लारमोर प्रीसेशन: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 60: | Line 60: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 06/04/2023]] | [[Category:Created On 06/04/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 11:44, 6 May 2023
भौतिकी में, लार्मर प्रीसेशन जोसेफ लारमोर के नाम पर रखा गया है बाहरी चुंबकीय क्षेत्र के बारे में किसी वस्तु के चुंबकीय क्षण का प्रीसेशन है। घटना वैचारिक रूप से बाहरी टॉर्कः -उत्तेजक गुरुत्वाकर्षण क्षेत्र में झुके हुए मौलिक जाइरोस्कोप के प्रीसेशन के समान है। चुंबकीय क्षण वाली वस्तुओं में भी कोणीय गति होती है और प्रभावी आंतरिक विद्युत प्रवाह उनके कोणीय गति के समानुपाती होता है। इनमें इलेक्ट्रॉन, प्रोटॉन, अन्य फर्मियन, कई परमाणु और परमाणु भौतिकी प्रणालियाँ, साथ ही मौलिक मैक्रोस्कोपिक प्रणालियाँ सम्मलित हैं। बाहरी चुंबकीय क्षेत्र चुंबकीय क्षण पर एक टॉर्कः लगाता है,
जहाँ टॉर्क है, चुंबकीय द्विध्रुवीय क्षण है, कोणीय गति सदिश है, बाहरी चुंबकीय क्षेत्र है, पार उत्पाद का प्रतीक है और जाइरोमैग्नेटिक अनुपात है, जो चुंबकीय क्षण और कोणीय गति के बीच आनुपातिकता स्थिरांक देता है।कोणीय गति वेक्टर लार्मर आवृत्ति के रूप में जानी जाने वाली कोणीय आवृत्ति के साथ बाहरी क्षेत्र अक्ष के बारे में पूर्ववर्ती,
- ,
जहाँ कोणीय आवृत्ति है,[1] और लागू चुंबकीय क्षेत्र का परिमाण है। आवेश के कण के लिए , जाइरोमैग्नेटिक अनुपात [2] के बराबर है, जहाँ प्रीसेसिंग प्रणाली का द्रव्यमान है, जबकि प्रणाली का G-कारक (भौतिकी) है। G-कारक इकाई-कम आनुपातिकता कारक है जो प्रणाली के कोणीय गति को आंतरिक चुंबकीय क्षण से संबंधित करता है, मौलिक भौतिकी में यह सिर्फ 1 है। लार्मर आवृत्ति के बीच के कोण से स्वतंत्र है और .
परमाणु भौतिकी में किसी दिए गए प्रणाली के G-कारक में न्यूक्लिऑन चक्रण, उनके कक्षीय कोणीय संवेग और उनके युग्मन का प्रभाव सम्मलित होता है। सामान्यतः इस तरह के कई-निकाय प्रणालियों के लिए G-कारकों की गणना करना बहुत जटिल होता है, किन्तु उन्हें अधिकांश नाभिकों के लिए उच्च परिशुद्धता के लिए मापा गया है। एनएमआर स्पेक्ट्रोस्कोपी में लार्मर आवृत्ति महत्वपूर्ण है। जाइरोमैग्नेटिक अनुपात, जो किसी दिए गए चुंबकीय क्षेत्र की शक्ति पर लार्मर आवृत्ति देते हैं, जिसको index.php/List_of_NMR_isotopes यहां मापा और सारणीबद्ध किया गया है ।
महत्वपूर्ण रूप से, लार्मर आवृत्ति लागू चुंबकीय क्षेत्र और चुंबकीय क्षण दिशा के बीच ध्रुवीय कोण से स्वतंत्र है। यह वह है जो इसे परमाणु चुंबकीय अनुनाद (NMR) और इलेक्ट्रॉन अनुचंबकीय अनुनाद (EPR) जैसे क्षेत्रों में महत्वपूर्ण अवधारणा बनाता है, क्योंकि पूर्वता दर चक्रण के स्थानिक अभिविन्यास पर निर्भर नहीं करती है।
थॉमस प्रीसेशन सहित
उपरोक्त समीकरण वह है जो अधिकांश अनुप्रयोगों में उपयोग किया जाता है। चूंकि, पूर्ण उपचार में थॉमस प्रीसेशन के प्रभाव सम्मलित होने चाहिए, जो समीकरण सीजीएस इकाइयों में उत्पन्न करते हैं सीजीएस इकाइयों का उपयोग किया जाता है, जिससे कि E में B के समान इकाइयां हों।
जहाँ सापेक्षतावादी लोरेंत्ज़ कारक है (उपरोक्त जाइरोमैग्नेटिक अनुपात के साथ भ्रमित नहीं होना चाहिए)। विशेष रूप से, इलेक्ट्रॉन g के लिए 2 (2.002...) के बहुत समीप है, इसलिए यदि कोई g = 2 सेट करता है, तो एक आता है
बर्गमैन-मिशेल-टेलीगडी समीकरण
बाहरी विद्युत चुम्बकीय क्षेत्र में इलेक्ट्रॉन के चक्रण प्रीसेशन को बर्गमैन-मिशेल-टेलीगडी (बीएमटी) समीकरण द्वारा वर्णित किया गया है। [3]
जहाँ , , , और ध्रुवीकरण चार-वेक्टर, आवेश, द्रव्यमान और चुंबकीय क्षण हैं, इलेक्ट्रॉन का चार-वेग है (इकाइयों की प्रणाली में जिसमें ), , , और विद्युत चुम्बकीय क्षेत्र-शक्ति टेंसर है। गति के समीकरणों का प्रयोग करके,
बीएमटी समीकरण के दाईं ओर पहले पद को फिर से लिखा जा सकता है , जहाँ चार-त्वरण है। यह शब्द फर्मी-वाकर परिवहन का वर्णन करता है और थॉमस प्रीसेशन की ओर जाता है। दूसरा कार्यकाल लारमोर प्रीसेशन से जुड़ा है।
जब विद्युत चुम्बकीय क्षेत्र अंतरिक्ष में समान होते हैं या जब ढाल बल पसंद करते हैं उपेक्षित किया जा सकता है, कण की स्थानांतरणीय गति का वर्णन किसके द्वारा किया जाता है
बीएमटी समीकरण तब के रूप में लिखा जाता है [4]
थॉमस-बीएमटी का किरण प्रकाशिक संस्करण, आवेशित-कण बीम प्रकाशिकी के क्वांटम सिद्धांत से, त्वरक प्रकाशिकी पर लागू होता है।[5][6]
अनुप्रयोग
लेव लैंडौ और एवगेनी लिफशिट्ज द्वारा प्रकाशित 1935 के पेपर ने लार्मर प्रीसेशन के फेरो चुंबकीय अनुनाद के अस्तित्व की भविष्यवाणी की, जिसे 1946 में जे. एच. ई. ग्रिफिथ्स (यूके) [7] और ई. के. ज़ावोइस्की (यूएसएसआर) द्वारा प्रयोगों में स्वतंत्र रूप से सत्यापित किया गया था।[8][9]
परमाणु चुंबकीय अनुनाद, चुंबकीय अनुनाद इमेजिंग, इलेक्ट्रॉन अनुचंबकीय अनुनाद, और म्यूऑन चक्रण स्पेक्ट्रोस्कोपी में लारमोर प्रीसेशन महत्वपूर्ण है। यह ब्रह्मांडीय धूल कणों के संरेखण के लिए भी महत्वपूर्ण है, जो तारों के प्रकाश के ध्रुवीकरण का कारण है।
चुंबकीय क्षेत्र में कण के चक्रण की गणना करने के लिए, सामान्य रूप से थॉमस प्रीसेशन को भी ध्यान में रखना चाहिए यदि कण गतिमान है।
प्रीसेशन दिशा
इलेक्ट्रॉन का चक्रण कोणीय संवेग चुंबकीय क्षेत्र की दिशा के बारे में वामावर्त दिशा में आगे बढ़ता है। इलेक्ट्रॉन का ऋणात्मक आवेश होता है, इसलिए इसके चुंबकीय क्षण की दिशा इसके घूमने की दिशा के विपरीत होती है।
यह भी देखें
- लार्मर न्यूट्रॉन माइक्रोस्कोप
- प्रीसेशन
- रबी चक्र
- नाभिकीय चुबकीय अनुनाद
- विक्षुब्ध कोणीय सहसंबंध
- मॉस बाउर प्रभाव
- म्यूऑन चक्रण स्पेक्ट्रोस्कोपी
टिप्पणियाँ
- ↑ Spin Dynamics, Malcolm H. Levitt, Wiley, 2001
- ↑ Louis N. Hand and Janet D. Finch. (1998). Analytical Mechanics. Cambridge, England: Cambridge University Press. p. 192. ISBN 978-0-521-57572-0.
- ↑ V. Bargmann, L. Michel, and V. L. Telegdi, Precession of the Polarization of Particles Moving in a Homogeneous Electromagnetic Field, Phys. Rev. Lett. 2, 435 (1959).
- ↑ Jackson, J. D., Classical Electrodynamics, 3rd edition, Wiley, 1999, p. 563.
- ↑ M. Conte, R. Jagannathan, S. A. Khan and M. Pusterla, Beam optics of the Dirac particle with anomalous magnetic moment, Particle Accelerators, 56, 99–126 (1996); (Preprint: IMSc/96/03/07, INFN/AE-96/08).
- ↑ Khan, S. A. (1997). Quantum Theory of Charged-Particle Beam Optics, Ph.D Thesis, University of Madras, Chennai, India. (complete thesis available from Dspace of IMSc Library, The Institute of Mathematical Sciences, where the doctoral research was done).
- ↑ J. H. E. Griffiths (1946). "फेरोमैग्नेटिक धातुओं का विषम उच्च आवृत्ति प्रतिरोध". Nature. 158 (4019): 670–671. Bibcode:1946Natur.158..670G. doi:10.1038/158670a0. S2CID 4143499.
- ↑ Zavoisky, E. (1946). "डेसीमीटर-वेव क्षेत्र में स्पिन चुंबकीय अनुनाद". Fizicheskiĭ Zhurnal. 10.
- ↑ Zavoisky, E. (1946). "लंबवत चुंबकीय क्षेत्रों में कुछ लवणों में पैरामैग्नेटिक अवशोषण". Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki. 16 (7): 603–606.