छद्म-अनोसोव मानचित्र: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Type of diffeomorphism or homeomorphism of a surface}}
{{Short description|Type of diffeomorphism or homeomorphism of a surface}}
गणित में, विशेष रूप से [[टोपोलॉजी]] में, छद्म-एनोसोव माप एक प्रकार का भिन्नता या [[सतह (टोपोलॉजी)]] का [[होमियोमोर्फिज्म]] है। यह [[ टोरस्र्स | टोरस]] के रेखीय एनोसोव [[डिफियोमोर्फिज्म]] का सामान्यीकरण है। इसकी परिभाषा [[विलियम थर्स्टन]] द्वारा प्रारंभ की गई एक मापी गई फोलिएशन की धारणा पर निर्भर करती है, जिन्होंने अपने नीलसन-थर्स्टन वर्गीकरण को सिद्ध करते समय [[अनोसोव डिफोमोर्फिज्म|छद्म-अनोसोव डिफोमोर्फिज्म]] शब्द भी निर्मित किया था।
गणित में, विशेष रूप से [[टोपोलॉजी]] में, छद्म-एनोसोव माप एक प्रकार का भिन्नता या [[सतह (टोपोलॉजी)]] का [[होमियोमोर्फिज्म]] है। यह [[ टोरस्र्स |टोरस]] के रेखीय एनोसोव [[डिफियोमोर्फिज्म]] का सामान्यीकरण है। इसकी परिभाषा [[विलियम थर्स्टन]] द्वारा प्रारंभ की गई एक मापी गई फोलिएशन की धारणा पर निर्भर करती है, जिन्होंने अपने नीलसन-थर्स्टन वर्गीकरण को सिद्ध करते समय [[अनोसोव डिफोमोर्फिज्म|छद्म-अनोसोव डिफोमोर्फिज्म]] शब्द भी निर्मित किया था।


== माप फोलिएशन की परिभाषा ==
== माप फोलिएशन की परिभाषा ==
बंद सतह ''S'' पर माप [[ पत्तियों से सजाना | फोलिएशन]] ''F, S'' पर ज्यामितीय संरचना है जिसमें एक विलक्षण फोलिएशन और अनुप्रस्थ दिशा में एक माप होता है। ''F'' के नियमित बिंदु के निकट में, एक प्रवाह बॉक्स φ: U → R<sup>2</sup> होता है जो F की फोलिएशन को 'R<sup>2' में क्षैतिज रेखाओं में भेजता है। यदि दो ऐसे निकट U<sub>i</sub> और U<sub>j</sub> ओवरलैप करते हैं तो मानक संपत्ति z के साथ φ<sub>j</sub>(U<sub>j</sub>) पर परिभाषित एक ट्रांज़िशन फ़ंक्शन φ<sub>ij</sub> है।
बंद सतह ''S'' पर माप [[ पत्तियों से सजाना |फोलिएशन]] ''F, S'' पर ज्यामितीय संरचना है जिसमें एक विलक्षण फोलिएशन और अनुप्रस्थ दिशा में एक माप होता है। ''F'' के नियमित बिंदु के निकट में, एक प्रवाह बॉक्स φ: U → R<sup>2</sup> होता है जो F की फोलिएशन को 'R<sup>2' में क्षैतिज रेखाओं में भेजता है। यदि दो ऐसे निकट U<sub>i</sub> और U<sub>j</sub> ओवरलैप करते हैं तो मानक संपत्ति z के साथ φ<sub>j</sub>(U<sub>j</sub>) पर परिभाषित एक ट्रांज़िशन फ़ंक्शन φ<sub>ij</sub> है।


: <math> \phi_{ij}\circ\phi_j=\phi_i,</math>
: <math> \phi_{ij}\circ\phi_j=\phi_i,</math>

Revision as of 09:42, 1 May 2023

गणित में, विशेष रूप से टोपोलॉजी में, छद्म-एनोसोव माप एक प्रकार का भिन्नता या सतह (टोपोलॉजी) का होमियोमोर्फिज्म है। यह टोरस के रेखीय एनोसोव डिफियोमोर्फिज्म का सामान्यीकरण है। इसकी परिभाषा विलियम थर्स्टन द्वारा प्रारंभ की गई एक मापी गई फोलिएशन की धारणा पर निर्भर करती है, जिन्होंने अपने नीलसन-थर्स्टन वर्गीकरण को सिद्ध करते समय छद्म-अनोसोव डिफोमोर्फिज्म शब्द भी निर्मित किया था।

माप फोलिएशन की परिभाषा

बंद सतह S पर माप फोलिएशन F, S पर ज्यामितीय संरचना है जिसमें एक विलक्षण फोलिएशन और अनुप्रस्थ दिशा में एक माप होता है। F के नियमित बिंदु के निकट में, एक प्रवाह बॉक्स φ: U → R2 होता है जो F की फोलिएशन को 'R2' में क्षैतिज रेखाओं में भेजता है। यदि दो ऐसे निकट Ui और Uj ओवरलैप करते हैं तो मानक संपत्ति z के साथ φj(Uj) पर परिभाषित एक ट्रांज़िशन फ़ंक्शन φij है।

जिसका स्वरूप होना चाहिए

कुछ निरंतर C के लिए। यह आश्वासन देता है कि साधारण वक्र के साथ, y-निर्देशांक में भिन्नता, प्रत्येक चार्ट में स्थानीय रूप से मापी जाती है, ज्यामितीय मात्रा है (अर्थात चार्ट से स्वतंत्र) और S पर साधारण बंद वक्र के साथ कुल भिन्नता की परिभाषा की अनुमति देती है। परिमित p-आयामी काठी के प्रकार, p≥3, की F की विलक्षणताओं की संख्या की अनुमति है। इस प्रकार के विलक्षण बिंदु पर, सतह की अलग-अलग संरचना को बिंदु को शंक्वाकार बिंदु में कुल कोण πp के साथ संशोधित करने के लिए संशोधित किया जाता है। इस संशोधित अलग-अलग संरचना के संबंध में S के डिफियोमोर्फिज्म की धारणा को फिर से परिभाषित किया गया है। कुछ तकनीकी संशोधनों के साथ, ये परिभाषाएँ सीमा के साथ सतह के स्थिति में विस्तारित होती हैं।

छद्म-एनोसोव माप की परिभाषा

होमियोमॉर्फिज्म

बंद सतह S को 'छद्म-एनोसोव' कहा जाता है यदि S, Fs (स्थिर) और Fu (अस्थिर) और एक वास्तविक संख्या λ> 1 पर मापा फोलिएशन की एक अनुप्रस्थ जोड़ी उपस्थित है, जैसे कि फोलिएशन f और उनके अनुप्रस्थ द्वारा संरक्षित हैं उपायों को 1/λ और λ से गुणा किया जाता है। संख्या λ को स्ट्रेच फैक्टर या f का डिलेटेशन कहा जाता है।

महत्व

थर्स्टन ने सतह S के टीचमुलर स्पेस T (S) के कॉम्पैक्टिफिकेशन का निर्माण किया था, जैसे कि S के किसी भी भिन्नता F द्वारा T (S) पर प्रेरित कार्रवाई थर्स्टन कॉम्पैक्टिफिकेशन के होमोमोर्फिज्म तक फैली हुई है। इस होमियोमॉर्फिज्म की गतिशीलता सबसे सरल है जब F छद्म-एनोसोव माप है: इस स्थिति में, थर्स्टन सीमा पर दो निश्चित बिंदु हैं,एक आकर्षित करने वाला और एक प्रतिकर्षित करने वाला, और होमोमोर्फिज्म पॉइंकेयर हाफ-प्लेन के हाइपरबोलिक ऑटोमोर्फिज्म के समान व्यवहार करता है। कम से कम दो जीनस की सतह का सामान्य अंतर छद्म-एनोसोव डिफियोमोर्फिज्म के लिए समस्थानिक है।

सामान्यीकरण

ट्रेन पटरियों के सिद्धांत का उपयोग करते हुए, छद्म-एनोसोव माप की धारणा को ग्राफ़ के स्व-माप (सामयिक पक्ष पर) और मुक्त समूहों के बाहरी ऑटोमोर्फिम्स (बीजीय पक्ष पर) तक बढ़ा दिया गया है। यह म्लादेन बेस्टविना और हैंडेल द्वारा विकसित मुक्त समूहों के ऑटोमोर्फिज्म के स्थिति के लिए थर्स्टन वर्गीकरण के एनालॉग की ओर जाता है।

संदर्भ

  • A. Casson, S. Bleiler, "Automorphisms of Surfaces after Nielsen and Thurston", (London Mathematical Society Student Texts 9), (1988).
  • A. Fathi, F. Laudenbach, and V. Poénaru, "Travaux de Thurston sur les surfaces," Asterisque, Vols. 66 and 67 (1979).
  • R. C. Penner. "A construction of pseudo-Anosov homeomorphisms", Trans. Amer. Math. Soc., 310 (1988) No 1, 179–197
  • Thurston, William P. (1988), "On the geometry and dynamics of diffeomorphisms of surfaces", Bulletin of the American Mathematical Society, New Series, 19 (2): 417–431, doi:10.1090/S0273-0979-1988-15685-6, ISSN 0002-9904, MR 0956596