्रमेय होने दें। फिर P पुनरावृत्त नियमित पुष्पांजलि उत्पाद Wn = ℤp ≀ ℤp≀...≀ℤp ℤ के लिए समूह समरूपता है। यहां सभी k ≥ 2 के लिए W1 := ℤp और Wk := Wk−1≀ℤp है। [7][8] उदाहरण के लिए, S4 का सिलो 2-उपसमूह उपरोक्त ℤ2≀ℤ2 समूह है।
- रुबिक का घन समूह पुष्पांजलि उत्पादों के उत्पाद में सूचकांक 12 का एक उपसमूह (ℤ3≀S8) × (ℤ2≀S12), 8 कोनों और 12 किनारों की समरूपता के अनुरूप कारक है।
- सुडोकू वैधता संरक्षण परिवर्तन (वीपीटी) समूह में युग्म पुष्पांजलि उत्पाद (S3 ≀ S3) ≀ S2 सम्मिलित है, जहां कारक 3-पंक्ति या 3-स्तंभ पट्टी या ढेर (S3) के भीतर पंक्तियों/स्तंभों का क्रमचय है, पट्टी/ढेर का क्रमपरिवर्तन स्वयं (S3) और प्रतिस्थापन, जो पट्टी और ढेर (S2) को अंतर्विनिमय करता है। यहां, सूचकांक सम्मुच्चय Ω पट्टी (प्रतिक्रिया ढेर) (| Ω | = 3) और सम्मुच्चय {पट्टी, ढेर} (| Ω | = 2) का सम्मुच्चय है। तदनुसार, |S3 ≀ S3| = |S3|3|S3| = (3!)4 और |(S3 ≀ S3) ≀ S2| = |S3 ≀ S3|2|S2| = (3!)8 × 2।
- पुष्पांजलि उत्पाद स्वाभाविक रूप से पूर्ण जड़ वाले तरू (डेटा संरचना) और उनके आलेख (असतत गणित) के समरूपता समूह में उत्पन्न होते हैं। उदाहरण के लिए, बार-बार (पुनरावृत्त) पुष्पांजलि उत्पाद S2 ≀ S2 ≀ ... ≀ S2 एक पूर्ण द्वयी तरू का स्वसमाकृतिकता समूह है।
संदर्भ
- ↑ Bhattacharjee, Meenaxi; Macpherson, Dugald; Möller, Rögnvaldur G.; Neumann, Peter M. (1998), "Wreath products", Notes on Infinite Permutation Groups, Lecture Notes in Mathematics (in English), Berlin, Heidelberg: Springer, pp. 67–76, doi:10.1007/bfb0092558, ISBN 978-3-540-49813-1, retrieved 2021-05-12
- ↑ Joseph J. Rotman, An Introduction to the Theory of Groups, p. 172 (1995)
- ↑ M. Krasner and L. Kaloujnine, "Produit complet des groupes de permutations et le problème d'extension de groupes III", Acta Sci. Math. 14, pp. 69–82 (1951)
- ↑ J D P Meldrum (1995). समूहों और अर्धसमूहों के पुष्पांजलि उत्पाद. Longman [UK] / Wiley [US]. p. ix. ISBN 978-0-582-02693-3.
- ↑ J. W. Davies and A. O. Morris, "The Schur Multiplier of the Generalized Symmetric Group", J. London Math. Soc. (2), 8, (1974), pp. 615–620
- ↑ P. Graczyk, G. Letac and H. Massam, "The Hyperoctahedral Group, Symmetric Group Representations and the Moments of the Real Wishart Distribution", J. Theoret. Probab. 18 (2005), no. 1, 1–42.
- ↑ Joseph J. Rotman, An Introduction to the Theory of Groups, p. 176 (1995)
- ↑ L. Kaloujnine, "La structure des p-groupes de Sylow des groupes symétriques finis", Annales Scientifiques de l'École Normale Supérieure. Troisième Série 65, pp. 239–276 (1948)
बाहरी संबंध
- पुष्पांजलि उत्पाद गणित के विश्वकोश में.
- पुष्पांजलि उत्पाद निर्माण के कुछ अनुप्रयोग. Archived 2014-02-21 at the Wayback Machine