अभिलक्षण (गणित): Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
गणित में, किसी वस्तु का प्रतीक वर्णन करार का एक समूह है, जो वस्तु की परिभाषा से भिन्न होते हुए इसके समकक्ष है।<ref name=":0">{{Cite web|url=http://mathworld.wolfram.com/निस्र्पण.html|title=निस्र्पण|last=Weisstein|first=Eric W.|website=mathworld.wolfram.com|language=en|access-date=2019-11-21}}</ref> संपत्ति पी वस्तु एक्स की विशेषता है, एक्स में न केवल [[संपत्ति (दर्शन)]] पी है, बल्कि यह एक्स ही एकमात्र वस्तु है जिसमें संपत्ति पी है (यानी, पी एक्स की एक परिभाषित संपत्ति है)। इसी तरह, गुणों का एक सेट पी को एक्स को चिह्नित करने के लिए कहा जाता है, जब ये गुण एक्स को अन्य सभी वस्तुओं से भिन्न करते हैं। लक्षण वर्णन किसी वस्तु को अद्भुत विधि से पहचानता है, वस्तु के लिए कई लक्षण मौजूद हो सकते हैं। पी के संदर्भ में एक्स के लक्षण वर्णन के लिए सामान्य गणितीय अभिव्यक्तियों में समिलित होता है, पी, एक्स के लिए [[आवश्यक और पर्याप्त]] होता है। | गणित में, किसी वस्तु का प्रतीक वर्णन करार का एक समूह है, जो वस्तु की परिभाषा से भिन्न होते हुए इसके समकक्ष है।<ref name=":0">{{Cite web|url=http://mathworld.wolfram.com/निस्र्पण.html|title=निस्र्पण|last=Weisstein|first=Eric W.|website=mathworld.wolfram.com|language=en|access-date=2019-11-21}}</ref> संपत्ति पी वस्तु एक्स की विशेषता है, एक्स में न केवल [[संपत्ति (दर्शन)]] पी है, बल्कि यह एक्स ही एकमात्र वस्तु है जिसमें संपत्ति पी है (यानी, पी एक्स की एक परिभाषित संपत्ति है)। इसी तरह, गुणों का एक सेट पी को एक्स को चिह्नित करने के लिए कहा जाता है, जब ये गुण एक्स को अन्य सभी वस्तुओं से भिन्न करते हैं। लक्षण वर्णन किसी वस्तु को अद्भुत विधि से पहचानता है, वस्तु के लिए कई लक्षण मौजूद हो सकते हैं। पी के संदर्भ में एक्स के लक्षण वर्णन के लिए सामान्य गणितीय अभिव्यक्तियों में समिलित होता है, पी, एक्स के लिए [[आवश्यक और पर्याप्त]] होता है। | ||
संपत्ति क्यू जैसे वर्णन शोध को भी सरल कहा जाता है जो वाई को [[ समाकृतिकता ]] [[तक]] दर्शाता है। पूर्व प्रकार का कथन | संपत्ति क्यू जैसे वर्णन शोध को भी सरल कहा जाता है जो वाई को [[ समाकृतिकता ]] [[तक]] दर्शाता है। पूर्व प्रकार का कथन भिन्न-भिन्न शब्दों को कहा जाता है कि पी का [[विस्तार (शब्दार्थ)]] एक [[सिंगलटन (गणित)]] समुच्चय है, क्यू का विस्तार एकल [[तुल्यता वर्ग]] है (समरूपता के लिए, दिए गए उदाहरण में - पर निर्भर करता है) तक उपयोग किया जा रहा है, कुछ अन्य [[तुल्यता संबंध]] समिलित होते हैं। | ||
गणितीय शब्दावली | गणितीय शब्दावली संदर्भ है ग्रीक शब्द खारक्स से उत्पन्न होती है, एक नुकीली साझा: ग्रीक खारैक्स से खाराखटर आया, एक उपकरण जिसका उपयोग किसी वस्तु को चिह्नित किया जाता है। जब किसी वस्तु को चिन्हित कर लिया जाता है, तो वह विशिष्ट हो जाती है, इसलिए किसी वस्तु के चरित्र का अर्थ उसकी विशिष्ट प्रकृति से हो जाता है। देर से ग्रीक प्रत्यय -इस्टिकोस ने संज्ञा वर्ण को विशेषण विशेषता में परिवर्तित कर दिया, जो इसके विशेषण अर्थ को बनाए रखने में एक संज्ञा भी बन जाती है।<ref>Steven Schwartzmann (1994) ''The Words of Mathematics: An etymological dictionary of mathematical terms used in English'', page 43, [[The Mathematical Association of America]] {{ISBN|0-88385-511-9}}</ref>जिस तरह रसायन विज्ञान में, किसी पदार्थ का विशिष्ट गुण प्रतिरूप की पहचान करने के लिए काम करेगा, या सामग्री, संरचनाओं और गुणों के अध्ययन में [[लक्षण वर्णन (सामग्री विज्ञान)]] का निर्धारण करेगा, उसी तरह गणित में गुणों को व्यक्त करने का एक निरंतर प्रयास है। जो एक सिद्धांत या प्रणाली में एक वांछित विशेषता को भिन्न करेगा। लक्षण वर्णन गणित के लिए अद्वितीय नहीं है, चूंकि विज्ञान अमूर्त है, इसलिए अधिकांश गतिविधि को लक्षण वर्णन के रूप में वर्णित किया जा सकता है। उदाहरण के लिए, [[गणितीय समीक्षा]]ओं में, 2018 तक, 24,000 से अधिक लेखों में लेख के शीर्षक में शब्द समिलित हैं, और समीक्षा में कहीं 93,600 हैं।<!-- Might consider a different reference, since the access to Mathematics Reviews requires active subscription . --> | ||
वस्तुओं और सुविधाओं के | |||
वस्तुओं और सुविधाओं के मनमाना संदर्भ में, चरित्र-चित्रण को [[विषम संबंध]] aRb के माध्यम से व्यक्त किया गया है, जिसका अर्थ है कि वस्तु में विशेषता b है। उदाहरण के लिए, b का अर्थ अमूर्त और ठोस हो सकता है। वस्तुओं को संसार का विस्तार (शब्दार्थ) माना जा सकता है, जबकि विशेषताएँ अभिप्राय की अभिव्यक्ति हैं। विभिन्न वस्तुओं के लक्षण वर्णन का एक सतत कार्यक्रम उनके [[वर्गीकरण]] की ओर ले जाता है। | |||
== उदाहरण == | == उदाहरण == | ||
* एक परिमेय संख्या, जिसे | * एक परिमेय संख्या, जिसे समिलित दो पूर्णांकों के [[अनुपात]] के रूप में परिभाषित किया जाता है, को परिमित या दोहराए जाने वाले [[दशमलव विस्तार]] वाली संख्या के रूप में वर्णित किया जा सकता है।<ref name=":0" />*एक समांतर [[चतुर्भुज]] एक चतुर्भुज होता है जिसकी विरोधी भुजाएँ समानांतर होती हैं। इसकी एक विशेषता यह है कि इसके विकर्ण एक दूसरे को समद्विभाजित करते हैं। इसका मतलब यह है कि सभी समांतर चतुर्भुजों के विकर्ण एक-दूसरे को समद्विभाजित करते हैं, और इसके विपरीत, कोई भी चतुर्भुज जिसके विकर्ण एक-दूसरे को समद्विभाजित करते हैं, एक समांतर चतुर्भुज होना चाहिए। बाद वाला कथन केवल तभी सत्य है जब चतुर्भुजों की समावेशी परिभाषाओं का उपयोग किया जाता है (ताकि, उदाहरण के लिए, [[आयत]]ों को समांतर चतुर्भुज के रूप में गिना जाए), जो आजकल गणित में वस्तुओं को परिभाषित करने का प्रमुख तरीका है। | ||
* वास्तविक रेखा पर 0 से ∞ के अंतराल पर संभाव्यता वितरण के बीच, [[स्मृतिहीनता]] घातीय वितरण की विशेषता है। इस कथन का अर्थ है कि घातीय वितरण केवल संभाव्यता वितरण हैं जो मेमोरीलेस हैं, बशर्ते कि वितरण निरंतर हो जैसा कि ऊपर परिभाषित किया गया है (अधिक के लिए [[संभाव्यता वितरण की विशेषता]] देखें)। | * वास्तविक रेखा पर 0 से ∞ के अंतराल पर संभाव्यता वितरण के बीच, [[स्मृतिहीनता]] घातीय वितरण की विशेषता है। इस कथन का अर्थ है कि घातीय वितरण केवल संभाव्यता वितरण हैं जो मेमोरीलेस हैं, बशर्ते कि वितरण निरंतर हो जैसा कि ऊपर परिभाषित किया गया है (अधिक के लिए [[संभाव्यता वितरण की विशेषता]] देखें)। | ||
* बोह्र-मोलेरुप प्रमेय के अनुसार, सभी कार्यों के बीच f जैसे कि f(1) = 1 और x f(x) = f(x + 1) x> 0 के लिए, लॉग-उत्तलता [[गामा समारोह]] की विशेषता है। इसका मतलब यह है कि ऐसे सभी कार्यों में, गामा फ़ंक्शन एकमात्र ऐसा है जो लॉग-उत्तल है।<ref>A function ''f'' is ''log-convex'' [[Iff|if and only if]] log(''f'') is a [[convex function]]. The base of the logarithm does not matter as long as it is more than 1, but mathematicians generally take "log" with no subscript to mean the [[natural logarithm]], whose base is ''e''.</ref> | * बोह्र-मोलेरुप प्रमेय के अनुसार, सभी कार्यों के बीच f जैसे कि f(1) = 1 और x f(x) = f(x + 1) x> 0 के लिए, लॉग-उत्तलता [[गामा समारोह]] की विशेषता है। इसका मतलब यह है कि ऐसे सभी कार्यों में, गामा फ़ंक्शन एकमात्र ऐसा है जो लॉग-उत्तल है।<ref>A function ''f'' is ''log-convex'' [[Iff|if and only if]] log(''f'') is a [[convex function]]. The base of the logarithm does not matter as long as it is more than 1, but mathematicians generally take "log" with no subscript to mean the [[natural logarithm]], whose base is ''e''.</ref> |
Revision as of 23:54, 6 April 2023
गणित में, किसी वस्तु का प्रतीक वर्णन करार का एक समूह है, जो वस्तु की परिभाषा से भिन्न होते हुए इसके समकक्ष है।[1] संपत्ति पी वस्तु एक्स की विशेषता है, एक्स में न केवल संपत्ति (दर्शन) पी है, बल्कि यह एक्स ही एकमात्र वस्तु है जिसमें संपत्ति पी है (यानी, पी एक्स की एक परिभाषित संपत्ति है)। इसी तरह, गुणों का एक सेट पी को एक्स को चिह्नित करने के लिए कहा जाता है, जब ये गुण एक्स को अन्य सभी वस्तुओं से भिन्न करते हैं। लक्षण वर्णन किसी वस्तु को अद्भुत विधि से पहचानता है, वस्तु के लिए कई लक्षण मौजूद हो सकते हैं। पी के संदर्भ में एक्स के लक्षण वर्णन के लिए सामान्य गणितीय अभिव्यक्तियों में समिलित होता है, पी, एक्स के लिए आवश्यक और पर्याप्त होता है।
संपत्ति क्यू जैसे वर्णन शोध को भी सरल कहा जाता है जो वाई को समाकृतिकता तक दर्शाता है। पूर्व प्रकार का कथन भिन्न-भिन्न शब्दों को कहा जाता है कि पी का विस्तार (शब्दार्थ) एक सिंगलटन (गणित) समुच्चय है, क्यू का विस्तार एकल तुल्यता वर्ग है (समरूपता के लिए, दिए गए उदाहरण में - पर निर्भर करता है) तक उपयोग किया जा रहा है, कुछ अन्य तुल्यता संबंध समिलित होते हैं।
गणितीय शब्दावली संदर्भ है ग्रीक शब्द खारक्स से उत्पन्न होती है, एक नुकीली साझा: ग्रीक खारैक्स से खाराखटर आया, एक उपकरण जिसका उपयोग किसी वस्तु को चिह्नित किया जाता है। जब किसी वस्तु को चिन्हित कर लिया जाता है, तो वह विशिष्ट हो जाती है, इसलिए किसी वस्तु के चरित्र का अर्थ उसकी विशिष्ट प्रकृति से हो जाता है। देर से ग्रीक प्रत्यय -इस्टिकोस ने संज्ञा वर्ण को विशेषण विशेषता में परिवर्तित कर दिया, जो इसके विशेषण अर्थ को बनाए रखने में एक संज्ञा भी बन जाती है।[2]जिस तरह रसायन विज्ञान में, किसी पदार्थ का विशिष्ट गुण प्रतिरूप की पहचान करने के लिए काम करेगा, या सामग्री, संरचनाओं और गुणों के अध्ययन में लक्षण वर्णन (सामग्री विज्ञान) का निर्धारण करेगा, उसी तरह गणित में गुणों को व्यक्त करने का एक निरंतर प्रयास है। जो एक सिद्धांत या प्रणाली में एक वांछित विशेषता को भिन्न करेगा। लक्षण वर्णन गणित के लिए अद्वितीय नहीं है, चूंकि विज्ञान अमूर्त है, इसलिए अधिकांश गतिविधि को लक्षण वर्णन के रूप में वर्णित किया जा सकता है। उदाहरण के लिए, गणितीय समीक्षाओं में, 2018 तक, 24,000 से अधिक लेखों में लेख के शीर्षक में शब्द समिलित हैं, और समीक्षा में कहीं 93,600 हैं।
वस्तुओं और सुविधाओं के मनमाना संदर्भ में, चरित्र-चित्रण को विषम संबंध aRb के माध्यम से व्यक्त किया गया है, जिसका अर्थ है कि वस्तु में विशेषता b है। उदाहरण के लिए, b का अर्थ अमूर्त और ठोस हो सकता है। वस्तुओं को संसार का विस्तार (शब्दार्थ) माना जा सकता है, जबकि विशेषताएँ अभिप्राय की अभिव्यक्ति हैं। विभिन्न वस्तुओं के लक्षण वर्णन का एक सतत कार्यक्रम उनके वर्गीकरण की ओर ले जाता है।
उदाहरण
- एक परिमेय संख्या, जिसे समिलित दो पूर्णांकों के अनुपात के रूप में परिभाषित किया जाता है, को परिमित या दोहराए जाने वाले दशमलव विस्तार वाली संख्या के रूप में वर्णित किया जा सकता है।[1]*एक समांतर चतुर्भुज एक चतुर्भुज होता है जिसकी विरोधी भुजाएँ समानांतर होती हैं। इसकी एक विशेषता यह है कि इसके विकर्ण एक दूसरे को समद्विभाजित करते हैं। इसका मतलब यह है कि सभी समांतर चतुर्भुजों के विकर्ण एक-दूसरे को समद्विभाजित करते हैं, और इसके विपरीत, कोई भी चतुर्भुज जिसके विकर्ण एक-दूसरे को समद्विभाजित करते हैं, एक समांतर चतुर्भुज होना चाहिए। बाद वाला कथन केवल तभी सत्य है जब चतुर्भुजों की समावेशी परिभाषाओं का उपयोग किया जाता है (ताकि, उदाहरण के लिए, आयतों को समांतर चतुर्भुज के रूप में गिना जाए), जो आजकल गणित में वस्तुओं को परिभाषित करने का प्रमुख तरीका है।
- वास्तविक रेखा पर 0 से ∞ के अंतराल पर संभाव्यता वितरण के बीच, स्मृतिहीनता घातीय वितरण की विशेषता है। इस कथन का अर्थ है कि घातीय वितरण केवल संभाव्यता वितरण हैं जो मेमोरीलेस हैं, बशर्ते कि वितरण निरंतर हो जैसा कि ऊपर परिभाषित किया गया है (अधिक के लिए संभाव्यता वितरण की विशेषता देखें)।
- बोह्र-मोलेरुप प्रमेय के अनुसार, सभी कार्यों के बीच f जैसे कि f(1) = 1 और x f(x) = f(x + 1) x> 0 के लिए, लॉग-उत्तलता गामा समारोह की विशेषता है। इसका मतलब यह है कि ऐसे सभी कार्यों में, गामा फ़ंक्शन एकमात्र ऐसा है जो लॉग-उत्तल है।[3]
- सर्कल को एक-आयामी, कॉम्पैक्ट जगह और जुड़ा हुआ स्थान होने के कारण कई गुना बताया जाता है; यहाँ लक्षण वर्णन, एक चिकनी कई गुना के रूप में, भिन्नता तक है।
यह भी देखें
- संभाव्यता वितरण की विशेषता
- टोपोलॉजिकल स्पेस की श्रेणी के लक्षण
- घातीय समारोह के लक्षण
- विशेषता (बीजगणित)
- विशेषता (प्रतिपादक संकेतन)
- वर्गीकरण प्रमेय
- यूलर विशेषता
- चरित्र (गणित)
संदर्भ
- ↑ 1.0 1.1 Weisstein, Eric W. "निस्र्पण". mathworld.wolfram.com (in English). Retrieved 2019-11-21.
- ↑ Steven Schwartzmann (1994) The Words of Mathematics: An etymological dictionary of mathematical terms used in English, page 43, The Mathematical Association of America ISBN 0-88385-511-9
- ↑ A function f is log-convex if and only if log(f) is a convex function. The base of the logarithm does not matter as long as it is more than 1, but mathematicians generally take "log" with no subscript to mean the natural logarithm, whose base is e.