निस्नेविच टोपोलॉजी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Structure in algebraic geometry}}
{{Short description|Structure in algebraic geometry}}
[[बीजगणितीय ज्यामिति]] में, '''निस्नेविच टोपोलॉजी''', जिसे कभी-कभी पूरी तरह से विघटित टोपोलॉजी कहा जाता है। यह योजनाओं की श्रेणी पर [[ग्रोथेंडिक टोपोलॉजी]] है जिसका उपयोग [[बीजगणितीय के-सिद्धांत]], '''A¹''' समरूपता सिद्धांत और प्रेरण सिद्धांत में किया गया है। इसको मूल रूप से येवेसी निस्नेविच द्वारा प्रस्तुत किया गया था जो [[एडेल रिंग|एडेल्स]] के सिद्धांत से प्रेरित थे।
[[बीजगणितीय ज्यामिति]] में '''निस्नेविच टोपोलॉजी''' जिसे कभी-कभी विघटित टोपोलॉजी कहा जाता है। यह योजनाओं की श्रेणी पर [[ग्रोथेंडिक टोपोलॉजी]] है जिसका उपयोग [[बीजगणितीय के-सिद्धांत]], '''A¹''' समरूपता सिद्धांत और प्रेरण सिद्धांत में किया गया है। इसको मूल रूप से येवेसी निस्नेविच द्वारा प्रस्तुत किया गया था जो [[एडेल रिंग|एडेल्स]] के सिद्धांत से प्रेरित थे।


== परिभाषा ==
== परिभाषा ==
योजना के एक रूपवाद <math>f:Y \to X</math> को "निस्नेविच आकारिता" कहा जाता है यदि यह एक ईटेल आकारिकी है जैसे कि प्रत्येक (संभवतः गैर-सवृत) बिंदु x ∈ X के लिए, फाइबर {{nowrap|''f''<sup>&minus;1</sup>(''x'')}} में एक बिंदु y ∈ Y सम्मिलित होता है जैसे कि अवशेष क्षेत्रों का प्रेरित मानचित्र k(x) → k(y) समरूप है। समतुल्य रूप से, f समतल, असम्बद्ध, स्थानीय रूप से परिमित प्रस्तुति वाला होना चाहिए, और प्रत्येक बिंदु x ∈ X के लिए, फाइबर {{nowrap|''f''<sup>&minus;1</sup>(''x'')}} में एक बिंदु y सम्मिलित होना चाहिए जैसे कि k(x) → k(y) समरूपी है।
योजना के एक रूपवाद <math>f:Y \to X</math> को "निस्नेविच आकारिता" कहा जाता है यदि यह एक ईटेल आकारिकी है जैसे कि प्रत्येक (संभवतः गैर-सवृत) बिंदु x ∈ X के लिए, फाइबर {{nowrap|''f''<sup>&minus;1</sup>(''x'')}} में एक बिंदु y ∈ Y सम्मिलित होता है जैसे कि अवशेष क्षेत्रों का प्रेरित मानचित्र k(x) → k(y) समरूप है। समतुल्य रूप से, f समतल, असम्बद्ध, स्थानीय रूप से परिमित प्रस्तुति वाला होना चाहिए, और प्रत्येक बिंदु x ∈ X के लिए, फाइबर {{nowrap|''f''<sup>&minus;1</sup>(''x'')}} में एक बिंदु y सम्मिलित होना चाहिए जैसे कि k(x) → k(y) समरूप है।


आकारिता का एक समिह {uα: Xα → X} निस्नेविच समाविष्ट है यदि समूह में प्रत्येक आकारिकी है और प्रत्येक (संभवतः गैर-सवृत) बिंदु x ∈ X के लिए, α और एक बिंदु y ∈ Xα s.t सम्मिलित है। uα(y) = x और अवशिष्ट क्षेत्रों k(x) → k(y) का प्रेरित मानचित्र एक समरूपता है। यदि समूह परिमित है तो यह आकारिकी <math>\coprod u_\alpha</math> के समतुल्य है <math>\coprod X_\alpha</math> से X एक निस्नेविच आकारिता है। निस्नेविच समाविष्ट योजनाओं की श्रेणी और योजनाओं के आकारिता पर एक प्रारम्भिक सांस्थिति के समाविष्टि समूह हैं। यह निस्नेविच टोपोलॉजी नामक एक टोपोलॉजी उत्पन्न करता है। निस्नेविच टोपोलॉजी वाली योजनाओं की श्रेणी को निर्धारित किया गया है x की छोटी निस्नेविच साइट में अंतर्निहित श्रेणी के रूप में छोटी ईटेल साइट है जिसका कहना है कि वस्तु योजना U हैं जो एक निश्चित ईटेल आकारिता ''U'' → ''X'' के साथ हैं और आकारिता एक्स के लिए निश्चित मानचित्रों के साथ संगत योजनाओं के आकारिता हैं। स्वीकार्य आवरण निस्नेविच आकारिता हैं।
आकारिता का एक समूह {uα: Xα → X} निस्नेविच समाविष्ट है यदि समूह में प्रत्येक बहुपद आकारिकी है और प्रत्येक (संभवतः गैर-सवृत) बिंदु x ∈ X के लिए α और एक बिंदु y ∈ Xα s.t सम्मिलित है। uα(y) = x और k(x) → k(y) अवशिष्ट क्षेत्रों का प्रेरित मानचित्र समरूप होता है यदि समूह परिमित है तो यह आकारिकी <math>\coprod u_\alpha</math> के समतुल्य होगा और <math>\coprod X_\alpha</math> से X के लिए निस्नेविच आकारिता है। निस्नेविच समाविष्ट योजनाओं की श्रेणी और योजनाओं की आकारिता पर एक प्रारम्भिक सांस्थिति के समाविष्टि समूह हैं। यह निस्नेविच टोपोलॉजी नामक एक टोपोलॉजी उत्पन्न करता है जिसको निस्नेविच टोपोलॉजी वाली योजनाओं की श्रेणी के लिए निर्धारित किया गया है x की छोटी निस्नेविच स्थिति में अंतर्निहित श्रेणी के रूप में छोटी ईटेल स्थिति है जिसका कहना है कि वस्तु U एक योजना हैं जो एक निश्चित ईटेल आकारिता ''U'' → ''X'' के साथ हैं और आकारिता X के लिए निश्चित मानचित्रों के साथ संगत योजनाओं की आकारिता हैं जिसकी स्वीकार्य व्याख्या निस्नेविच आकारिता हैं X की बड़ी निस्नेविच स्थिति में X के लिए एक निश्चित मानचित्र के साथ अंतर्निहित श्रेणी योजनाएं हैं और X-योजनाओ मे आकारिकी हैं जो निम्न टोपोलॉजी निस्नेविच आकारिकी द्वारा दी गई हैं।


'''एक्स की बड़ी निस्नेविच साइट में एक्स के लिए''' एक निश्चित मानचित्र के साथ अंतर्निहित श्रेणी योजनाएं हैं और एक्स-स्कीमों के आकारिकी हैं। टोपोलॉजी निस्नेविच आकारिकी द्वारा दी गई है।
निस्नेविच टोपोलॉजी के कई रूप हैं जो एक प्रकार का अध्ययन करने के लिए अनुकूलित हैं इन टोपोलॉजी की समाविष्ट में विशिष्टता के लिए विश्लेषण या समाधान के कई विभिन्न रूप सम्मिलित हैं।
 
* सीडीएच टोपोलॉजी समाविष्ट के रूप में उपयुक्त द्विवार्षिक आकारिता की स्वीकृति देती है।
निस्नेविच टोपोलॉजी के कई रूप हैं जो एक प्रकार का अध्ययन करने के लिए अनुकूलित हैं इन टोपोलॉजी में समाविष्ट में विलक्षणता के संकल्प या संकल्प के कमजोर रूप सम्मिलित हैं।
* '''H''' टोपोलॉजी डीजोंग के परिवर्तन को समाविष्ट के रूप में स्वीकृति देती है।
* सीडीएच टोपोलॉजी समाविष्टिंग के रूप में उचित द्विवार्षिक आकारिता की स्वीकृति देती है।
* गैबर के स्थानीय एकरूपता प्रमेय के निष्कर्ष के रूप में '''L′''' टोपोलॉजी आकारिता की स्वीकृति देती है।
* एच टोपोलॉजी डी जोंग के परिवर्तन को समाविष्टिंग के रूप में स्वीकृति देता है।
सीडीएच और '''L′''' टोपोलॉजी ईटेल टोपोलॉजी के साथ अतुलनीय हैं और '''H''' टोपोलॉजी ईटेल टोपोलॉजी से अपेक्षाकृत अच्छी है।
* गैबर के स्थानीय एकरूपता प्रमेय के निष्कर्ष के रूप में एल' टोपोलॉजी आकारिकी की स्वीकृति देती है।
सीडीएच और एल' टोपोलॉजी ईटेल टोपोलॉजी के साथ अतुलनीय हैं, और एच टोपोलॉजी ईटेल टोपोलॉजी से अपेक्षाकृत अच्छा है।


=== निस्नेविच समाविष्ट के लिए समतुल्य शर्तें ===
=== निस्नेविच समाविष्ट के लिए समतुल्य शर्तें ===
मान लें कि श्रेणी में एक qcqs (अर्ध-कॉम्पैक्ट और अर्ध-पृथक) योजना पर चिकनी योजनाएं सम्मिलित हैं, फिर निस्नेविच के कारण मूल परिभाषा <ref name=":0">{{cite arXiv|last1=Antieau|first1=Benjamin|last2=Elmanto|first2=Elden|date=2016-11-07|title=अस्थिर प्रेरक होमोटॉपी सिद्धांत के लिए एक प्राइमर|class=math.AG|eprint=1605.00929}}</ref><sup>टिप्पणी 3.39</sup>, जो ऊपर दी गई परिभाषा के बराबर है, आकृतिवाद के एक समूह के लिए <math>\{p_\alpha: U_\alpha \to X\}_{\alpha \in A}</math> निस्नेविच को समाविष्ट करने वाली योजनाएं हैं यदि
'''माना कि श्रेणी में एक क्यूसीक्यूएस (अर्ध-सघन''' और अर्ध-पृथक) योजना पर समतल योजनाएं सम्मिलित हैं फिर निस्नेविच के कारण मूल परिभाषा <ref name=":0">{{cite arXiv|last1=Antieau|first1=Benjamin|last2=Elmanto|first2=Elden|date=2016-11-07|title=अस्थिर प्रेरक होमोटॉपी सिद्धांत के लिए एक प्राइमर|class=math.AG|eprint=1605.00929}}</ref><sup>टिप्पणी 3.39</sup>, जो ऊपर दी गई परिभाषा के बराबर है, आकृतिवाद के एक समूह के लिए <math>\{p_\alpha: U_\alpha \to X\}_{\alpha \in A}</math> निस्नेविच को समाविष्ट करने वाली योजनाएं हैं यदि


# प्रत्येक <math>p_\alpha</math> है; और
# प्रत्येक <math>p_\alpha</math> है; और
# सभी क्षेत्र <math>k</math> के लिए, <math>k</math>-बिंदुओं के स्तर पर, (सेट-सैद्धांतिक) सहउत्पाद <math>p_k: \coprod_{\alpha}U_\alpha(k) \to X(k)</math> सभी आच्छादन आकारिकी <math>p_\alpha</math> विशेषण है।
# सभी क्षेत्र <math>k</math> के लिए, <math>k</math>-बिंदुओं के स्तर पर, (समुच्चय-सैद्धांतिक) सहउत्पाद <math>p_k: \coprod_{\alpha}U_\alpha(k) \to X(k)</math> सभी आच्छादन आकारिकी <math>p_\alpha</math> विशेषण है।


निस्नेविच समाविष्ट के लिए निम्नलिखित अभी तक एक और समतुल्य स्थिति Lurie [ के कारण है: निस्नेविच टोपोलॉजी ईटेल आकारिता के सभी परिमित समूहों द्वारा उत्पन्न होती है जैसे कि सूक्ष्म रूप से प्रस्तुत सवृत उप-योजनाओं का एक परिमित अनुक्रम होता है।{{Citation needed|reason=The Antieau-Elmanto paper says Lurie SAG A.2.4, but since then Lurie's book has been drastically updated and reindexed.|date=April 2023}}<blockquote><math>\varnothing \subseteq Z_n \subseteq Z_{n-1} \subseteq \cdots \subseteq Z_1 \subseteq Z_0 = X</math></blockquote>जैसे कि <math>0\leq m\leq n-1</math> के लिए <math>\coprod_{\alpha \in A} p_\alpha^{-1}(Z_m - Z_{m-1}) \to Z_m - Z_{m-1}</math> एक वर्ग को स्वीकार करता है।
निस्नेविच समाविष्ट के लिए निम्नलिखित अभी तक एक और समतुल्य स्थिति Lurie [ के कारण है: निस्नेविच टोपोलॉजी ईटेल आकारिता के सभी परिमित समूहों द्वारा उत्पन्न होती है जैसे कि सूक्ष्म रूप से प्रस्तुत सवृत उप-योजनाओं का एक परिमित अनुक्रम होता है।{{Citation needed|reason=The Antieau-Elmanto paper says Lurie SAG A.2.4, but since then Lurie's book has been drastically updated and reindexed.|date=April 2023}}<blockquote><math>\varnothing \subseteq Z_n \subseteq Z_{n-1} \subseteq \cdots \subseteq Z_1 \subseteq Z_0 = X</math></blockquote>जैसे कि <math>0\leq m\leq n-1</math> के लिए <math>\coprod_{\alpha \in A} p_\alpha^{-1}(Z_m - Z_{m-1}) \to Z_m - Z_{m-1}</math> एक वर्ग को स्वीकार करता है।
Line 43: Line 41:
\end{align}</math>
\end{align}</math>


इसलिए सख्त हेनसेलाइज़ेशन का अवशेष क्षेत्र मूल अवशेष क्षेत्र <math>\kappa</math> को अलग करने योग्य सवृत कर देता है।
'''इसलिए सख्त हेनसेलाइज़ेशन का अवशेष क्षेत्र मूल अवशेष क्षेत्र <math>\kappa</math> को अल'''ग करने योग्य सवृत कर देता है।


=== निस्नेविच समाविष्टिंग के उदाहरण ===
=== निस्नेविच समाविष्ट के उदाहरण ===
द्वारा दिए गए ईटेल समाविष्ट पर विचार करें
निस्नेविच समाविष्ट के उदाहरण द्वारा दिए गए ईटेल समाविष्ट पर विचार करें:
:<math>
:<math>
\text{Spec}(\mathbb{C}[x,t,t^{-1}]/(x^2 - t)) \to \text{Spec}(\mathbb{C}[t,t^{-1}])
\text{Spec}(\mathbb{C}[x,t,t^{-1}]/(x^2 - t)) \to \text{Spec}(\mathbb{C}[t,t^{-1}])
</math>
</math>
यदि हम आधार के सामान्य बिंदु के लिए अवशेष क्षेत्रों के संबंधित आकारिकी को देखते हैं, तो हम देखते हैं कि यह एक डिग्री 2 विस्तार है:  
यदि हम आधार के सामान्य बिंदु के लिए अवशेष क्षेत्रों के संबंधित आकारिकी को देखते हैं, तो हम देखते हैं कि यह डिग्री 2 का विस्तार है:  
:<math>
:<math>
\mathbb{C}(t) \to \frac{\mathbb{C}(t)[x]}{(x^2 - t)}
\mathbb{C}(t) \to \frac{\mathbb{C}(t)[x]}{(x^2 - t)}
</math>
</math>
इसका तात्पर्य यह है कि यह ईटेल समाविष्ट निस्नेविच नहीं है। निसनेविच समाविष्ट प्राप्त करने के लिए हम <math>\mathbb{A}^1 - \{0,1\} \to \mathbb{A}^1 - \{0\}</math> जोड़ सकते हैं <math>\mathbb{A}^1-\{0\}</math> के सामान्य बिंदु के लिए अंकों की समरूपता है।
इसका तात्पर्य यह है कि यह ईटेल समाविष्ट निस्नेविच नहीं है। निसनेविच समाविष्ट प्राप्त करने के लिए हम <math>\mathbb{A}^1 - \{0,1\} \to \mathbb{A}^1 - \{0\}</math> जोड़ सकते हैं और <math>\mathbb{A}^1-\{0\}</math> के सामान्य बिंदु के लिए अंकों की समरूपता है।


=== सशर्त आवरण ===
=== सशर्त आवरण ===
यदि हम <math>\mathbb{A}^1</math> को क्षेत्र <math>k</math> पर एक योजना के रूप में लेते हैं, तो एक आवरण <ref name=":0" /><sup>पेज 21</sup> द्वारा दिया गया है:<blockquote><math>\begin{align}
यदि हम <math>\mathbb{A}^1</math> को क्षेत्र <math>k</math> पर एक योजना के रूप में लेते हैं, तो एक समाविष्ट <ref name=":0" /><sup>पेज 21</sup> द्वारा दिया गया है:<blockquote><math>\begin{align}
i: \mathbb{A}^1 - \{a \} \hookrightarrow \mathbb{A}^1 \\
i: \mathbb{A}^1 - \{a \} \hookrightarrow \mathbb{A}^1 \\
f: \mathbb{A}^1 - \{0 \} \to \mathbb{A}^1
f: \mathbb{A}^1 - \{0 \} \to \mathbb{A}^1
\end{align}</math></blockquote>जहाँ मैं समावेशन है और <math>f(x) = x^k</math> तो यह आवरण निस्नेविच है यदि और केवल यदि <math>x^k = a</math> का <math>k</math> पर समाधान है। अन्यथा, समाविष्टिंग <math>k</math>-पॉइंट्स पर अनुमान नहीं हो सकता है। इस मामले में, समाविष्टिंग केवल एक ईटेल समाविष्टिंग है।
\end{align}</math></blockquote>जहाँ '''i''' समाविष्ट है और <math>f(x) = x^k</math> समाविष्ट निस्नेविच है यदि और केवल यदि <math>x^k = a</math> का <math>k</math> पर समाधान है अन्यथा समाविष्ट <math>k</math>-बिन्दु पर अनुमान नहीं हो सकता है इस स्थिति में, समाविष्ट केवल एक ईटेल समाविष्ट है।


=== ज़रिस्की समाविष्टिंग ===
=== ज़रिस्की समाविष्ट ===
ज़रिस्की का हर समाविष्ट निस्नेविच है<ref name=":0" /> लेकिन इसका विलोम आम तौर पर पकड़ में नहीं आता है।<ref>{{Cite web|title=प्रति उदाहरण - एक निस्नेविच कवर जो ज़ारिस्की नहीं है|url=https://mathoverflow.net/questions/103257/a-nisnevich-cover-which-is-not-zariski|access-date=2021-01-25|website=MathOverflow}}</ref> इसे किसी भी परिभाषा का उपयोग करके आसानी से सिद्ध किया जा सकता है क्योंकि ज़रिस्की समाविष्ट की परवाह किए बिना अवशेष क्षेत्र सदैव एक समरूपता होगी, और परिभाषा के अनुसार ज़रिस्की समाविष्ट बिंदुओं पर अनुमान देगा। इसके अतिरिक्त, ज़ारिस्की समावेशन सदैव एटेल आकारिकी होते हैं।
ज़रिस्की का प्रत्येक समाविष्ट निस्नेविच है<ref name=":0" /> लेकिन इसका व्यत्क्रम सामान्यतः नहीं होता है।<ref>{{Cite web|title=प्रति उदाहरण - एक निस्नेविच कवर जो ज़ारिस्की नहीं है|url=https://mathoverflow.net/questions/103257/a-nisnevich-cover-which-is-not-zariski|access-date=2021-01-25|website=MathOverflow}}</ref> इसको किसी भी परिभाषा का उपयोग करके आसानी से सिद्ध किया जा सकता है क्योंकि ज़रिस्की समाविष्ट के अतिरिक्त अवशेष क्षेत्र मे सदैव समरूपता होती है परिभाषा के अनुसार ज़रिस्की समाविष्ट बिंदुओं पर अनुमान के अतिरिक्त ज़ारिस्की समाविष्ट सदैव एटेल आकारिकी होते हैं।


== अनुप्रयोग ==
== अनुप्रयोग ==
निस्नेविच ने अपनी टोपोलॉजी को एक सजातीय समूह योजना के वर्ग सेट की सह-वैज्ञानिक व्याख्या प्रदान करने के लिए पेश किया, जिसे मूल रूप से एडिलिक शब्दों में परिभाषित किया गया था। उन्होंने अलेक्जेंडर ग्रोथेंडिक और जीन-पियरे सेरे के एक अनुमान को आंशिक रूप से साबित करने के लिए इसका उपयोग किया, जिसमें कहा गया है कि एक अभिन्न नियमित नोएथेरियन आधार योजना पर रिडक्टिव ग्रुप स्कीम के अंतर्गत तर्कसंगत रूप से तुच्छ टॉर्सर ज़रिस्की टोपोलॉजी में स्थानीय रूप से तुच्छ है। निस्नेविच टोपोलॉजी के प्रमुख गुणों में से एक वंश वर्णक्रमीय अनुक्रम का अस्तित्व है। X को परिमित क्रुल आयाम की एक नोथेरियन योजना होने दें, और Gn(X) को X पर सुसंगत ढेरों की श्रेणी के Quillen K-समूह माना कि यदि <math>\tilde G_n^{\,\text{cd}}(X)</math> टोपोलॉजी के संबंध में इन समूहों का शीफीकरण है, तो एक अभिसारी वर्णक्रमीय अनुक्रम है:
निस्नेविच ने अपनी टोपोलॉजी को एक सजातीय समूह योजना के वर्ग समुच्चय की सह-वैज्ञानिक व्याख्या प्रदान करने के लिए प्रस्तुत किया था जिसे मूल रूप से एडिलिक शब्दों में परिभाषित किया गया था। उन्होंने अलेक्जेंडर ग्रोथेंडिक और जीन-पियरे सेरे के एक अनुमान को आंशिक रूप से सिद्ध करने के लिए इसका उपयोग किया था जिसमें कहा गया है कि एक अभिन्न नियमित नोएथेरियन आधार योजना पर अपचय समूह योजना के अंतर्गत तर्कसंगत रूप से तुच्छ टॉर्सर ज़रिस्की टोपोलॉजी में स्थानीय रूप से तुच्छ है। निस्नेविच टोपोलॉजी के प्रमुख गुणों में से एक वंश वर्णक्रमीय अनुक्रम का अस्तित्व है। माना कि X का परिमित कुल आयाम नोथेरियन योजना है और Gn(X) की X पर सुसंगत श्रेणी क्विलेन K-समूह है।
 
माना कि यदि <math>\tilde G_n^{\,\text{cd}}(X)</math> टोपोलॉजी के संबंध में इन समूहों का शीफीकरण है तो एक अभिसारी वर्णक्रमीय अनुक्रम है:
:<math>E^{p,q}_2 = H^p(X_\text{cd}, \tilde G_q^{\,\text{cd}}) \Rightarrow G_{q-p}(X)</math>
:<math>E^{p,q}_2 = H^p(X_\text{cd}, \tilde G_q^{\,\text{cd}}) \Rightarrow G_{q-p}(X)</math>
{{nowrap|p &ge; 0}}, {{nowrap|q &ge; 0}}, और {{nowrap|p - q &ge; 0}} के लिए यदि <math>\ell</math> एक प्रमुख संख्या है जो एक्स की विशेषता के बराबर नहीं है, फिर <math>\mathbf{Z}/\ell\mathbf{Z}</math> में गुणांक वाले के-समूहों के लिए एक समान अभिसरण वर्णक्रमीय अनुक्रम है।
{{nowrap|p &ge; 0}}, {{nowrap|q &ge; 0}} और {{nowrap|p - q &ge; 0}} के लिए यदि <math>\ell</math> प्रमुख संख्या है जो X की विशेषता के बराबर नहीं है यदि <math>\mathbf{Z}/\ell\mathbf{Z}</math> गुणांक वाले K-समूहों के लिए एक समान अभिसरण वर्णक्रमीय अनुक्रम है तब


निस्नेविच टोपोलॉजी ने बीजगणितीय के-सिद्धांत, A¹ समरूपता सिद्धांत और उद्देश्यों के सिद्धांत में भी महत्वपूर्ण अनुप्रयोग पाए हैं।<ref>{{cite journal|last1=Voevodsky|first1=Vladimir|title=एक क्षेत्र के ऊपर उद्देश्यों की त्रिकोणीय श्रेणियां k|journal=Journal of K-Theory|url=https://faculty.math.illinois.edu/K-theory/0074/tmotives.pdf|at=Proposition 3.1.3}}</ref><ref>{{cite web|title=निस्नेविच टोपोलॉजी|url=http://www-bcf.usc.edu/~hoyois/papers/nisnevich.pdf|url-status=bot: unknown|archive-url=https://web.archive.org/web/20170923234114/http://www-bcf.usc.edu/~hoyois/papers/nisnevich.pdf|archive-date=2017-09-23}}</ref>
निस्नेविच टोपोलॉजी मे बीजगणितीय K-सिद्धांत, '''''' समरूपता सिद्धांत और प्रेरण सिद्धांत में भी महत्वपूर्ण अनुप्रयोग प्राप्त किए जा सकते हैं।<ref>{{cite journal|last1=Voevodsky|first1=Vladimir|title=एक क्षेत्र के ऊपर उद्देश्यों की त्रिकोणीय श्रेणियां k|journal=Journal of K-Theory|url=https://faculty.math.illinois.edu/K-theory/0074/tmotives.pdf|at=Proposition 3.1.3}}</ref><ref>{{cite web|title=निस्नेविच टोपोलॉजी|url=http://www-bcf.usc.edu/~hoyois/papers/nisnevich.pdf|url-status=bot: unknown|archive-url=https://web.archive.org/web/20170923234114/http://www-bcf.usc.edu/~hoyois/papers/nisnevich.pdf|archive-date=2017-09-23}}</ref>
== यह भी देखें ==
== यह भी देखें ==


* प्रीशेफ के साथ स्थानान्तरण
* प्रीशेफ के साथ स्थानान्तरण
* [[मिश्रित मकसद (गणित)|मिश्रित प्रेरक (गणित)]]
* [[मिश्रित मकसद (गणित)|मिश्रित प्रेरक (गणित)]]
* A¹ समरूपता सिद्धांत
* '''''' समरूपता सिद्धांत
* [[हेंसेलियन रिंग|हेंसेलियन वलय]]
* [[हेंसेलियन रिंग|हेंसेलियन वलय]]



Revision as of 23:20, 7 May 2023

बीजगणितीय ज्यामिति में निस्नेविच टोपोलॉजी जिसे कभी-कभी विघटित टोपोलॉजी कहा जाता है। यह योजनाओं की श्रेणी पर ग्रोथेंडिक टोपोलॉजी है जिसका उपयोग बीजगणितीय के-सिद्धांत, समरूपता सिद्धांत और प्रेरण सिद्धांत में किया गया है। इसको मूल रूप से येवेसी निस्नेविच द्वारा प्रस्तुत किया गया था जो एडेल्स के सिद्धांत से प्रेरित थे।

परिभाषा

योजना के एक रूपवाद को "निस्नेविच आकारिता" कहा जाता है यदि यह एक ईटेल आकारिकी है जैसे कि प्रत्येक (संभवतः गैर-सवृत) बिंदु x ∈ X के लिए, फाइबर f−1(x) में एक बिंदु y ∈ Y सम्मिलित होता है जैसे कि अवशेष क्षेत्रों का प्रेरित मानचित्र k(x) → k(y) समरूप है। समतुल्य रूप से, f समतल, असम्बद्ध, स्थानीय रूप से परिमित प्रस्तुति वाला होना चाहिए, और प्रत्येक बिंदु x ∈ X के लिए, फाइबर f−1(x) में एक बिंदु y सम्मिलित होना चाहिए जैसे कि k(x) → k(y) समरूप है।

आकारिता का एक समूह {uα: Xα → X} निस्नेविच समाविष्ट है यदि समूह में प्रत्येक बहुपद आकारिकी है और प्रत्येक (संभवतः गैर-सवृत) बिंदु x ∈ X के लिए α और एक बिंदु y ∈ Xα s.t सम्मिलित है। uα(y) = x और k(x) → k(y) अवशिष्ट क्षेत्रों का प्रेरित मानचित्र समरूप होता है यदि समूह परिमित है तो यह आकारिकी के समतुल्य होगा और से X के लिए निस्नेविच आकारिता है। निस्नेविच समाविष्ट योजनाओं की श्रेणी और योजनाओं की आकारिता पर एक प्रारम्भिक सांस्थिति के समाविष्टि समूह हैं। यह निस्नेविच टोपोलॉजी नामक एक टोपोलॉजी उत्पन्न करता है जिसको निस्नेविच टोपोलॉजी वाली योजनाओं की श्रेणी के लिए निर्धारित किया गया है x की छोटी निस्नेविच स्थिति में अंतर्निहित श्रेणी के रूप में छोटी ईटेल स्थिति है जिसका कहना है कि वस्तु U एक योजना हैं जो एक निश्चित ईटेल आकारिता UX के साथ हैं और आकारिता X के लिए निश्चित मानचित्रों के साथ संगत योजनाओं की आकारिता हैं जिसकी स्वीकार्य व्याख्या निस्नेविच आकारिता हैं X की बड़ी निस्नेविच स्थिति में X के लिए एक निश्चित मानचित्र के साथ अंतर्निहित श्रेणी योजनाएं हैं और X-योजनाओ मे आकारिकी हैं जो निम्न टोपोलॉजी निस्नेविच आकारिकी द्वारा दी गई हैं।

निस्नेविच टोपोलॉजी के कई रूप हैं जो एक प्रकार का अध्ययन करने के लिए अनुकूलित हैं इन टोपोलॉजी की समाविष्ट में विशिष्टता के लिए विश्लेषण या समाधान के कई विभिन्न रूप सम्मिलित हैं।

  • सीडीएच टोपोलॉजी समाविष्ट के रूप में उपयुक्त द्विवार्षिक आकारिता की स्वीकृति देती है।
  • H टोपोलॉजी डीजोंग के परिवर्तन को समाविष्ट के रूप में स्वीकृति देती है।
  • गैबर के स्थानीय एकरूपता प्रमेय के निष्कर्ष के रूप में L′ टोपोलॉजी आकारिता की स्वीकृति देती है।

सीडीएच और L′ टोपोलॉजी ईटेल टोपोलॉजी के साथ अतुलनीय हैं और H टोपोलॉजी ईटेल टोपोलॉजी से अपेक्षाकृत अच्छी है।

निस्नेविच समाविष्ट के लिए समतुल्य शर्तें

माना कि श्रेणी में एक क्यूसीक्यूएस (अर्ध-सघन और अर्ध-पृथक) योजना पर समतल योजनाएं सम्मिलित हैं फिर निस्नेविच के कारण मूल परिभाषा [1]टिप्पणी 3.39, जो ऊपर दी गई परिभाषा के बराबर है, आकृतिवाद के एक समूह के लिए निस्नेविच को समाविष्ट करने वाली योजनाएं हैं यदि

  1. प्रत्येक है; और
  2. सभी क्षेत्र के लिए, -बिंदुओं के स्तर पर, (समुच्चय-सैद्धांतिक) सहउत्पाद सभी आच्छादन आकारिकी विशेषण है।

निस्नेविच समाविष्ट के लिए निम्नलिखित अभी तक एक और समतुल्य स्थिति Lurie [ के कारण है: निस्नेविच टोपोलॉजी ईटेल आकारिता के सभी परिमित समूहों द्वारा उत्पन्न होती है जैसे कि सूक्ष्म रूप से प्रस्तुत सवृत उप-योजनाओं का एक परिमित अनुक्रम होता है।[citation needed]

जैसे कि के लिए एक वर्ग को स्वीकार करता है।

ध्यान दें कि एस-बिंदुओं पर इन आकारिकी का मूल्यांकन करते समय, इसका अर्थ है कि मानचित्र एक अनुमान है। इसके विपरीत, तुच्छ क्रम लेने से परिणाम विपरीत दिशा में मिलता है।

प्रेरणा

मोटिविक कोहोलॉजी में निस्नेविच टोपोलॉजी को पेश करने के लिए प्रमुख प्रेरणाओं में से एक यह तथ्य है[2] कि ज़ारिस्की ओपन समाविष्ट ज़ारिस्की शेव्स का रिज़ॉल्यूशन नहीं देता है।[3]

जहाँ

स्थानान्तरण के साथ पूर्व-शेव की श्रेणी में प्रतिनिधित्व योग्य फ़ंक्टर है। निस्नेविच टोपोलॉजी के लिए, स्थानीय रिंग्स हेन्सेलियन हैं, और हेन्सेलियन रिंग के एक परिमित समाविष्ट को हेन्सेलियन रिंग्स के एक उत्पाद द्वारा दिया जाता है, जो सटीकता दिखा रहा है।

निस्नेविच टोपोलॉजी में स्थानीय वलय

यदि x योजना X का एक बिंदु है, तो निस्नेविच टोपोलॉजी में x का स्थानीय वलय ज़ारिस्की टोपोलॉजी में x के स्थानीय वलय का हेनसेलाइज़ेशन है। यह एटेल टोपोलॉजी से अलग है जहां स्थानीय वलय सख्त हेन्सेलाइज़ेशन हैं। दो मामलों के बीच एक महत्वपूर्ण बिंदु तब देखा जा सकता है जब एक स्थानीय रिंग को अवशिष्ट क्षेत्र के साथ देखा जाता है। इस मामले में, हेन्सेलाइज़ेशन और सख्त हेन्सेलाइज़ेशन के अवशेष क्षेत्र अलग-अलग हैं[4]

इसलिए सख्त हेनसेलाइज़ेशन का अवशेष क्षेत्र मूल अवशेष क्षेत्र को अलग करने योग्य सवृत कर देता है।

निस्नेविच समाविष्ट के उदाहरण

निस्नेविच समाविष्ट के उदाहरण द्वारा दिए गए ईटेल समाविष्ट पर विचार करें:

यदि हम आधार के सामान्य बिंदु के लिए अवशेष क्षेत्रों के संबंधित आकारिकी को देखते हैं, तो हम देखते हैं कि यह डिग्री 2 का विस्तार है:

इसका तात्पर्य यह है कि यह ईटेल समाविष्ट निस्नेविच नहीं है। निसनेविच समाविष्ट प्राप्त करने के लिए हम जोड़ सकते हैं और के सामान्य बिंदु के लिए अंकों की समरूपता है।

सशर्त आवरण

यदि हम को क्षेत्र पर एक योजना के रूप में लेते हैं, तो एक समाविष्ट [1]पेज 21 द्वारा दिया गया है:

जहाँ i समाविष्ट है और समाविष्ट निस्नेविच है यदि और केवल यदि का पर समाधान है अन्यथा समाविष्ट -बिन्दु पर अनुमान नहीं हो सकता है इस स्थिति में, समाविष्ट केवल एक ईटेल समाविष्ट है।

ज़रिस्की समाविष्ट

ज़रिस्की का प्रत्येक समाविष्ट निस्नेविच है[1] लेकिन इसका व्यत्क्रम सामान्यतः नहीं होता है।[5] इसको किसी भी परिभाषा का उपयोग करके आसानी से सिद्ध किया जा सकता है क्योंकि ज़रिस्की समाविष्ट के अतिरिक्त अवशेष क्षेत्र मे सदैव समरूपता होती है परिभाषा के अनुसार ज़रिस्की समाविष्ट बिंदुओं पर अनुमान के अतिरिक्त ज़ारिस्की समाविष्ट सदैव एटेल आकारिकी होते हैं।

अनुप्रयोग

निस्नेविच ने अपनी टोपोलॉजी को एक सजातीय समूह योजना के वर्ग समुच्चय की सह-वैज्ञानिक व्याख्या प्रदान करने के लिए प्रस्तुत किया था जिसे मूल रूप से एडिलिक शब्दों में परिभाषित किया गया था। उन्होंने अलेक्जेंडर ग्रोथेंडिक और जीन-पियरे सेरे के एक अनुमान को आंशिक रूप से सिद्ध करने के लिए इसका उपयोग किया था जिसमें कहा गया है कि एक अभिन्न नियमित नोएथेरियन आधार योजना पर अपचय समूह योजना के अंतर्गत तर्कसंगत रूप से तुच्छ टॉर्सर ज़रिस्की टोपोलॉजी में स्थानीय रूप से तुच्छ है। निस्नेविच टोपोलॉजी के प्रमुख गुणों में से एक वंश वर्णक्रमीय अनुक्रम का अस्तित्व है। माना कि X का परिमित कुल आयाम नोथेरियन योजना है और Gn(X) की X पर सुसंगत श्रेणी क्विलेन K-समूह है।

माना कि यदि टोपोलॉजी के संबंध में इन समूहों का शीफीकरण है तो एक अभिसारी वर्णक्रमीय अनुक्रम है:

p ≥ 0, q ≥ 0 और p - q ≥ 0 के लिए यदि प्रमुख संख्या है जो X की विशेषता के बराबर नहीं है यदि गुणांक वाले K-समूहों के लिए एक समान अभिसरण वर्णक्रमीय अनुक्रम है तब

निस्नेविच टोपोलॉजी मे बीजगणितीय K-सिद्धांत, समरूपता सिद्धांत और प्रेरण सिद्धांत में भी महत्वपूर्ण अनुप्रयोग प्राप्त किए जा सकते हैं।[6][7]

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 Antieau, Benjamin; Elmanto, Elden (2016-11-07). "अस्थिर प्रेरक होमोटॉपी सिद्धांत के लिए एक प्राइमर". arXiv:1605.00929 [math.AG].
  2. Bloch, Spencer. बीजगणितीय चक्र पर व्याख्यान. Cambridge. pp. ix.
  3. Motivic Cohomology पर व्याख्यान नोट्स. example 6.13, pages 39-40.
  4. "Section 10.154 (0BSK): Henselization and strict henselization—The Stacks project". stacks.math.columbia.edu. Retrieved 2021-01-25.
  5. "प्रति उदाहरण - एक निस्नेविच कवर जो ज़ारिस्की नहीं है". MathOverflow. Retrieved 2021-01-25.
  6. Voevodsky, Vladimir. "एक क्षेत्र के ऊपर उद्देश्यों की त्रिकोणीय श्रेणियां k" (PDF). Journal of K-Theory. Proposition 3.1.3.
  7. "निस्नेविच टोपोलॉजी" (PDF). Archived from the original on 2017-09-23.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  • Nisnevich, Yevsey A. (1989). "The completely decomposed topology on schemes and associated descent spectral sequences in algebraic K-theory". In J. F. Jardine and V. P. Snaith (ed.). Algebraic K-theory: connections with geometry and topology. Proceedings of the NATO Advanced Study Institute held in Lake Louise, Alberta, December 7--11, 1987. NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences. Vol. 279. Dordrecht: Kluwer Academic Publishers Group. pp. 241–342., available at निस्नेविच's website