भंवर: Difference between revisions

From Vigyanwiki
No edit summary
m (62 revisions imported from alpha:भंवर)
(No difference)

Revision as of 11:37, 8 May 2023

दूध-कॉफी के समिश्रण का सीमित सीमाओं में (जैसा की ऊपर दीये हुए चित्र में दिख रहा है),,दो प्रकार के पदार्थों के भार दवाब के विचलन, से उत्त्पन्न हुई स्थिति,को दर्शाता है। यह स्थिति  तरल पदार्थ भौतिकी में भवंरों के उत्सर्जन का अच्छा उदहारण देती है।

सामान्य अभियांत्रिक दृष्टिकोण से, भंवर [1][2] किसी द्रव में में विद्यमान, एक ऐसा क्षेत्र है, जिसमें प्रवाह, एक अक्ष रेखा, के चारों ओर घूमता है। इस परिभाषा में यह अक्ष रेखा सीधी अथवा झुकी हुई, या घुमावदार हो सकती है[3] [4]तरल पदार्थों में उपद्रव (हलचल) पैदा होने पर, भंवर बनते हैं। धुएं के छल्ले, चलित अथवा स्थिर जल में नाव के खने पर, और एक उष्णकटिबंधीय चक्रवात के समीप की हवाओं, में भंवर देखे जा सकते हैं।

इस कृषि विमान के पंख से हवा का प्रवाह, एक ऐसी तकनीक से दिखाई देता है, जिसमें जमीन से उठने वाले रंगीन धुएँ का उपयोग किया जाता है। पंख छोर पर भंवर, विमान के जाग्रत भंवर (वोर्टेक्स) का पता लगाता है, जो विमान के पीछे प्रवाह क्षेत्र पर एक शक्तिशाली प्रभाव डालता है। जब वे उतरते हैं तो विमान को एक दूसरे के पीछे निर्धारित दूरी बनाए रखने की आवश्यकता,जाग्रत भंवर के कारण, ही होती है।

चक्रवात और भंवर के बीच का अंतर यह है कि चक्रवात कम वायुमंडलीय दबाव के केंद्र के चारों ओर घूमने वाली हवाओं की एक प्रणाली है, जबकि भंवर एक बवंडर, भंवर या सर्पिल या स्तंभ के रूप में समान रूप से गतिमान पदार्थ है।

द्रव गतिकी में भंवर

भंवर अशांत प्रवाह का एक प्रमुख घटक हैं। वेग का वितरण, वर्टिसिटी (प्रवाह वेग का कर्ल), साथ ही संचलन की अवधारणा का उपयोग, भंवरों को चिह्नित करने के लिए किया जाता है। अधिकांश भंवरों में, द्रव प्रवाह का वेग, अपनी धुरी के समीप, सर्वाधिक होता है और अक्ष से दूरी के व्युत्क्रमानुपाती में घटता है।

बाह्य बलों की अनुपस्थिति में, द्रव के भीतर श्यान घर्षण (विस्कस फ्रिक्शन) प्रवाह को अघूर्णी (इरोटेशनल) भंवरों के संग्रह में व्यवस्थित करता है, संभवतः बड़े मापन के भंवरों सहित बड़े माप के प्रवाहों पर लगाया जाता है। एक बार बनने के बाद, भंवर जटिल पद्धति से चलायमान रह सकते हैं, विस्तरित हो सकते हैं, अचानक दिशा बदलन सकते हैं और पारस्परिक क्रिया कर सकते हैं। एक चलित भंवर, अपने साथ कुछ कोणीय और रैखिक गति, ऊर्जा और द्रव्यमान रखता है।

भंवर का सिद्धांत

सैद्धांतिक रूप से, एक भंवर में कणों की गति (और, इसलिए, भ्रमिलता) धुरी से दूरी के साथ कई तरह से भिन्न हो सकती है। इस सोच में, दो महत्वपूर्ण विशेष स्थिति हो सकती हैं :

अक्ष से दूरी के अनुपात में बढ़ जाए

यदि द्रव, एक दृढ़ पिंडीय भंवर की तरह घूमता है - अर्थात, यदि कोणीय घूर्णी वेग एक समान है, ताकि अक्ष से दूरी के अनुपात में बढ़ जाए - तब प्रवाह द्वारा ले जाई गई, एक छोटी सी काल्पनिक परीक्षण गेंद भी, अपने केंद्र के चारों ओर घूमेगी, जैसे कि वह उस कठोर पिंड का हिस्सा हो।

इस तरह के प्रवाह में, भ्रमिलता हर जगह समान होती है: इसकी दिशा,घूर्णन (रोटेशन) अक्ष के समानांतर होती है और इसका परिमाण, घूर्णन के केंद्र के चारों ओर द्रव के समान कोणीय वेग के दोगुने के बराबर होता है।

अक्ष से दूरी के व्युत्क्रमानुपाती हो

यदि कण की गति अक्ष से दूरी के व्युत्क्रमानुपाती होती है, तो काल्पनिक परीक्षण गेंद अपने ऊपर नहीं घूमेगी; भंवर अक्ष के चारों ओर एक चक्र में घूमते समय यह समान,अभिविन्यास बनाए रखेगी। इस स्थिति में भ्रमिलता, उस अक्ष से परे, किसी भी बिंदु पर शून्य है, और तब उस प्रवाह को अघूर्णी कहा जाता है।

भंवर के मुख्य प्रकार

अघूर्णी भंवर
अघूर्णी भंवर

एक अघूर्णी भंवर के लिए, संचलन किसी भी बंद समोच्च के साथ शून्य है जो भंवर अक्ष को घेरता नहीं है; और एक निश्चित मान है, , किसी भी समोच्च के लिए जो अक्ष को एक बार घेरता है। कण वेग का स्पर्शरेखा घटक तब , भंवर अक्ष के सापेक्ष प्रति इकाई द्रव्यमान का कोणीय संवेग स्थिर है और उसका मान होता है।अघूर्णी भंवरों को मुक्त भंवर भी कहा जाता है।

मुक्त स्थान में आदर्श अघूर्णन भंवर प्रवाह शारीरिक रूप से प्राप्य नहीं है, क्योंकि इसका अर्थ यह होगा कि कण गति (और इसलिए कणों को उनके वृत्ताकार पथ में रखने के लिए आवश्यक बल) बिना किसी सीमा के बढ़ेगा क्योंकि कोई भंवर अक्ष तक पहुंचता है। वास्तव में, वास्तविक भंवरों में हमेशा अक्ष के चारों ओर एक कोर क्षेत्र होता है जहां कण वेग बढ़ना बंद कर देता है और फिर शून्य हो जाता है क्योंकि आर शून्य हो जाता है। उस क्षेत्र के भीतर, प्रवाह अब अपरिमेय नहीं है: भंवर गैर-शून्य हो जाता है, जिसकी दिशा लगभग भंवर अक्ष के समानांतर होती है। रैंकिन भंवर एक मॉडल है जो एक कठोर-शरीर घूर्णी प्रवाह को मानता है जहां एक निश्चित दूरी से कम है, और उस कोर क्षेत्रों के बाहर अघूर्णी प्रवाह है।

घूर्णी भंवर

एक घूर्णी भंवर - एक भंवर जो एक कठोर शरीर के समान घूमता है - कुछ अतिरिक्त बल के आवेदन के अलावा उस स्थिति में अनिश्चित काल तक मौजूद नहीं रह सकता है, जो स्वयं द्रव गति से उत्पन्न नहीं होता है। कोर के बाहर हर जगह गैर-शून्य वर्टिसिटी है। घूर्णी भंवरों को कठोर-शरीर वाले भंवर या मजबूर भंवर भी कहा जाता है।

उदाहरण के लिए, यदि एक पानी की बाल्टी को उसके ऊर्ध्वाधर अक्ष के बारे में निरंतर कोणीय गति पर घुमाया जाता है, तो पानी अंततः दृढ़ पिंड के रूप में घूमेगा। फिर कण वृत्त के अनुदिश गति करेंगे, वेग u wr के बराबर होगा। [5] उस स्थिति में, पानी की मुक्त सतह एक परवलयिक आकार ग्रहण कर लेगी।

इस स्थिति में, कठोर घूर्णन परिक्षेत्र एक अतिरिक्त बल प्रदान करता है, अर्थात् पानी में एक अतिरिक्त दबाव प्रवणता, जो अंदर की ओर निर्देशित होती है, जो उस दृढ़ पिंड के प्रवाह को अघूर्णी अवस्था में संक्रमण से बचाता है।

भंवर के गुण

भ्रमिलता (वर्टिसिटी)

भंवरों की गतिशीलता में एक महत्वपूर्ण अवधारणा है, एक वेक्टर जो द्रव में एक बिंदु पर स्थानीय चक्रीय (रोटरी) गति का वर्णन करता है, जैसा कि उस एक पर्यवेक्षक द्वारा माना जाएगा,जो इन भवंरों के साथ चलायमान होगा।

संकल्पनात्मक रूप से, किसी विचाराधीन बिंदु पर भ्रमिलता मापने के लिये, यह जानने का प्रयास किया जाता है की उस बिंदु पर, एक छोटी खुरदरी गेंद, जो द्रव के साथ चलने के लिए स्वतंत्र हो, किस प्रकार घूर्णन कर सकती है। भ्रमिलता (वर्टिसिटी) वेक्टर की दिशा को इस काल्पनिक गेंद (दाहिने हाथ के नियम के अनुसार) के परिभ्रमण (रोटेशन) के अक्ष की दिशा के रूप में परिभाषित किया गया है, जबकि इस वेक्टर की लंबाई गेंद के कोणीय वेग से दोगुनी है। गणितीय रूप से, भ्रमिलता को द्रव के वेग क्षेत्र के कर्ल (या घूर्णी) के रूप में परिभाषित किया जाता है, जिसे आमतौर पर द्वारा दर्शाया जाता है और वेक्टर विश्लेषण सूत्र , जहाँ ऑपरेटर है और स्थानीय प्रवाह वेग है।

वर्टिसिटी द्वारा मापे गए[6], स्थानीय घुमाव को, द्रव के उस हिस्से के बाह्य वातावरण या किसी निश्चित अक्ष के संबंध में, कोणीय वेग वेक्टर के साथ, भ्रमित नहीं किया जाना चाहिए। विशेष रूप से, एक भंवर में, , भंवर के अक्ष के सापेक्ष, द्रव के औसत कोणीय वेग वेक्टर के विपरीत हो सकता है।

सीमाओं पर भंवर गठन

भंवर संरचनाओं को उनकी वर्टिसिटी, तरल कणों की स्थानीय रोटेशन दर द्वारा परिभाषित किया जाता है। वे सीमा परत अलगाव के रूप में जानी जाने वाली घटना के माध्यम से बन सकते हैं, जो तब हो सकता है जब कोई द्रव सतह पर चलता है और बिना पर्ची की स्थिति के कारण द्रव वेग से शून्य तक तेजी से त्वरण का अनुभव करता है। यह तेजी से नकारात्मक त्वरण एक सीमा परत बनाता है जो दीवार पर तरल पदार्थ के स्थानीय घुमाव (यानी वर्टिसिटी) का कारण बनता है जिसे दीवार कतरनी दर के रूप में संदर्भित किया जाता है। इस सीमा परत की मोटाई के समानुपाती होती है (जहाँ मुक्त प्रवाह द्रव वेग है और समय है)।

यदि पात्र या द्रव का व्यास या मोटाई सीमा परत की मोटाई से कम है तो सीमा परत अलग नहीं होगी और भंवर नहीं बनेंगे। हालाँकि, जब सीमा परत इस महत्वपूर्ण सीमा परत की मोटाई से आगे बढ़ती है तो पृथक्करण होगा जो भंवर उत्पन्न करेगा।

यह सीमा परत अलगाव जुझारू दबाव प्रवणताओं (यानी एक दबाव जो नीचे की ओर विकसित होता है) की उपस्थिति में भी हो सकता है। यह घुमावदार सतहों में मौजूद है और सामान्य ज्यामिति उत्तल सतह की तरह बदलती है। गंभीर ज्यामितीय परिवर्तनों का एक अनूठा उदाहरण एक ब्लफ़ बॉडी के अनुगामी किनारे पर है जहाँ द्रव प्रवाह मंदी है, और इसलिए सीमा परत और भंवर गठन स्थित है।

एक सीमा पर भंवर गठन का दूसरा रूप तब होता है जब द्रव एक दीवार में लंबवत रूप से प्रवाहित होता है और एक स्पलैश प्रभाव पैदा करता है। वेग प्रवाह रेखाएं तुरंत विक्षेपित और धीमी हो जाती हैं जिससे सीमा परत अलग हो जाती है और एक टॉरॉयडल भंवर वलय बनाती है। [7]

दृढ़ पिंडीय भंवर

सारांश

द्रव गतिकी में, भंवर, एक ऐसा तरल पदार्थ माना जा सकता है, जो अक्ष रेखा के चारों ओर घूमता है। भंवर, अशांत प्रवाह का एक महत्वपूर्ण अंश हैं।

सीमित कण भौतिकी दृष्टि कोण से, भंवरों को तरल-द्रव के एक परिपत्र गति के रूप में जाना जा सकता है। बलों की अनुपस्थिति की स्थिति में, द्रव स्थिर हो जाता है। जब वे बनाए जाते हैं, अथवा बन जाते हैं, तो भंवर जटिल पद्धतिसे चल सकते हैं, इनके अध्ययन से पता चलता है की, वे खिंच सकते हैं, मुड़ सकते हैं और परस्पर प्रभावित हो सकते हैं। जब भंवर गतिमान होता है, कभी-कभी, यह कोणीय स्थिति को प्रभावित कर सकता है।

भवंरों का अध्ययन यान अभिकल्पन व विनिर्माण, में काम आता हैl

सन्दर्भ

  1. "vortex".
  2. "भंवर".
  3. टिंग, एल (1991). "Viscous Vortical Flows : Lecture notes in Physics". स्प्रिंगर-वर्लाग. ISBN 978-3-540-53713-7.
  4. किडा, शिगियो 2001 Life, Structure, and Dynamical Role of Vortical Motion in Turbulence IUTAMim संगोष्ठी,ज़कोपेन,पोलैंड
  5. क्लेंसी, एल.जे. (1975). Aerodynamics. लंदन: पिटमैन पब्लिशिंग लिमिटेड.
  6. "भंवर प्रवाह मीटर".
  7. खेरद्वार, अराश; पेड्रिज़ेटी, गियान्नी (2012). "Vortex Dynamics", Vortex Formation in the Cardiovascular System,. स्प्रिंगर लंदन.{{cite book}}: CS1 maint: multiple names: authors list (link)