लंबाई माप: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 11: Line 11:
माप उपकरणों के सटीक माप या अंशांकन के लिए [[पैमाना ब्लॉक]] एक सामान्य विधि है।
माप उपकरणों के सटीक माप या अंशांकन के लिए [[पैमाना ब्लॉक]] एक सामान्य विधि है।


छोटी या सूक्ष्म वस्तुओं के लिए, माइक्रोफ़ोटोग्राफ़ी का उपयोग किया जा सकता है, जहां लंबाई को ग्रैटिकुल का उपयोग करके कैलिब्रेट किया जाता है। ग्रैटिक्यूल एक ऐसा टुकड़ा होता है जिसमें सटीक लंबाई की रेखाएँ होती हैं। ग्रैटिक्यूल्स को ऐपिस में फिट किया जा सकता है या उनका उपयोग माप विमान पर किया जा सकता है।
छोटी या सूक्ष्म वस्तुओं के लिए, सूक्ष्मफ़ोटोचित्रण का उपयोग किया जा सकता है, जहां लंबाई को ग्रैटिकुल का उपयोग करके कैलिब्रेट किया जाता है। ग्रैटिक्यूल एक ऐसा टुकड़ा होता है जिसमें सटीक लंबाई की रेखाएँ होती हैं। ग्रैटिक्यूल्स को ऐपिस में फिट किया जा सकता है या उनका उपयोग माप विमान पर किया जा सकता है।


== ट्रांजिट-टाइम माप ==
== ट्रांजिट-टाइम माप ==

Revision as of 20:43, 1 March 2023

लंबाई , दूरी माप, या सीमा माप कई तरीकों को संदर्भित करता है जिसमें लंबाई, दूरी या तिरछी सीमा को मापा जा सकता है। सबसे अधिक उपयोग किए जाने वाले दृष्टिकोण शासक हैं, इसके बाद पारगमन-समय के तरीके और प्रकाश की गति के आधार पर इंटरफेरोमीटर के तरीके हैं।

क्रिस्टल और विवर्तन झंझरी जैसी वस्तुओं के लिए, एक्स-रे और इलेक्ट्रॉन बीम के साथ विवर्तन का उपयोग किया जाता है। प्रत्येक आयाम में बहुत छोटी त्रि-आयामी संरचनाओं के लिए मापन तकनीक गहन कंप्यूटर मॉडलिंग के साथ मिलकर विशेष उपकरणों का उपयोग करती है जैसे फोकस्ड आयन बीम इमेजिंग ।

मानक शासक

रूलर सबसे सरल प्रकार का लंबाई माप उपकरण है: लंबाई को एक छड़ी पर मुद्रित निशान या उत्कीर्णन द्वारा परिभाषित किया जाता है। अधिक सटीक तरीके उपलब्ध होने से पहले मीटर को शुरू में एक शासक का उपयोग करके परिभाषित किया गया था।

माप उपकरणों के सटीक माप या अंशांकन के लिए पैमाना ब्लॉक एक सामान्य विधि है।

छोटी या सूक्ष्म वस्तुओं के लिए, सूक्ष्मफ़ोटोचित्रण का उपयोग किया जा सकता है, जहां लंबाई को ग्रैटिकुल का उपयोग करके कैलिब्रेट किया जाता है। ग्रैटिक्यूल एक ऐसा टुकड़ा होता है जिसमें सटीक लंबाई की रेखाएँ होती हैं। ग्रैटिक्यूल्स को ऐपिस में फिट किया जा सकता है या उनका उपयोग माप विमान पर किया जा सकता है।

ट्रांजिट-टाइम माप

लंबाई के पारगमन-समय माप के पीछे मूल विचार यह है कि लंबाई के एक छोर से दूसरे छोर तक एक संकेत भेजा जाए, और फिर से वापस किया जाए। राउंड ट्रिप का समय पारगमन समय Δt है, और लंबाई ℓ तब 2ℓ = Δt* v है, v के साथ संकेत के प्रसार की गति, यह मानते हुए कि दोनों दिशाओं में समान है। यदि सिग्नल के लिए प्रकाश का उपयोग किया जाता है, तो इसकी प्रकाश की गति उस माध्यम पर निर्भर करती है जिसमें यह प्रसारित होता है; SI इकाइयों में गति एक परिभाषित मान c है0 वैक्यूम # इलेक्ट्रोमैग्नेटिज्म के संदर्भ माध्यम में। इस प्रकार, जब पारगमन-समय के दृष्टिकोण में प्रकाश का उपयोग किया जाता है, तो लंबाई माप स्रोत आवृत्ति के ज्ञान के अधीन नहीं होते हैं (माध्यम को शास्त्रीय वैक्यूम से संबंधित करने के लिए सुधार की संभावित आवृत्ति निर्भरता के अलावा), लेकिन मापने में त्रुटि के अधीन हैं पारगमन समय, विशेष रूप से, पल्स उत्सर्जन और पहचान उपकरण के प्रतिक्रिया समय द्वारा शुरू की गई त्रुटियां। एक अतिरिक्त अनिश्चितता संदर्भ निर्वात के लिए उपयोग किए जाने वाले माध्यम से संबंधित अपवर्तक सूचकांक सुधार है, जिसे एसआई इकाइयों में निर्वात#विद्युतचुंबकत्व के रूप में लिया जाता है। माध्यम का एक से बड़ा अपवर्तनांक प्रकाश को धीमा कर देता है।

नावों और विमानों के लिए ट्रांज़िट-टाइम मापन अधिकांश रेडियो नेविगेशन सिस्टम का आधार है, उदाहरण के लिए, राडार और नेविगेशन के लिए लगभग अप्रचलित लंबी दूरी की सहायता LORAN|LORAN-C। उदाहरण के लिए, एक रडार प्रणाली में, विद्युत चुम्बकीय विकिरण के स्पंदों को वाहन (पूछताछ करने वाले स्पंदनों) द्वारा भेजा जाता है और एक उत्तरदाता बीकन से प्रतिक्रिया को ट्रिगर करता है। पल्स भेजने और प्राप्त करने के बीच के समय अंतराल की निगरानी की जाती है और दूरी निर्धारित करने के लिए इसका उपयोग किया जाता है। ग्लोबल पोजिशनिंग सिस्टम में कई उपग्रहों से एक ज्ञात समय पर एक और शून्य का एक कोड उत्सर्जित होता है, और उनके आगमन के समय को एक रिसीवर पर नोट किया जाता है, साथ ही उन्हें भेजा गया था (संदेशों में एन्कोड किया गया)। यह मानते हुए कि रिसीवर घड़ी उपग्रहों पर सिंक्रनाइज़ घड़ियों से संबंधित हो सकती है, पारगमन समय पाया जा सकता है और प्रत्येक उपग्रह को दूरी प्रदान करने के लिए उपयोग किया जाता है। चार उपग्रहों के डेटा को मिलाकर रिसीवर की घड़ी की त्रुटि को ठीक किया जाता है।[1]

इस तरह की तकनीक सटीकता में उस दूरी के अनुसार भिन्न होती है जिस पर उनका उपयोग किया जाता है। उदाहरण के लिए, लोरान-सी के बारे में सटीक है 6 km, जीपीएस के बारे में 10 m, एन्हांस्ड जीपीएस, जिसमें एक सुधार संकेत स्थलीय स्टेशनों (यानी, अंतर जीपीएस (डीजीपीएस)) या उपग्रहों (यानी, वाइड एरिया ऑग्मेंटेशन सिस्टम (डब्ल्यूएएएस)) से प्रेषित होता है, कुछ मीटर तक सटीकता ला सकता है या < 1 meter, या, विशिष्ट अनुप्रयोगों में, दसियों सेंटीमीटर। रोबोटिक्स के लिए टाइम-ऑफ-फ्लाइट सिस्टम (उदाहरण के लिए, लेजर डिटेक्शन और रेंजिंग लेजर रेंज फाइंडर और लाइट डिटेक्शन और रेंजिंग LIDAR का) का लक्ष्य लंबाई में है 10 - 100 m और लगभग की सटीकता है 5 – 10 mm[2]


इंटरफेरोमीटर माप

एक इंटरफेरोमीटर का उपयोग करके प्रकाश की तरंग दैर्ध्य में लंबाई मापना।

कई व्यावहारिक परिस्थितियों में, और सटीक कार्य के लिए, पारगमन-समय मापन का उपयोग करके आयाम का मापन केवल लंबाई के प्रारंभिक संकेतक के रूप में उपयोग किया जाता है और इंटरफेरोमीटर का उपयोग करके परिष्कृत किया जाता है।[3][4]आम तौर पर, लंबी दूरी के लिए पारगमन समय मापन को प्राथमिकता दी जाती है, और छोटी लंबाई के लिए इंटरफेरोमीटर।[5]

यह आंकड़ा योजनाबद्ध रूप से दिखाता है कि माइकलसन इंटरफेरोमीटर का उपयोग करके लंबाई कैसे निर्धारित की जाती है: दो पैनल दो पथों की यात्रा करने के लिए बीम फाड़नेवाला (बीएस) द्वारा विभाजित एक प्रकाश किरण का उत्सर्जन करने वाला एक लेजर स्रोत दिखाते हैं। कोने के क्यूब्स (CC) की एक जोड़ी से दो घटकों को बाउंस करके प्रकाश को पुनर्संयोजित किया जाता है जो दो घटकों को बीम स्प्लिटर में फिर से जोड़ने के लिए वापस कर देता है। कोने का घन घटना को परावर्तित बीम से विस्थापित करने का कार्य करता है, जो दो बीमों को सुपरपोज़ करने के कारण होने वाली कुछ जटिलताओं से बचा जाता है।[6]बाएँ हाथ के कोने के क्यूब और बीम स्प्लिटर के बीच की दूरी की तुलना निश्चित लेग पर उस अलगाव से की जाती है क्योंकि मापी जाने वाली वस्तु की लंबाई की तुलना करने के लिए बाएँ हाथ की रिक्ति को समायोजित किया जाता है।

शीर्ष पैनल में पथ ऐसा है कि पुन: संयोजन के बाद दो बीम एक दूसरे को सुदृढ़ करते हैं, जिससे एक मजबूत प्रकाश पैटर्न (सूर्य) प्राप्त होता है। निचला पैनल एक पथ दिखाता है जिसे बाएं हाथ के दर्पण को एक चौथाई तरंगदैर्घ्य को और दूर ले जाकर एक आधा तरंगदैर्ध्य बनाया जाता है, जिससे पथ अंतर आधे तरंग दैर्ध्य से बढ़ जाता है। नतीजा यह है कि दो बीम एक दूसरे के विरोध में पुन: संयोजन में हैं, और पुनः संयोजित प्रकाश की तीव्रता शून्य (बादलों) तक गिर जाती है। इस प्रकार, जैसा कि दर्पणों के बीच की दूरी को समायोजित किया जाता है, सुदृढीकरण और रद्दीकरण के बीच मनाया गया प्रकाश तीव्रता चक्र पथ अंतर के तरंग दैर्ध्य की संख्या में परिवर्तन के रूप में होता है, और देखी गई तीव्रता वैकल्पिक रूप से चोटियों (उज्ज्वल सूरज) और मंद (काले बादल) होती है। इस व्यवहार को इंटरफेरेंस (तरंग प्रसार) कहा जाता है और मशीन को इंटरफेरोमीटर कहा जाता है। फ्रिन्जों की गिनती करके यह पता चलता है कि निश्चित पैर की तुलना में मापे गए पथ की लंबाई कितनी तरंगदैर्घ्य है। इस तरह, एक विशेष परमाणु वर्णक्रमीय रेखा के अनुरूप तरंग दैर्ध्य λ की इकाइयों में माप किए जाते हैं। तरंग दैर्ध्य में लंबाई को मीटर की इकाइयों में लंबाई में परिवर्तित किया जा सकता है यदि चयनित संक्रमण की ज्ञात आवृत्ति f है। तरंग दैर्ध्य λ की एक निश्चित संख्या के रूप में लंबाई λ = का उपयोग कर मीटर से संबंधित है c0 / f. सी के साथ0299,792,458 मी/सेकेंड का परिभाषित मान, तरंगदैर्घ्य में मापी गई लंबाई में त्रुटि प्रकाश स्रोत की आवृत्ति को मापने में त्रुटि द्वारा मीटर में इस रूपांतरण से बढ़ जाती है।

योग और अंतर उत्पन्न करने के लिए कई तरंग दैर्ध्य के स्रोतों का उपयोग करके लिफाफा (तरंगें) # उदाहरण: तरंगों को मारना, पूर्ण दूरी माप संभव हो जाता है।[7][8][9]

लंबाई निर्धारण के लिए इस पद्धति के लिए उपयोग किए जाने वाले प्रकाश की तरंग दैर्ध्य की सावधानीपूर्वक विशिष्टता की आवश्यकता होती है, और लेज़र स्रोत को नियोजित करने का एक कारण है जहां तरंग दैर्ध्य को स्थिर रखा जा सकता है। स्थिरता के बावजूद, हालांकि, किसी भी स्रोत की सटीक आवृत्ति में लाइनविड्थ सीमाएं होती हैं।[10]अन्य महत्वपूर्ण त्रुटियां इंटरफेरोमीटर द्वारा ही प्रस्तुत की जाती हैं; विशेष रूप से: प्रकाश किरण संरेखण, समतलीकरण और भिन्नात्मक फ्रिंज निर्धारण में त्रुटियाँ।[5][11]माध्यम के प्रस्थान के लिए भी सुधार किए जाते हैं (उदाहरण के लिए, air[12] वैक्यूम # इलेक्ट्रोमैग्नेटिज्म के संदर्भ माध्यम से। तरंग दैर्ध्य का उपयोग कर संकल्प ΔL/L ≈ की सीमा में है 10−9 – 10−11 मापी गई लंबाई, तरंग दैर्ध्य और उपयोग किए गए इंटरफेरोमीटर के प्रकार के आधार पर।[11]

मापन के लिए उस माध्यम के सावधानीपूर्वक विनिर्देशन की भी आवश्यकता होती है जिसमें प्रकाश फैलता है। एसआई इकाइयों में वैक्यूम # इलेक्ट्रोमैग्नेटिज्म होने के लिए संदर्भ वैक्यूम के लिए उपयोग किए जाने वाले माध्यम से संबंधित माध्यम से संबंधित करने के लिए एक अपवर्तक सूचकांक सुधार किया जाता है। इन अपवर्तक सूचकांक सुधारों को आवृत्तियों को जोड़कर अधिक सटीक रूप से पाया जा सकता है, उदाहरण के लिए, वे आवृत्तियाँ जिन पर प्रसार जल वाष्प की उपस्थिति के प्रति संवेदनशील है। इस तरह अपवर्तक सूचकांक में गैर-आदर्श योगदान को स्थापित सैद्धांतिक मॉडल का उपयोग करके दूसरी आवृत्ति पर मापा और ठीक किया जा सकता है।

इसके विपरीत, यह फिर से ध्यान दिया जा सकता है, कि लंबाई का पारगमन-समय माप स्रोत आवृत्ति के किसी भी ज्ञान से स्वतंत्र है, माप माध्यम से शास्त्रीय वैक्यूम के संदर्भ माध्यम से संबंधित सुधार की संभावित निर्भरता को छोड़कर, जो वास्तव में स्रोत की आवृत्ति पर निर्भर हो सकता है। जहां पल्स ट्रेन या किसी अन्य वेव-शेपिंग का उपयोग किया जाता है, वहां आवृत्तियों की एक श्रृंखला शामिल हो सकती है।

विवर्तन माप

छोटी वस्तुओं के लिए, विभिन्न विधियों का उपयोग किया जाता है जो तरंग दैर्ध्य की इकाइयों में आकार निर्धारित करने पर भी निर्भर करती हैं। उदाहरण के लिए, एक क्रिस्टल के मामले में, एक्स-रे विवर्तन का उपयोग करके परमाणु रिक्ति निर्धारित की जा सकती है।[13] सिलिकॉन के जाली पैरामीटर के लिए वर्तमान सर्वोत्तम मूल्य, निरूपित a, है:[14]

ए = 543.102 0504(89) × 10-12</सुप> मी,

ΔL/L ≈ के एक संकल्प के अनुरूप 3 × 10−10. इसी तरह की तकनीकें विवर्तन झंझरी जैसी बड़ी आवधिक सरणियों में दोहराई जाने वाली छोटी संरचनाओं के आयाम प्रदान कर सकती हैं।[15]

इस तरह के माप माप क्षमताओं का विस्तार करते हुए, इलेक्ट्रॉन सूक्ष्मदर्शी के अंशांकन की अनुमति देते हैं। इलेक्ट्रॉन माइक्रोस्कोप में गैर-सापेक्षवादी इलेक्ट्रॉनों के लिए, डी ब्रोगली तरंग दैर्ध्य है:[16]

V के साथ इलेक्ट्रॉन द्वारा ट्रैवर्स किया गया विद्युत वोल्टेज ड्रॉप, meइलेक्ट्रॉन द्रव्यमान, e प्राथमिक आवेश, और h प्लैंक स्थिरांक। इस तरंग दैर्ध्य को एक क्रिस्टल विवर्तन पैटर्न का उपयोग करके अंतर-परमाणु रिक्ति के रूप में मापा जा सकता है, और उसी क्रिस्टल पर जाली रिक्ति के एक ऑप्टिकल माप के माध्यम से मीटर से संबंधित होता है। अंशांकन के विस्तार की इस प्रक्रिया को मेट्रोलॉजिकल ट्रेसबिलिटी कहा जाता है।[17] माप के विभिन्न शासनों को जोड़ने के लिए मेट्रोलॉजिकल ट्रैसेबिलिटी का उपयोग खगोलीय लंबाई की विभिन्न श्रेणियों के लिए ब्रह्मांडीय दूरी की सीढ़ी के पीछे के विचार के समान है। दोनों प्रयोज्यता की अतिव्यापी श्रेणियों का उपयोग करके लंबाई माप के लिए अलग-अलग तरीकों को कैलिब्रेट करते हैं।[18]


दूर और गतिमान लक्ष्य

रेंजिंग वह तकनीक है जो प्रेक्षक से लक्ष्य तक की दूरी या तिरछी सीमा को मापती है, विशेष रूप से दूर और गतिमान लक्ष्य को।

सक्रिय तरीके एकतरफा संचरण और निष्क्रिय प्रतिबिंब का उपयोग करते हैं। सक्रिय रेंजफाइंडिंग विधियों में लेजर रेंजफाइंडर (LIDAR का), रडार दूरी माप, सोनार और अल्ट्रासोनिक रेंजिंग मॉड्यूल शामिल हैं।

अन्य उपकरण जो त्रिकोणमिति का उपयोग करके दूरी को मापते हैं, वे हैं स्टैडियामेट्रिक रेंजफाइंडिंग, संयोग रेंजफाइंडर और त्रिविम रेंजफाइंडर। माप बनाने के लिए ज्ञात जानकारी (आमतौर पर दूरी या लक्ष्य आकार) के एक सेट का उपयोग करने वाली पुरानी पद्धतियां 18 वीं शताब्दी के बाद से नियमित उपयोग में हैं।

स्पेशल रेंजिंग एक्टिवली सिंक्रोनाइज्ड ट्रांसमिशन और उड़ान का समय मापन का उपयोग करती है। कई प्राप्त संकेतों के बीच समय के अंतर का उपयोग सटीक दूरी (प्रकाश की गति से गुणा करने पर) निर्धारित करने के लिए किया जाता है। इस सिद्धांत का उपयोग उपग्रह नेविगेशन में किया जाता है। पृथ्वी की सतह के एक मानकीकृत मॉडल के संयोजन के साथ, उस सतह पर एक स्थान उच्च सटीकता के साथ निर्धारित किया जा सकता है। रिसीवर के सटीक समय सिंक्रनाइज़ेशन के बिना रेंजिंग विधियों को स्यूडोरेंज कहा जाता है, उदाहरण के लिए, GPS पोजीशनिंग में उपयोग किया जाता है।

अन्य प्रणालियों के साथ केवल निष्क्रिय विकिरण माप से प्राप्त किया जाता है: वस्तु का शोर या विकिरण हस्ताक्षर उस संकेत को उत्पन्न करता है जिसका उपयोग सीमा निर्धारित करने के लिए किया जाता है। इस विक्ट: एसिंक्रोनस पद्धति में सक्रिय सोनार#एक्टिव सोनार के उपयुक्त स्केलिंग (ज्यामिति) के बजाय कई बीयरिंग लेकर एक सीमा प्राप्त करने के लिए कई मापों की आवश्यकता होती है, अन्यथा सिस्टम किसी एक माप से एक साधारण असर (नेविगेशन) प्रदान करने में सक्षम है।

एक समय क्रम में कई मापों को मिलाने से ट्रैकिंग और ट्रेसिंग होती है। स्थलीय वस्तुओं के रहने के लिए आमतौर पर इस्तेमाल किया जाने वाला शब्द सर्वेक्षण है।

अन्य तकनीकें

स्थानीय संरचनाओं के आयामों को मापना (क्रिस्टल जैसे परमाणुओं के बड़े सरणियों के विपरीत), जैसा कि आधुनिक एकीकृत परिपथों में होता है, स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोप का उपयोग करके किया जाता है। यह उपकरण एक उच्च वैक्यूम बाड़े में मापी जाने वाली वस्तु से इलेक्ट्रॉनों को बाउंस करता है, और परावर्तित इलेक्ट्रॉनों को एक फोटोडेटेक्टर छवि के रूप में एकत्र किया जाता है जिसे कंप्यूटर द्वारा समझा जाता है। ये ट्रांजिट-टाइम माप नहीं हैं, लेकिन कंप्यूटर मॉडलिंग से सैद्धांतिक परिणामों के साथ छवियों के फूरियर रूपांतरणों की तुलना पर आधारित हैं। इस तरह के विस्तृत तरीकों की आवश्यकता होती है क्योंकि छवि मापी गई विशेषता के त्रि-आयामी ज्यामिति पर निर्भर करती है, उदाहरण के लिए, एक किनारे का समोच्च, न कि केवल एक- या दो-आयामी गुणों पर। अंतर्निहित सीमाएं बीम की चौड़ाई और इलेक्ट्रॉन बीम (विवर्तन का निर्धारण) की तरंग दैर्ध्य हैं, जो इलेक्ट्रॉन बीम ऊर्जा द्वारा निर्धारित की जाती हैं, जैसा कि पहले ही चर्चा की गई है।Cite error: Closing </ref> missing for <ref> tag परमाणु ओवरहॉसर प्रभाव स्पेक्ट्रोस्कोपी (NOESY) एक विशेष प्रकार का परमाणु चुंबकीय अनुनाद स्पेक्ट्रोस्कोपी है, जहां परमाणुओं के बीच की दूरी को मापा जा सकता है। यह उस प्रभाव पर आधारित है जहां एक रेडियो पल्स द्वारा उत्तेजना के बाद परमाणु स्पिन क्रॉस-रिलैक्सेशन नाभिक के बीच की दूरी पर निर्भर करता है। स्पिन-स्पिन युग्मन के विपरीत, NOE अंतरिक्ष के माध्यम से फैलता है और इसके लिए आवश्यक नहीं है कि परमाणु बांड से जुड़े हों, इसलिए यह रासायनिक माप के बजाय एक सही दूरी माप है। विवर्तन मापन के विपरीत, NOESY को क्रिस्टलीय नमूने की आवश्यकता नहीं होती है, लेकिन समाधान अवस्था में किया जाता है और उन पदार्थों पर लागू किया जा सकता है जिन्हें क्रिस्टलीकृत करना मुश्किल होता है।

खगोलीय दूरी माप

Page 'Cosmic distance ladder' not found


इकाइयों की अन्य प्रणालियाँ

इकाइयों की कुछ प्रणालियों में, वर्तमान एसआई प्रणाली के विपरीत, लंबाई मौलिक इकाइयां हैं (उदाहरण के लिए, पुरानी एसआई इकाइयों में तरंग दैर्ध्य और परमाणु इकाइयों में बोर्स) और पारगमन के समय से परिभाषित नहीं होते हैं। हालांकि, ऐसी इकाइयों में भी, लंबाई के साथ प्रकाश के दो पारगमन समय की तुलना करके दो लंबाई की तुलना की जा सकती है। इस तरह की समय-समय-उड़ान पद्धति मौलिक लंबाई इकाई के एक बहु के रूप में लंबाई के निर्धारण से अधिक सटीक हो सकती है या नहीं भी हो सकती है।

उपकरणों की सूची


उपकरणों से संपर्क करें


गैर-संपर्क उपकरण

  • बज रहा है

उड़ान के समय के आधार पर

यह भी देखें


संदर्भ

  1. A brief rundown is found at Donald Clausing (2006). "Receiver clock correction". The Aviator's Guide to Navigation (4th ed.). McGraw-Hill Professional. ISBN 978-0-07-147720-8.
  2. Robert B Fisher; Kurt Konolige (2008). "§22.1.4: Time-of-flight range sensors". In Bruno Siciliano; Oussama Khatib (eds.). Springer handbook of robotics. Springer. pp. 528 ff. ISBN 978-3540239574.
  3. For an overview, see for example, Walt Boyes (2008). "Interferometry and transit-time methods". Instrumentation reference book. Butterworth-Heinemann. p. 89. ISBN 978-0-7506-8308-1.
  4. An example of a system combining the pulse and interferometer methods is described by Jun Ye (2004). "Absolute measurement of a long, arbitrary distance to less than an optical fringe" (PDF). Optics Letters. 29 (10): 1153–1155. Bibcode:2004OptL...29.1153Y. doi:10.1364/ol.29.001153. PMID 15182016. Archived from the original (PDF) on 2012-05-04. Retrieved 2011-11-30.
  5. 5.0 5.1 René Schödel (2009). "Chapter 15: Length and size". In Tōru Yoshizawa (ed.). Handbook of optical metrology: principles and applications. Vol. 10. CRC Press. p. 366. Bibcode:2009homp.book.....Y. ISBN 978-0-8493-3760-4.
  6. The corner cube reflects the incident light in a parallel path that is displaced from the beam incident upon the corner cube. That separation of incident and reflected beams reduces some technical difficulties introduced when the incident and reflected beams are on top of each other. For a discussion of this version of the Michelson interferometer and other types of interferometer, see Joseph Shamir (1999). "§8.7 Using corner cubes". Optical systems and processes. SPIE Press. pp. 176 ff. ISBN 978-0-8194-3226-1.
  7. Jesse Zheng (2005). Optical Frequency-Modulated Continuous-Wave (FMCW) Interferometry. Springer. Bibcode:2005ofmc.book.....Z. ISBN 978-0-387-23009-2.
  8. SK Roy (2010). "§4.4 Basic principles of electronic distance measurement". Fundamentals of Surveying (2nd ed.). PHI Learning Pvt. Ltd. pp. 62 ff. ISBN 978-81-203-4198-2.
  9. W Whyte; R Paul (1997). "§7.3 Electromagnetic distance measurement". Basic Surveying (4th ed.). Laxton's. pp. 136 ff. ISBN 978-0-7506-1771-0.
  10. An atomic transition is affected by disturbances, such as collisions with other atoms and frequency shifts from atomic motion due to the Doppler effect, leading to a range of frequencies for the transition referred to as a linewidth. Corresponding to the uncertainty in frequency is an uncertainty in wavelength. In contrast, the speed of light in ideal vacuum is not dependent upon frequency at all.
  11. 11.0 11.1 A discussion of interferometer errors is found in the article cited above: Miao Zhu; John L Hall (1997). "Chapter 11: Precise wavelength measurements of tunable lasers". In Thomas Lucatorto; et al. (eds.). Experimental method in the physical sciences. Academic Press. pp. 311 ff. ISBN 978-0-12-475977-0.
  12. For example, the index of refraction of air can be found based upon entering a wavelength in vacuum into the calculator provided by NIST: "Refractive index of air calculator". Engineering metrology toolbox. NIST. September 23, 2010. Retrieved 2011-12-08.
  13. Peter J. Mohr; Barry N. Taylor; David B. Newell (2008). "CODATA recommended values of the fundamental physical constants: 2006". Rev Mod Phys. 80 (2): 633–730. arXiv:0801.0028. Bibcode:2008RvMP...80..633M. doi:10.1103/revmodphys.80.633. See section 8: Measurements involving silicon crystals, p. 46.
  14. "Lattice parameter of silicon". The NIST reference on constants, units and uncertainty. National Institute of Standards and Technology. Retrieved 2011-04-04.
  15. A discussion of various types of gratings is found in Abdul Al-Azzawi (2006). "§3.2 Diffraction gratings". Physical optics: principles and practices. CRC Press. pp. 46 ff. ISBN 978-0-8493-8297-0.
  16. "Electron wavelength and relativity". High-resolution electron microscopy (3rd ed.). Oxford University Press. 2009. p. 16. ISBN 978-0-19-955275-7.
  17. See "Metrological traceability". BIPM. Retrieved 2011-04-10.
  18. Mark H. Jones; Robert J. Lambourne; David John Adams (2004). An introduction to galaxies and cosmology. Cambridge University Press. pp. 88 ff. ISBN 978-0-521-54623-2. Relating one step on the distance ladder to another involves a process of calibration, that is, the use of an established method of measurement to give absolute meaning to the relative measurements provided by some other method.


अग्रिम पठन

This article incorporates material from the Citizendium article "Metre (unit)", which is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License but not under the GFDL.